
6/1/2017

Getting Started Guide for Programmers Porting Plug-ins from VP1
to VP2 (Part 2) in Autodesk® Maya®

AUTODESK,
INC.

VIEWPORT 2.0 API PORTING GUIDE

PART 2: PORTING DETAILS

Page 1 of 138

Revision History

4/1/2015 Initial version for Maya 2016

6/1/2017 Updates for Maya 2018:
6.3 Porting "Simple" Single Objects

- Merged “VP2 API Porting Guide for Locators".
6.5 Porting Surface Shapes using MPxSubSceneOverride

- Focused on complex parts because 6.3 has covered the basics.

Page 2 of 138

1. Table of Contents
1. Table of Contents .. 1

2. Introduction .. 4

6. Porting Details ... 4

6.1 Porting Manipulators .. 4

6.2 Porting Contexts ... 6

6.3 Porting “Simple” Single Objects ... 7

6.3.1 Porting Using a Geometry Override ... 8

6.3.2 Porting Using a Subscene Override ... 18

6.3.3 Porting Using UI Draw Manager ... 27

6.3.4 Porting Using a Draw Override ... 33

6.4 Porting Surface Shapes using MPxGeometryOverride ... 41

6.4.1 MPxGeometryOverride (Revisited)... 42

6.4.2 Render Items Assigned Shaders for MPxGeometryOverride 42

6.4.3 Wireframe Render Item Example ... 43

6.4.4 Populating Geometry for Wireframe and Shaded Render Items 47

6.4.5 Component Handling (MPxGeometryOverride) ... 51

6.5 Porting Surface Shapes using MPxSubSceneOverride .. 53

6.5.1 Shaders ... 54

6.5.2 Data and Index Streams ... 56

6.5.3 Render Items... 59

6.5.4 Setting Data on Render Items .. 62

6.5.5 Selection ... 63

6.6 Porting Shaders.. 66

6.6.1 Software Shading Node Attribute Matching ... 66

6.6.2 Phong Fragment Description .. 68

6.6.3 Software Shading Node Fragments ... 68

6.6.4 Intermediate Nodes (Brick Texture Example) .. 69

6.6.5 Surface Shader Node Example (Oren-Nayer) ... 83

6.6.6 Custom Effect Nodes (MPxShaderOverride) ... 88

6.7 Porting Renderers .. 113

6.7.1 Handling Multi-Pass MPx3dModelView Logic .. 114

6.7.2 Handling MViewportRenderer Logic ... 115

Page 3 of 138

6.7.3 Override Operations.. 115

6.7.4 Simple Render Override ... 116

6.7.5 Sample Override Options ... 119

6.7.6 Compositing Externally Rendered Results ... 121

6.7.7 Multi-Pass Scene Rendering .. 126

6.7.8 “Dependent” Operation Rendering ... 127

6.7.9 Stereo Rendering (Scene -> Quad Render Shader Dependency) 127

6.7.10 Glow (Quad to Quad Render Dependency) ... 130

6.7.11 “Capturing” Render Targets .. 133

6.8 Drawing 2D Elements .. 135

6.8.1 HUDS using a Locator .. 135

6.8.2 Manipulators and In-View Editors ... 137

6.8.3 Image Planes .. 138

Page 4 of 138

2. Introduction
This document provides details for porting a plug-in from using VP1 interfaces to using VP2

interfaces in Autodesk® Maya®. Various scenarios outlined in the Viewport 2.0 API Porting

guide, Part 1: Basics are covered in detail in this document. This document is a continuation of

Part 1: Basics, as reflected by its section numbering. Therefore, it should only be read after

completing the reading of Part 1. The SDK examples/sample plug-ins referred to in this

document are part of the Maya Developer Kit, which is available online at Autodesk Exchange

at https://apps.exchange.autodesk.com/MAYA/en/Home/Index.

For more information on all the API interfaces mentioned in this document, see the C++ API

Reference section of the Maya Developer Help at

http://help.autodesk.com/view/MAYAUL/2017/ENU.

For more details on the Maya Viewport 2.0 API, see the Viewport 2.0 API section of the Maya

Developer Help at http://help.autodesk.com/view/MAYAUL/2017/ENU. Topics from this section

of the Maya Developer Help are referenced throughout this document.

For brevity, the Legacy Default Viewport / Viewport 1 will be denoted as VP1 and Viewport 2.0

denoted as VP2 throughout this document.

6. Porting Details
Throughout this document, for all provided code examples, important method calls are

highlighted in bold, and specific enumerations in italics.

6.1 Porting Manipulators

For VP2 the key interfaces are:

• virtual void preDrawUI(const M3dView &view);

• virtual void drawUI(MHWRender::MUIDrawManager& drawManager, const

MHWRender::MFrameContext& frameContext) const;

These should be used instead of the following VP1 interface:

• virtual void draw(M3dView & view, const MDagPath & path, M3dView::DisplayStyle

style,M3dView::DisplayStatus status);

Examining the Developer Kit SDK example footPrintManip reveals that the basic DG translation

is performed in preDrawUI(), and the drawing is done using the UI manager in drawUI().

Void footPrintLocatorManip::preDrawUI(const M3dView &view)
{
 // Update text drawing position
 fTextPosition = <Compute the text position>;
}

The draw code adds two drawables: one for 3d text and one for 2d text. These will be queued
as transient items for drawing.

https://apps.exchange.autodesk.com/MAYA/en/Home/Index
http://help.autodesk.com/view/MAYAUL/2017/ENU
http://help.autodesk.com/view/MAYAUL/2017/ENU

Page 5 of 138

void footPrintLocatorManip::drawUI(
 MHWRender::MUIDrawManager& drawManager,
 const MHWRender::MFrameContext& frameContext) const
{
 drawManager.beginDrawable();
 drawManager.setColor(MColor(0.0f, 1.0f, 0.1f));
 // Use the text position to draw
 drawManager.text(fTextPosition, "3d text", MHWRender::MUIDrawManager::kLeft);
 drawManager.text2d(MPoint(100,100), "2d text", MHWRender::MUIDrawManager::kLeft);
 drawManager.endDrawable();
}

The SDK lineManip example demonstrates VP2 selection support for parts of a manipulator.

To indicate the parts of the manipulator that can be selected, the beginDrawable() method uses

a unique name (lineName). To check if a drawable with lineName has been selected, a call into

the convenience method MPxManipulatorNode::shouldDrawHandleAsSelected() is performed.

In the sample, the color used for the drawable is changed to a “selected” color.

void lineManip::drawUI(
 MHWRender::MUIDrawManager& drawManager,
 const MHWRender::MFrameContext& frameContext) const
{
 bool drawAsSelected = false;
 shouldDrawHandleAsSelected(lineName, drawAsSelected);

 // Set this next drawable to be selectable, and adjust color if selected.
 drawManager.beginDrawable(lineName, true);
 drawManager.setColorIndex(drawAsSelected ? fSelectedColorIndex : fColorIndex);
 drawManager.line(fLineStart, fLineEnd);
 drawManager.endDrawable();

 // Set this next drawable not to be selectable
 drawManager.beginDrawable();
 drawManager.setColorIndex(fColorIndex);
 drawManager.text(fLineStart, MString("line manip"));
 drawManager.endDrawable();

 // Set this next drawable to be selectable, and adjust color if selected.
 drawManager.beginDrawable(lineName, true);
 drawManager.setColorIndex(drawAsSelected ? fSelectedColorIndex : fColorIndex);
 drawManager.line2d(MPoint(100, 100), MPoint(200, 100));
 drawManager.setLineWidth(5.0f);
 drawManager.endDrawable();

 // Set this next drawable to not be selectable
 drawManager.beginDrawable();
 drawManager.setColorIndex(fColorIndex);
 drawManager.setLineWidth(5.0f);
 drawManager.text2d(MPoint(100, 105), MString("line manip 2D"));
 drawManager.endDrawable();
}

The method MPxManipulatorNode::glActiveName() can be used to test for a selection of a given

named drawable. Despite its name, this method is device independent in VP2. In the example,

below, the manipulator tests the name within a drag event method:

Page 6 of 138

MStatus lineManip::doDrag(M3dView& view)
{
 unsigned int activeName = 0;
 if (glActiveName(activeName))
 {
 // do work
 }
 return MS::kSuccess;
}

6.2 Porting Contexts

The basic VP1 interfaces for tools context (MPxContext, MPxTexContext) are:

• virtual MStatus doPress (MEvent & event);

• virtual MStatus doRelease (MEvent & event);

• virtual MStatus doDrag (MEvent & event);

• virtual MStatus doHold (MEvent & event);

The VP2 interfaces attempt to match the old interface signatures, but branch off to allow access

to a MUIDrawManager and a frame context (MFrameContext):

• virtual MStatus doPress (MEvent & event, MHWRender::MUIDrawManager& drawMgr, const

MHWRender::MFrameContext& context);

• virtual MStatus doRelease(MEvent & event, MHWRender::MUIDrawManager& drawMgr, const

MHWRender::MFrameContext& context);

• virtual MStatus doDrag (MEvent & event, MHWRender::MUIDrawManager& drawMgr, const

MHWRender::MFrameContext& context);

• virtual MStatus doHold (MEvent & event, MHWRender::MUIDrawManager& drawMgr, const

MHWRender::MFrameContext& context);

• virtual MStatus drawFeedback (MHWRender::MUIDrawManager& drawMgr, const

MHWRender::MFrameContext& context);

Note that drawFeedback() exists to allow for occasions when continuous update is required,

such as for always drawing a 3d cursor.

The following sample code from the marqueeTool SDK example demonstrates the use of an

instance of an MUIDrawManager to perform drawing during the drag event (doDrag()). As with

VP1, the input event can be used to drive what to draw. The press and release non-drawing

functionality can be shared between VP1 and VP2.

Mstatus marqueeContext::doDrag (

 MEvent & event,

 MHWRender::MUIDrawManager& drawManager,

 const MHWRender::MFrameContext& context)

{

 // Get the marquee's new end position.

 event.getPosition(last_x, last_y);

Page 7 of 138

 // Draw the marquee at its new position.

 // Always drawn last so no need for complicated XOR

 drawManager.beginDrawable();

 drawManager.setColor(MColor(1.0f, 1.0f, 0.0f));

 drawManager.line2d(MPoint(start_x, start_y), MPoint(last_x, start_y));

 drawManager.line2d(MPoint(last_x, start_y), MPoint(last_x, last_y));

 drawManager.line2d(MPoint(last_x, last_y), MPoint(start_x, last_y));

 drawManager.line2d(MPoint(start_x, last_y), MPoint(start_x, start_y));

 drawManager.endDrawable();

 return MS::kSuccess;

}

The main difference between the VP1 and VP2 implementations is that VP2 does not require

special code on press and release (and draw) to perform XOR drawing.

This is because all context drawing can be thought of as being drawn as an “overlay”. Thus , for

each event, only the current draw needs to be performed and the previous draw does not need

to be “erased” using XOR drawing. (M3dView::beginXorDrawing()/endXorDrawing() should not

be used for VP2 drawing.)

6.3 Porting “Simple” Single Objects

This section covers the possible approaches to porting over DAG objects that represent single

objects. The term “simple” denotes that the complexity of the data to be drawn is small. To

illustrate this, variations on four implementations of the footPrintNode locator will be examined:

1. footPrintNode_GeometryOverride: This plug-in adds VP2 support via an

MPxGeometryOverride.

2. footPrintNode_SubSceneOverride: This plug-in adds VP2 support via an

MPxSubSceneOverride.

3. footPrintNode: This plug-in adds VP2 support via MUIDrawManager.

4. rawfootPrintNode: This plug-in adds VP2 support via an MPxDrawOverride.

After examining the implementation, each approach will be analyzed based on the following

factors. Pros will be marked with ✓ and cons are marked with .

• Portability: For example, how easy is the implementation, how much work is required?

• Scalability: For example, how does it perform as the number of objects increases?

• Compatibility/Flexibility: For example, which drawing APIs/platforms is it compatible with,

does it interact with other features, and which scenarios are suitable?

Note: It is possible to reuse legacy viewport drawing and picking when using Viewport 2.0 for

plug-in locators. However, this is only available since Maya 2017 and should only be considered

a temporary solution to allow for an incremental migration to Viewport 2.0. Fore more details

Page 8 of 138

see Use MPxLocatorNode legacy fixed draw code and selection in Viewport 2.0 in Maya

Developer Help.

6.3.1 Porting Using a Geometry Override

This example uses an MPxGeometryOverride to handle drawing for a locator

(MPxLocatorNode). The example code listed below is taken from the

footPrintNode_GeometryOverride sample plug-in. Within the plug-in, the life-cycle of one render

item that uses a simple stock shader will be examined.

The basic configuration for a geometry override appears as follows, where the override is

associated with the DAG object, and the render items are associated with the override.

Geometry

Override
“Custom”

RenderItem

Maya

DAG

Object

drawDb/geometry

association

“Custom”

RenderItem

Figure 1: Sample drawDB/geometry association to a geometry override which will produce custom render items.

6.3.1.1 MPxGeometryOverride Registration

To allow the geometry override to be associated with the locator, the same drawdb classification

should be used during registration.

First, the Maya node must have a classification string specified. This is the last argument of

MFnPlugin::registerNode() as shown below. In the classification string:

• “geometry” designates it as a geometry evaluator.

• “footPrint” designates a specific geometry, in this case, the “footPrint” evaluator.

Each plug-in would have an appropriate unique identifier instead of “footPrint”.

MString footPrint::drawDbClassification("drawdb/geometry/footPrint");

MStatus status = plugin.registerNode(
 "footPrint",
 footPrint::id,
 &footPrint::creator,
 &footPrint::initialize,
 MPxNode::kLocatorNode, // Is a locator
 &footPrint::drawDbClassification); // Use the VP2 classification

The geometry override needs to use the exact same classification string in order to form an

association. An additional unique id is required to identify the registration as well as creator

function which will create a new instance of the override class.

status = MHWRender::MDrawRegistry::registerGeometryOverrideCreator(
 footPrint::drawDbClassification, // Use same classification as the node

Page 9 of 138

 footPrint::drawRegistrantId, // Registration id
 FootPrintGeometryOverride::Creator); // Instance creator function

At plug-in unitialization time, a corresponding deregistration is performed:

status = MHWRender::MDrawRegistry::deregisterGeometryOverrideCreator(
 footPrint::drawDbClassification, // Use same classification as registration
 footPrint::drawRegistrantId); // Use same registration id

6.3.1.2 MPxGeometryOverride Interfaces

In addition to registration via MDrawRegistry, there are a few key interfaces that a geometry

override (evaluator) must implement. These interfaces are called in a specific order and reflect

the internal separation of computation:

• DG Evaluation: The updateDG() method should be the only location where DG

evaluation occurs.

• Render Item Handling: The updateRenderItems() method is responsible for the

updating the parameters on an existing render item, or creating new ones.

• Geometry Update: The populateGeometry() method will update both data and indexing

streams. Data streams are added to the geometry container for the override. Indexing

will be referenced by render items associated with the override.

The following diagram shows this graphically. In the locator case we will ignore the surface

shader update since no surface shaders can be associated with locators:

Geometry

Override
“Custom”

RenderItem

Maya

Surface

Shader

Node

RenderItem for

Shader

Maya

DAG

Object

1. Update DG 2. Update Render Items

2

“Custom”

RenderItem

2

MGeometry

3. Populate Geometry (data)

MVertexBuffer

3. Populate Geometry (indexing)

MIndexBuffer

3. Update Indexing

Figure 2: Basic steps enumerated to perform node data extraction, process render items, and then update geometry
for those items.

Page 10 of 138

6.3.1.3 DG Update

In the example, the DG evaluation is fairly simple but demonstrates the separation of DG

evaluation from draw. Compare this code in VP1 which performs DG evaluation during draw:

void footPrint::draw(M3dView & view, const MDagPath & /*path*/,
 M3dView::DisplayStyle style,
 M3dView::DisplayStatus status)
{
 // Get the size
 //
 MObject thisNode = thisMObject();
 MPlug plug(thisNode, size); //  Pull data on the size attribute
 MDistance sizeVal;
 plug.getValue(sizeVal);

 float multiplier = (float) sizeVal.asCentimeters();

to this VP2 code which performs the same action during updatedDG() for the geometry

override. The scale is cached locally on the override class instance for reuse during geometry

update.

void FootPrintGeometryOverride::updateDG()
{
 MPlug plug(mLocatorNode, footPrint::size);
 float newScale = 1.0f;
 if (!plug.isNull())
 {
 MDistance sizeVal;
 if (plug.getValue(sizeVal)) //  Pull data on the size attribute
 {
 newScale = (float)sizeVal.asCentimeters();
 }
 }
 if (newScale != mMultiplier)
 {
 mMultiplier = newScale;
 mMultiplierChanged = true;
 }
}

6.3.1.4 Render Item Update

Because a locator has no inherent shader assignment, at render item update time, updating of

shaded items is not required. (Handling of surface shapes which do have shaded items

provided is discussed in “Porting Surface Shapes”).

Instead, the plug-in requires additional “UI” items to be explicitly created and updated for the

drawing of the “heel” and “sole” part of the footprint shape.

The basic logic behind the update process can be summarized as follows:

Page 11 of 138

• Check if a named persistent render item already exists using

MRenderItemList::indexOf().

• If it does not exist, then create it using MRenderItem::Create() and append it to the list

of persistent render items using MRenderItemList::append(). At creation time, the

following parameters must be appropriately set:

o Rendering type

o Topology for indexing

o Draw mode using MRenderItem::setDrawMode().

• Render item or associated shader can then be updated.

o Render item is associated with shader using MRenderItem::setShader().

The following code snippet shows this logic for one render item which is identified by the

wireframeItemName variable. This code draws a wireframe of the foot print. It is designated as a

wireframe “decoration” or UI item and will only draw when wireframe mode is enabled.

void FootPrintGeometryOverride::updateRenderItems(const MDagPath& path,
 MHWRender::MRenderItemList& list)
{

// The MGeometryUtilities class is used here as a convenience to get the
// appropriate color for a given DAG path. A mini cache is maintained in
// the plug-in to retrieve the corresponding shader instance of a given

 // color and allow shader instances to be reused, so that VP2 performance
// optimizations such as consolidation and hardware instancing can be taken
// advantage of for duplicates.

 MColor color = MHWRender::MGeometryUtilities::wireframeColor(path);
 MHWRender::MShaderInstance* shader = get3dSolidShader(color);
 if (!shader) return;

 // Pointer to the wireframe render item of interest
 MHWRender::MRenderItem* wireframeItem = NULL;

 // Check the persistent render list to see if we have a render item
 // with a given name
 int index = list.indexOf(wireframeItemName);

 // If the render item cannot be found then we need to create a new one
 if (index < 0)
 {
 // Create the new render item with the given name.
 // We designate this item as a UI “decoration” and will not be
 // involved in rendering aspects such as casting shadows
 // The “topology” for the render item is that it’s a line list.
 wireframeItem = MHWRender::MRenderItem::Create(
 wireframeItemName,
 MHWRender::MRenderItem::DecorationItem,
 MHWRender::MGeometry::kLines);

 // We want this render item only show up when in “wireframe mode”.
 wireframeItem->setDrawMode(MHWRender::MGeometry::kWireframe);

 // The item must be added to the persistent list to be considered
 // for update / rendering
 list.append(wireframeItem);
 }

Page 12 of 138

 // If the item already exists then just find it in the persistent render
 // item list.
 else
 {
 wireframeItem = list.itemAt(index);
 }

// When we have a render item, then we need to assign the shader and make
// sure the render item is enabled.

 if (wireframeItem)
 {
 // Assign the shader to the render item. This adds a reference to that
 // shader.
 wireframeItem->setShader(shader);

 // We want to enable this render item. Disabling basically is equivalent
 // to making it invisible.
 wireframeItem->enable(true);
 }

6.3.1.5 Render Item Shader Instances

In order to allow for performance optimizations such as consolidation and hardware instancing,

we want to minimize the number of unique shader instances used by all render items. We can

do this by implementing a small shader instance cache and reusing the same shader instance

for more than one render item, especially for the case of duplicated/instanced objects. See

Section 3.6 Categorization and Consolidation for more information about how render items can

be considered for consolidation.

Note: To determine whether consolidation or hardware instancing is used, enable the debug

tracing of VP2 render pipeline.

// Maintain a mini cache for 3d solid shaders in order to reuse the shader
// instance whenever possible. This can allow Viewport 2.0 optimization e.g.
// consolidation and hardware instancing to be used.
struct MColorHash
{
 std::size_t operator()(const MColor& color) const
 {
 std::size_t seed = 0;
 CombineHashCode(seed, color.r);
 CombineHashCode(seed, color.g);
 CombineHashCode(seed, color.b);
 CombineHashCode(seed, color.a);
 return seed;
 }

 void CombineHashCode(std::size_t& seed, float v) const
 {
 std::hash<float> hasher;
 seed ^= hasher(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
 }
};

Page 13 of 138

std::unordered_map<MColor, MHWRender::MShaderInstance*, MColorHash> the3dSolidShaders;

// Get a shader instance from the mini cache regarding to a given solid color.
MHWRender::MShaderInstance* get3dSolidShader(const MColor& color)
{
 // Return the shader instance if exists.
 auto it = the3dSolidShaders.find(color);
 if (it != the3dSolidShaders.end()) return it->second;

// Otherwise, create a new shader instance for the given solid color and
// store it into the cache. In this case, an instance of “stock 3d solid
// shader” provided by the shader manager can be used to draw render items
// with the required solid color.
MHWRender::MRenderer* renderer = MHWRender::MRenderer::theRenderer();

 const MHWRender::MShaderManager* shaderMgr = renderer->getShaderManager();
MHWRender::MShaderInstance* shader = shaderMgr->getStockShader(
 MHWRender::MShaderManager::k3dSolidShader);

 if (shader)
 {
 float solidColor[] = { color.r, color.g, color.b, 1.0f };
 shader->setParameter("solidColor", solidColor);
 the3dSolidShaders[color] = shader;
 }

 // Return the new shader instance.
 return shader;
}

At render item update time, a new shader instance may or may not be created, depending on

whether the solid color required by the given DAG path has been used. Render items using the

same solid color will be associated with the same shader instance, and therefore may be

consolidated.

When the shader instances are no longer required, they should be released. As all the shader

instances are reusable for the entire lifetime of the plug-in, they are released together after

deregistration of the geometry override at plug-in uninitialization time:

MStatus releaseShaders()
{
 MHWRender::MRenderer* renderer = MHWRender::MRenderer::theRenderer();
 const MHWRender::MShaderManager* shaderMgr = renderer->getShaderManager();
 for (auto it = the3dSolidShaders.begin(); it != the3dSolidShaders.end(); it++)
 {
 // Release the reference to shader instances
 shaderMgr->releaseShader(it->second);
 }

 the3dSolidShaders.clear();
 return MS::kSuccess;
}

6.3.1.6 Updating Data Streams and Index Streams

The render items created or updated here are not processed by this class as it is only a

geometry evaluator. When appropriate, this evaluator will be called back to update the

Page 14 of 138

geometric data streams used as well as the indexing stream for each render item via a call to

populateGeometry().

To re-iterate, the data streams are associated with the total requirements for the override, while

the index streams are associated with specific render items for the override.

Two methods can specify whether streams and indexing are required to be updated:

• bool MPxGeometryOverride::isStreamDirty(): This can be used to indicate whether a

specific stream requires an update. As an example, if the geometry is always static, it is

possible to return a false value here so that the streams are regarded as never requiring

an update. In this example, the frequency of update depends on the frequency that the

“multiplier” attribute changes on the object.

• bool MPxGeometryOverride::isIndexingDirty(): At the render item level, this method

can return true if the item requires an indexing update when an object attribute changes.

In this example, the indexing per render item never changes; so, a “false” value is

always returned.

The net result is that, if no streams nor indexing updates are required, then populateGeometry()

may not be called.

6.3.1.6.1 Data Stream Update

In this example:

• A requirements structure (MGeometryRequirements) is passed in along with the render

items that are to be updated (MRenderItemList), and the geometry container that is to

be updated (MGeometry).

• The drawing of colored lines requires only one data stream (MVertexBuffer), which is a

position stream.

• The requirements structure will provide a list of descriptions (MVertexBufferDescriptor)

to be fulfilled in an MVertexBufferDescriptionList.

• Each description is checked for its semantic. In this case, the code will encounter a

“position” semantic (MGeometry::kPosition).

• Thus, an MVertexBuffer needs to be created that matches the description and the data

updated via the MVertexBuffer::acquire() method.

• The update of the data is done on CPU side and is plug-in dependent. When the CPU

side data has been updated, it must be “committed” or transferred to the GPU via the

MVertexBuffer::commit() method. The CPU side data is not required afterwards and

hence can be discarded after the commit.

MHWRender::MVertexBuffer* verticesBuffer = NULL;
float* vertices = NULL;

const MHWRender::MVertexBufferDescriptorList& vertexBufferDescriptorList =
 requirements.vertexRequirements();

MHWRender::MVertexBufferDescriptor vertexBufferDescriptor;
for (int i = 0; i < vertexBufferDescriptorList.length(); ++i)

Page 15 of 138

{
// Both the wireframe render item (lines) and the shaded render item (triangles)
// require a position stream only.

 if (vertexBufferDescriptorList.getDescriptor(i, vertexBufferDescriptor) &&
 vertexBufferDescriptor.semantic() == MHWRender::MGeometry::kPosition)
 {
 verticesBuffer = data.createVertexBuffer(vertexBufferDescriptor);
 vertices = (float*)verticesBuffer->acquire(soleCount+heelCount);
 break;
 }
}

// The postions of the heel and the sole are concatenated into a vertex buffer, to
// reduce the draw overhead due to the “small batch problem”. The merged buffer will
// be shared by the wireframe render item (lines) and the shaded item (triangles),
// to reduce memory usage and transfer overhead. Index buffers will specify which
// vertices are assembled for each render item.
for (int i = 0; i < soleCount+heelCount; ++i)
{
 if (i < heelCount)

{
 int heelVtx = i;
 vertices[i*3] = heel[heelVtx][0] * mMultiplier;
 vertices[i*3+1] = heel[heelVtx][1] * mMultiplier;
 vertices[i*3+2] = heel[heelVtx][2] * mMultiplier;

 }
 else

{
 int soleVtx = i – heelCount;
 vertices[i*3] = sole[soleVtx][0] * mMultiplier;
 vertices[i*3+1] = sole[soleVtx][1] * mMultiplier;
 vertices[i*3+2] = sole[soleVtx][2] * mMultiplier;

 }
}

// Commit: Transfer from CPU to GPU memory.
if (verticesBuffer && vertices)
{

verticesBuffer->commit(vertices);
}

6.3.1.6.2

6.3.1.6.2 Index Stream Update

The updating for indexing is performed per render item. The basic logic behind this process is:

• Loop through the supplied render items.

• Create an index buffer as required, and get access to the raw CPU data using

MGeometry::createIndexBuffer().

• Update the CPU data as required based on the indexing topology required.

• Like data streams, the CPU data for index streams must be committed using

MIndexBuffer::commit().

• Associate the index stream with the render item using

MRenderItem::associateWithIndexBuffer().

Page 16 of 138

The following code snippet examines again only one render item whose name is stored in the

variable wireframeItemName:

// Iterate through the render items for the override
for (int i=0; i < renderItems.length(); ++i)
{
 // Examine the current render item
 const MHWRender::MRenderItem* item = renderItems.itemAt(i);

 // Find the render item with the same name as the one that was created/updated
 // in updateRenderItems()
 if (item->name() == wireframeItemName)
 {
 // Acquire a new 32-bit index buffer.
 MHWRender::MIndexBuffer* indexBuffer =
 data.createIndexBuffer(MHWRender::MGeometry::kUnsignedInt32);

 // The indexing of the heel and the sole are concatenated into an index buffer.
 int numPrimitive = heelCount + soleCount - 2;
 int numIndex = numPrimitive * 2;

 // Gain access to the raw CPU data.
 unsigned int* indices = (unsigned int*)indexBuffer->acquire(numIndex);

 // Update the raw CPU data with indexing of the heel and the sole.
 for (int i = 0; i < numIndex;)
 {
 int startIndex = 0;
 int primitiveIndex = 0;
 if (i < (heelCount - 2) * 3)
 {
 startIndex = 0;
 primitiveIndex = i / 3;
 }
 else
 {
 startIndex = heelCount;
 primitiveIndex = i / 3 - heelCount + 2;
 }
 indices[i++] = startIndex;
 indices[i++] = startIndex + primitiveIndex + 1;
 indices[i++] = startIndex + primitiveIndex + 2;
 }

 // Commit: Transfer from CPU to GPU memory.
 indexBuffer->commit(indices);

 // Assign the index stream to the render item.
 item->associateWithIndexBuffer(indexBuffer);
 }
}

Page 17 of 138

6.3.1.7 Analysis

The MPxGeometryOverride class is quite similar to VP2 internal classes used to support native

DAG objects, like polygonal meshes and NURBS surfaces. By using this class, plug-ins can

take advantage of all internal optimizations such as consolidation and hardware instancing.

6.3.1.7.1 Portability

✓ The implementation operates using the MRenderItem interface, and requires only one set of

code which can be reused across all supported drawing APIs.

✓ Relatively simple to work with. When porting locators which require a stock shader, the

required workload can be minimized by using the footPrintNode_GeometryOverride

implementation as a template and adding only minimal changes, such as updates for

custom geometry data or a different stock shader.

6.3.1.7.2 Scalability

✓ A well optimized implementation of MPxGeometryOverride provides predictably better

performance over legacy viewport or other porting options. Here are general optimization

guidelines as illustrated in the plug-in implementation.

o Plug-ins should allow render items to use consolidation or hardware instancing by

minimizing the number of unique shader instances used by the render items. For

example, shader instance caches can be implemented to allow render items produced

by various DAG objects to reuse the same shader instances.

o When appropriate, the number of unique render items regarding categorization, display

properties and shader etc. should be minimized by merging data/index streams explicitly

for the same type of render items, to improve the drawing performance in case

consolidation or hardware instancing cannot be used.

o When appropriate, a single set of data streams should be shared among render items,

with index streams used to assemble the geometries for associated render items. This

reduces memory usage and transfer overhead.

✓ Multi-draw consolidation is the preferred performance optimization to improve the drawing

performance for both matrix-animated and static objects, as long as it is supported. See

Section 3.6 Categorization & Consolidation for information about its availability on various

platforms. Note that, it is incompatible with a geometry override which has UI drawables. If

scalability is important, avoid any use of MUIDrawManager.

✓ Hardware instancing is the alternative in case multi-draw consolidation is not supported. It is

supported on a wide range of platforms and requires DAG objects to be instanced and “GPU

Instancing” option to be enabled via Hardware Renderer 2.0 Settings.

Page 18 of 138

6.3.1.7.3 Compatibility/Flexibility

✓ Drawing API agnostic.

✓ Picking is handled automatically, although it is possible to override selection via the

refineSelectionPath() method.

✓ Participation in viewport draw modes, post effects, and advanced transparency algorithms

can be specified on render items.

✓ Render items can be assigned with a stock shader, a shader translated from a Maya

shading group (using MRenderItem::setShaderFromNode()), or a custom shader.

6.3.2 Porting Using a Subscene Override

This example uses an MPxSubSceneOverride to handle drawing for a locator. The example

code listed below is taken from the footPrintNode_SubSceneOverride sample plug-in, in which

an implementation of MPxSubSceneOverride is provided in FootPrintSubSceneOverride.

The basic logic for managing an MPxSubSceneOverride includes:

• Registering an association between the override and a dag object

• Maintaining a MSubSceneContainer, which is basically a collection of MRenderItems

Figure 3: Simple interface connections shown for MPxSubSceneOverride. The override needs to be
associated with an object, and the override needs to maintain a list of render items.

MRenderItem

MSubSceneContainer

MRenderItem

MRenderItem

MRenderItem

Dag Object

Register

MPxSubSceneNode

Maintains

Page 19 of 138

6.3.2.1 MPxSubSceneOverride Registration

The required classification string for subscene overrides must start with “drawdb/subscene”

versus “drawdb/geometry”. In footPrintNode_SubSceneOverride the full classification is

“drawdb/subscene/footPrint_SubSceneOverride”. registerSubSceneOverrideCreator() and

deregisterSubSceneOverrideCreator() are the corresponding pair of registration /

deregistration interfaces on MDrawRegistry.

The plug-in node itself requires a classification string, and the same string must be used when

registering the subscene override. At plug-in initialization time, a registration id and a creator

function must be provided along with the classification string.

static MString sDrawDbClassification("drawdb/subscene/footPrint_SubSceneOverride");
static MString sDrawRegistrantId("FootprintNode_SubSceneOverridePlugin");

plugin.registerNode(
 "footPrint_SubSceneOverride",
 footPrint::id,
 &footPrint::creator,
 &footPrint::initialize,
 MPxNode::kLocatorNode,
 &sDrawDbClassification); // VP2 drawdb classicification string

MHWRender::MDrawRegistry::registerSubSceneOverrideCreator(
 sDrawDbClassification, // Use the same drawdb classification string
 sDrawRegistrantId, // Registration id
 FootPrintSubSceneOverride::Creator); // Instance creator function

At plug-in unitialization time, a corresponding deregistration is performed.

MHWRender::MDrawRegistry::deregisterGeometryOverrideCreator(
 sDrawDbClassification, // Use same classification as registration
 sDrawRegistrantId); // Use same registration id

6.3.2.2 MPxSubSceneOverride Interfaces

The MSubSceneContainer can be thought of as the equivalent of the MRenderItemList, except

that the container is optimized to manage and store a large number of render items. While

MPxGeometryOverride is passed a render item list, MPxSubSceneOverride is passed a

container.

The key overrides that must be implemented are:

• bool requiresUpdate(const MSubSceneContainer& container,

 const MFrameContext& frameContext) const = 0;

• void update(MSubSceneContainer& container,

 const MFrameContext& frameContext) = 0;

requiresUpdate() is called every refresh and indicates whether to call update(). This is a

different update logic from that of geometry overrides, which are only called when a state has

Page 20 of 138

changed internally that, requires a render item or geometry update, or an explicit request is

made to indicate a change.

Note also that there are no specific update interfaces related to DG evaluation, render item or

geometry update. It is up to the plug-in to determine when any of these are required.

The class MSubSceneContainer has utility methods that allow the plug-in to manage render

items. Persistence of render items is determined by whether they reside within the container.

Items may be arbitrarily added/removed or enabled/disabled within the update() call.

As this interface is meant to handle “scene” level objects, it is also responsible for handling all

render items for all instances (transform) of the associated DAG object. For example, if different

instances require different display properties, then the update mechanism needs to manage per

instance render items, or instance data for render items. There are a set of instancing interfaces

which can be used to vary per instance information and allow explicit control of hardware

instancing. Beside per-instance transform, addition per-instance data may be bound to specified

parameters on the shader.

• MStatus setInstanceTransformArray(MRenderItem& renderItem,

 const MMatrixArray& matrixArray);

• MStatus setExtraInstanceData(MRenderItem& renderItem,

 const MString& parameterName,

 const MFloatArray& data);

If the associated DAG object is not instanced, render items in the container can use “subscene
consolidation”. However, it is in nature a simplified version of traditional static consolidation and
doesn’t consider the spatial proximity of render items. Thus, it might be easier to trigger
reconsolidation and thus performance scalability might be unstable.

• void setWantSubSceneConsolidation(bool state);

Note: To determine whether hardware instancing or consolidation is used, enable the debug
tracing of VP2 render pipeline.

If “incremental update” is required, it is possible to override the following method:

• bool furtherUpdateRequired(const MFrameContext& frameContext);

This can indicate that, during a single update, there was not enough time to complete the action,

and to call back to the override again on the next idle event.

6.3.2.3 Container Update

The actions listed below are very specific to the individual plug-in. In the example

footPrintNode_SubSceneOverride, shaders are updated, geometry is rebuilt, per-instance data

are extracted, and render items in the container are updated as required.

A rough series of steps is outlined in the diagram:

Page 21 of 138

1) Define render items and shaders for the render items.

2) Determine the required data streams and the vertex descriptors create them.

3) Determine the indexing per render item and create index streams.

4) Set the indexing and data streams on the appropriate render items.

5) Determine per instance data required for the render items.

Subscene Override Evaluator

Render Item

Container
Render Item

References

Render Item

References

2
. C

re
a

te
 d

a
ta

s
tre

a
m

s
 fo

r

re
q

u
ire

m
e

n
ts

Shader InstanceShader Instance

Vertex Buffer Descriptions

Vertex Buffer Descriptions

Index BufferIndex Buffer

Vertex Buffer Vertex Buffer

References

References

Owned By

Owns

Owns

Vertex Buffer List Vertex Buffer List

References

References

References

3
. C

re
a

te
 in

d
e

x

s
tre

a
m

s
 fo

r re
n

d
e

r

ite
m

s

4
.

S
e

t
G

e
o

m
e

tr
y

F
o

r
R

e
n

d
e

r
It
e

m

References

1. Create items and

Set Shader

5
.
A

s
s
ig

n

In
s
ta

n
c
in

g
 D

a
ta

Figure 4: The basic “process” to perform a subscene update. The vertex buffer descriptions are transient and are
determined by the plug-in. The data and index streams are owned by the override, as are the shader instances. The
render items are owned by the container, which is owned by the override. The vertex buffer lists used to update
geometry on render items are also transient. Any per instance data would be owned by the override.

Page 22 of 138

6.3.2.3.1 Shaders

The same as the MPxGeometryOverride example, the plug-in maintains a mini shader instance

cache to allow render items to reuse shader instances whenever possible, so that render items

can use sub-scene consolidation when the associated DAG object is not instanced.

6.3.2.3.2 Data and Index Streams

To allow reuse, all data (MVertexBuffer) and index streams (MIndexBuffer) are owned by the

override. It is up to the plug-in to determine whether to create new streams or to reuse existing

streams.

In the footPrintNode_SubSceneOverride implementation, the rebuildGeometryBuffers() routine

manages this data and rebuilds all buffers.

As there is no inherent support for assigned shaders, all shaders are created by the override

and it is up to the override to determine the total geometry requirements for data streams. There

is, in fact, no explicit geometry requirements structure. Instead, the override will create the data

streams it requires, and directly set a reference to the data streams on the appropriate render

items.

In the example, positions for both wireframe and shaded render item are concatenated into a

vertex buffer. The vertex description is determined by the override, and new buffer is explicitly

created.

// VB for positions. We concatenate heel and sole positions into a single VB
// shared by the wireframe item and the shaded item. The index buffer will
// will decide which positions should be used for each render item.
const MHWRender::MVertexBufferDescriptor vbDesc("",
 MHWRender::MGeometry::kPosition, MHWRender::MGeometry::kFloat, 3);
fPositionBuffer = new MHWRender::MVertexBuffer(vbDesc);
if (fPositionBuffer)
{
 // Allocate CPU memory for writing position data.

float* positions = (float*)fPositionBuffer->acquire(soleCount+heelCount, true);

 // Write position data and commit
…

}

Index streams are maintained by the override. Two index streams are created to handle the

drawing of wireframe and shaded triangles.

fWireIndexBuffer = new MHWRender::MIndexBuffer(MHWRender::MGeometry::kUnsignedInt32);
if (fWireIndexBuffer)
{
 // Allocate CPU memory for writing indexing data.
 int numPrimitive = heelCount + soleCount - 2;
 int numIndex = numPrimitive * 2;

unsigned int* indices = (unsigned int*)fWireIndexBuffer->acquire(numIndex, true);

 // Write indexing data and commit

Page 23 of 138

…
}

fShadedIndexBuffer = new MHWRender::MIndexBuffer(MHWRender::MGeometry::kUnsignedInt32);
if (fShadedIndexBuffer)
{
 // Allocate CPU memory for writing indexing data.
 int numPrimitive = heelCount + soleCount - 4;
 int numIndex = numPrimitive * 3;

unsigned int* indices = (unsigned int*)fShadedIndexBuffer->acquire(numIndex, true);

 // Write indexing data and commit
…

}

The code to fill in the buffer is not shown. The commit() still needs to occur for all data and index

streams.

6.3.2.3.3 Render Items

The example demonstrates that, to update render items, a name search can be performed to

see if a render item already exists. If not, it can be created. An alternative method would be to

override the properties (including geometry) on an existing render item.

As with the examples shown for MPxGeometryOverride, each item needs an item type, a draw

mode, and an indexing topology.

// The wireframe render item
MHWRender::MRenderItem* wireItem = container.find(wireframeItemName);
if (!wireItem)
{
 wireItem = MHWRender::MRenderItem::Create(wireframeItemName,
 MHWRender::MRenderItem::DecorationItem,
 MHWRender::MGeometry::kLines);
 wireItem->setDrawMode(MHWRender::MGeometry::kWireframe);

container.add(wireItem);
itemsChanged = true;

}

// The shaded render item
MHWRender::MRenderItem* shadedItem = container.find(shadedItemName);
if (!shadedItem)
{
 shadedItem = MHWRender::MRenderItem::Create(shadedItemName,
 MHWRender::MRenderItem::DecorationItem,
 MHWRender::MGeometry::kTriangles);
 shadedItem->setDrawMode((MHWRender::MGeometry::DrawMode)
 (MHWRender::MGeometry::kShaded|MHWRender::MGeometry::kTextured));
 container.add(shadedItem);
 itemsChanged = true;
}

Page 24 of 138

6.3.2.3.4 Setting Data on Render Items

To explicitly set data and index streams for a render item the setGeometryForRenderItem()

method can be used. An optional object space bounding box may also be specified.

The sample code below demonstrates the update of wireframe and shaded render items. Each

adds the appropriate data streams to an array, and then set that array along with the

appropriate index stream reference and bounding box.

The data is still owned by the override, but the render items now reference the data.

footPrint* fp = dynamic_cast<footPrint*>(node.userNode());
MBoundingBox *bounds = fp ? new MBoundingBox(fp->boundingBox()) : NULL;

MHWRender::MVertexBufferArray vertexBuffers;
vertexBuffers.addBuffer("positions", fPositionBuffer);

setGeometryForRenderItem(*wireItem, vertexBuffers, *fWireIndexBuffer, bounds);
setGeometryForRenderItem(*shadedItem, vertexBuffers, *fShadedIndexBuffer, bounds);

if (bounds) delete bounds;

6.3.2.3.5 Hardware Instancing

MPxSubSceneOverride allows for explicit hardware instancing control which is independent of

the global “GPU Instancing” option in Hardware Renderer 2.0 Settings. This means that all

instances can be packed into a single render item and drawn by a special draw call, which

allows for the shader and per-instance data to be specified once, thus increasing performance.

Hardware instancing is supported on a wide range of platforms, but in case it is not supported,

then the render item will be drawn multiple times (versus one time), and refreshing the view will

naturally be slower.

One way of implementing hardware instancing is to supply a list of object-to-world transforms for

a render item via the MPxSubsceneOverride::setInstanceTransformArray() method. Each

instance will be drawn in world space based on the matrices provided. After per-instance

transform is set, it is also possible to bind other uniform shader parameters with per instance

data using MPxSubsceneOverride::setExtraInstanceData(). In this case, per-instance data

can be used for a given shader parameter on an MShaderInstance per render item instance. In

this example, there is a “solidColor” parameter on the 3d solid shader assigned to render items,

the color values stored in the color array will be used.

Note: Per-instance data can be bound to uniform parameters of a shader which is created from

a shader fragment or fragment graph. Shaders created from an effects buffer or file cannot use

this feature because Maya cannot insert a pass-through shader fragment that converts uniform

parameters to varying parameters, i.e. streams to fill with per-instance data.

unsigned int numInstances = fInstanceDagPaths.length(); // Number of all instances
unsigned int numVisibleInstances = 0; // Number of visible instances.

Page 25 of 138

unsigned int colorChannels = 4; // RGBA

MMatrixArray matrices(numInstances); // Array to store per-instance transform
MFloatArray colors(numInstances * colorChannels); // Array to store per-instance color

for (unsigned int i=0; i<numInstances; i++)
{
 const MDagPath& path = fInstanceDagPaths[i];
 if (path.isValid() && path.isVisible())

{
 // Get the inclusive object-to-world matrix of the DAG path.
 matrices[numVisibleInstances] = path.inclusiveMatrix();

 // Get the appropriate color of the instance regarding the selection status
 // and attribute settings of the DAG path.
 MColor color = MHWRender::MGeometryUtilities::wireframeColor(path);
 colors[numVisibleInstances*colorChannels] = color.r;
 colors[numVisibleInstances*colorChannels+1] = color.g;
 colors[numVisibleInstances*colorChannels+2] = color.b;
 colors[numVisibleInstances*colorChannels+3] = color.a;

 numVisibleInstances++;
 }
}

// Shrink to fit.
matrices.setLength(numVisibleInstances);
colors.setLength(numVisibleInstances * colorChannels);

// Conslidation and hardware instancing are incompatible with each other. If
// the associated DAG object is instanced, we need to reset the flag so that
// hardware instancing can be used.
wireItem->setWantSubSceneConsolidation(false);
shadedItem->setWantSubSceneConsolidation(false);

// Set up instance copies of render items to take advantage of hardware instancing.
// It is faster than creating render items for each DAG instance, especially for a
// large number of instances.
//
// Note that these methods should be called after geometry and shader are set,
// otherwise it would fail.
//
setInstanceTransformArray(*wireItem, matrices);
setInstanceTransformArray(*shadedItem, matrices);

// Bind other uniform shader parameters with per-instance data.
//
setExtraInstanceData(*wireItem, "solidColor", colors);
setExtraInstanceData(*shadedItem, "solidColor", colors);

6.3.2.4 Additional UI

MUIDrawManager can be used to add in additional UI drawables. The interfaces are the same

as for geometry and draw overrides, except for one key interface: areUIDrawablesDirty(). This

interface allows for explicit control of persistence of the UI drawables between frames, by

Page 26 of 138

allowing for the drawables to remain cached while the override exists (while the associated DAG

object exists).

bool FootPrintSubSceneOverride::areUIDrawablesDirty() const
{
 // The flag will be set when matrix transformation of any instances
 // are changed, and reset after UI drawables are recreated.
 return fAreUIDrawablesDirty;
}

If the associated DAG object is instanced, UI drawables for all its instances should be created in

the addUIDrawables() method. In this example, each text should be drawn at the origin in the

object space of its belonging instance but MUIDrawManager assumes to use the object space

of the first DAG instance, so we should transform coordinates between two object spaces, from

each instance to the first instance.

void FootPrintSubSceneOverride::addUIDrawables(
 MHWRender::MUIDrawManager& drawManager,
 const MHWRender::MFrameContext& frameContext)
{
 MPoint pos(0.0, 0.0, 0.0);
 MColor textColor(0.1f, 0.8f, 0.8f, 1.0f);
 MString text("Footprint");

 drawManager.beginDrawable();
 drawManager.setColor(textColor);
 drawManager.setFontSize(MHWRender::MUIDrawManager::kSmallFontSize);

 // The instance info cache has stored object-to-world matrix of each instance
 // in the update() method called before the addUIDrawables() method.
 MMatrix worldInverse0 = fInstanceInfoCache[0].fMatrix.inverse();
 for (auto it = fInstanceInfoCache.begin(); it != fInstanceInfoCache.end(); it++)
 {
 drawManager.text((pos * it->second.fMatrix) * worldInverse0,
 text, MHWRender::MUIDrawManager::kCenter);
 }

 drawManager.endDrawable();

 // Reset the flag after UI drawables are updated.
 fAreUIDrawablesDirty = false;
}

Note that, selection picking via UI drawables is supported only when the associated DAG object

is not instanced. When the object is instanced, only the first instance can be picked; for

complete picking support, MRenderItem should be used instead. For detailed example and

analysis about UI drawables, see Section 6.3.4.

6.3.2.5 Analysis

Although the MPxSubSceneOverride class is primarily designed for “scene-cache” style nodes

that manage a large set of objects, it can be used for any type of DAG object, especially you

Page 27 of 138

can use this class for a DAG object which has multiple per-instance data and needs hardware

instancing to improve performance.

6.3.2.5.1 Portability

✓ Operates using the MRenderItem interface and requires only one set of code which can be

reused across all supported drawing APIs.

✓ Gains direct access and explicit control of hardware instancing.

 Relatively more code due to the amount of the control given to the implementation when

compared to a geometry override.

o Required to handle the update logic explicitly. It is totally up to the implementation to

determine whether updates are needed.

o Required to manage all render items and UI drawables to draw all instances of the

associated DAG object.

6.3.2.5.2 Scalability

✓ When the associated DAG shape is instanced with additional per-instance data streams, a

subscene override can explicitly control hardware instancing by setExtraInstanceData(). In

this case, subscene override may outperform geometry override.

✓ When the associated DAG object is not instanced, it is possible to allow render items to use

“subscene consolidation” by MRenderItem::setWantSubSceneConsolidation().

6.3.2.5.3 Compatibility/Flexibility

✓ Drawing API agnostic.

✓ Picking is handled automatically, while it is possible to override selection via

getInstancedSelectionPath() or getSelectionPath().

✓ Participation in viewport display modes, post effects and advanced transparency algorithms

can be specified on render items.

✓ Render items can be assigned with a stock shader, a shader translated from a Maya

shading group (via the setShaderFromNode() method), or a custom shader.

6.3.3 Porting Using UI Draw Manager

MUIDrawManager is available to queue transient UI drawing on various override classes. It is

possible to queue transient UI as well as maintain persistent render items on an

MPxGeometryOverride or an MPxSubSceneOverride.

The following example demonstrates the use of a MUIDrawManager with an MPxDrawOverride

where persistent items are not required. The basic configuration is shown on the left below:

Page 28 of 138

Draw

Override

Maya

DAG

Object

MUIDrawManager

0. Associate

2. Add UI Drawables

1. DG Update : prepareForDraw()

Geometry

Override

Maya

DAG

Object

1. DG Update:

updateDG()

MDrawManager

4. Add UI Drawables

Figure 5: A draw override (left) is associated with a DAG object. A data preparation phase occurs and a
MUIDrawManager is used to queue simple drawing. The same basic UI draw manager interface exists for geometry
overrides (right) albeit with a different node evaluation interface and association. UI drawable update occurs last.

The code examples shown below are from the footPrintNode SDK example. This developer kit

example is available in a C++ implementation version and a Python API 2.0 implementation

version. The latter is shown in the code examples below. For more information, see the Maya

Developer Kit.

Note: For all examples that have both a C++ implementation version and a Python API 2.0

implementation version, the latter can be found in the \plug-ins\scripted directory of the Maya

Developer Kit. All Python API 2.0 examples are named with the prefix py.

As noted under the Performance Considerations section in Part I of the guide this is only

recommended for very simplistic drawing.

6.3.3.1 MPxDrawOverride Registration

As with a geometry override, a draw override must set up an association with a Maya node. In

this example, the footprint node adds in a drawdb classification as the last argument to

registerNode(). That same classification must be used when using the

MDrawRegistry::registerDrawOverriderCreator() method. As with geometry override

registration, draw override registration also requires a unique registration identifier and a

“creator” function to create an instance of an MPxDrawOverride.

import maya.api.OpenMaya as om
import maya.api.OpenMayaRender as omr

plugin.registerNode("footPrint", footPrint.id, footPrint.creator, footPrint.initialize,
om.MPxNode.kLocatorNode, footPrint.drawDbClassification)

omr.MDrawRegistry.registerDrawOverrideCreator(footPrint.drawDbClassification,
footPrint.drawRegistrantId, footPrintDrawOverride.creator)

The corresponding deregistration would exist within the uninitializePlugin() method.

Page 29 of 138

omr.MDrawRegistry.deregisterDrawOverrideCreator(footPrint.drawDbClassification,
footPrint.drawRegistrantId)

6.3.3.2 MUIDrawManager Usage

Instead of using the VP1 locator interface:

• MPxLocatorNode::draw(M3dView & view, const MDagPath & path,

M3dView::DisplayStyle style, M3dView::DisplayStatus status);

it is possible to use the addUIDrawables() method on the attached MPxDrawOverride to draw:

• MPxDrawOverride:: addUIDrawables(const MDagPath& objPath,

MHWRender::MUIDrawManager& drawManager, const MHWRender::MFrameContext&

frameContext, const MUserData* data);

Note that there is no longer any access to an M3dView, a display style or display status. The

required drawing information should instead be extracted from the supplied MFrameContext or

via the MGeometryUtilitities class.

Any custom data can be accessed via the MUserData instance that is passed in to

addUIDrawables(). This includes any data evaluated on the node itself. For this example, the

custom data (footPrintData) is declared to hold additional color, and geometry information. No

node references are kept here.

class footPrintData(om.MUserData):
 def __init__(self):
 om.MUserData.__init__(self, False) ## don't delete after draw
 self.fColor = om.MColor()
 self.fLineList = om.MPointArray()
 self.fTriangleList = om.MPointArray()

For VP1 the draw and node evaluation are both done within draw:

def draw(self, view, path, style, status):
 ## Get the size

thisNode = self.thisMObject()
plug = om.MPlug(thisNode, footPrint.size)
sizeVal = plug.asMDistance()
multiplier = sizeVal.asCentimeters()

For VP2, DG evaluation is separated out and performed by overriding the

MPxDrawOverride::prepareForDraw() method. When this method is invoked, a copy of any

node data to be used at draw time is copied to the MUserData -- instead of a keeping a

reference. This is to decouple any dependency on node data being overridden before the user

data contents are used for drawing.

In the example, node data extracted out and cache in a custom MUserData instance

(footPrintData). The snippet below focuses on showing the data update required for drawing the

wireframe of “footPrint” (which is stored as the fLineList data member of the footPrintData

instance).

Page 30 of 138

def getMultiplier(self, objPath):
 ## Retrieve value of the size attribute from the node
 footprintNode = objPath.node()
 plug = om.MPlug(footprintNode, footPrint.size)
 if not plug.isNull:
 sizeVal = plug.asMDistance()
 return sizeVal.asCentimeters()

def prepareForDraw(self, objPath, cameraPath, frameContext, oldData):
 ## Retrieve data cache (create if does not exist)
 ## Need to make sure that this is an instance of our data (footPrintData)
 data = oldData
 if not isinstance(data, footPrintData):
 data = footPrintData()

 ## This data is predefined globally to be used for both VP1 and VP2
 global soleCount, sole
 global heelCount, heel

 ## Compute data and cache it on the MUserData. This includes the scaling
 ## factor, the scaled data for the “footPrint” line list as well as the

color. The “sole” portion and the “heel” portion are concatenated into
a line list, to reduce the overhead due to the number of UI drawables
or avoid internal repetitive batching for the same set of UI drawables.

 fMultiplier = self.getMultiplier(objPath)

data.fLineList.clear()

for i in range(soleCount-1):
 data.fLineList.append(om.MPoint(sole[i][0] * fMultiplier,
 sole[i][1] * fMultiplier,
 sole[i][2] * fMultiplier))
 data.fLineList.append(om.MPoint(sole[i+1][0] * fMultiplier,
 sole[i+1][1] * fMultiplier,
 sole[i+1][2] * fMultiplier))

 for i in range(heelCount-1):
 data.fLineList.append(om.MPoint(heel[i][0] * fMultiplier,
 heel[i][1] * fMultiplier,
 heel[i][2] * fMultiplier))
 data.fLineList.append(om.MPoint(heel[i+1][0] * fMultiplier,
 heel[i+1][1] * fMultiplier,
 heel[i+1][2] * fMultiplier))

 data.fColor = omr.MGeometryUtilities.wireframeColor(objPath)

 return data

The actual drawing is fairly straightforward. The following snippet shows the access to the frame

context that determines the items that are to be drawn. In particular, the display style is being

queried to determine whether to draw a filled drawable:

def addUIDrawables(self, objPath, drawManager, frameContext, data):
 locatordata = data
 if not isinstance(locatordata, footPrintData):
 return

Page 31 of 138

 drawManager.beginDrawable()

 ## Draw the foot print solid/wireframe
 drawManager.setColor(locatordata.fColor)
 drawManager.setPriority(5)

 ## Check the display style to determine if filled drawing is required
 if (frameContext.getDisplayStyle() & omr.MFrameContext.kGouraudShaded):
 drawManager.mesh(omr.MGeometry.kTriangles, locatordata.fTriangleList)

 drawManager.mesh(omr.MUIDrawManager.kLines, locatordata.fLineList)

Draw a text "Footprint". Font and text drawing are only available via
MUIDrawManager class.

 pos = om.MPoint(0.0, 0.0, 0.0) ## Position of the text
 textColor = om.MColor((0.1, 0.8, 0.8, 1.0)) ## Text color

 drawManager.setColor(textColor)
 drawManager.setFontSize(omr.MUIDrawManager.kSmallFontSize)
 drawManager.text(pos, "Footprint", omr.MUIDrawManager.kCenter)

 drawManager.endDrawable()

Note that what is done here for transient drawables is similar to what would be done for

persistent render items but is done on every refresh by default. This includes determining the

display style (versus adding a render item per style), re-specifying the data as well as the

shading parameters.

To avoid the above repetitive overhead, the MPxDrawOverride constructor argument

isAlwaysDirty should be set to false. In this case prepareForDraw() and addUIDrawables() will

only be called when the DAG object t is marked dirty via DG evaluation or dirty messages.

Additional callbacks might need to be added to explicitly mark the node as being dirty using

MRenderer::setGeometryDrawDirty() for certain cases, e.g. on viewport mode changes.

class footPrintDrawOverride(omr.MPxDrawOverride):
 @staticmethod

def creator(obj):
 return footPrintDrawOverride(obj)

 ## By setting isAlwaysDirty to false in MPxDrawOverride constructor, the

draw override will be updated only when the node is marked dirty via
DG evaluation or dirty propagation.
def __init__(self, obj):
 omr.MPxDrawOverride.__init__(self, obj, None, False)

Note also instead of being assigned with a stub method, the constructor argument callback is

set to None. Internally a proxy render item is created for each associated DAG object and

attached with the user-defined draw callback. When the callback is set to null, the proxy render

item can be disabled and filtered out earlier in VP2 render pipeline to reduce traversal overhead.

Page 32 of 138

6.3.3.3 Analysis

The MUIDrawManager class provides a straight forward way to draw basic UI elements when

porting simple DAG objects to Viewport 2.0. The decision as to using this class is mostly based

on a choice for simplicity while flexibility and scalability is not required.

As noted in API documentation, MUIDrawManager is not designed for accessing arbitrary times

or arbitrary places. To get the access, plug-ins must associate a custom locator with an

implementation of MPxDrawOverride/ MPxGeometryOverride/MPxSubSceneOverride and

override the addUIDrawables() method. But for discussion purpose, it’s better to treat

MUIDrawManager as an independent porting choice.

6.3.3.3.1 Portability

MUIDrawManager avoids the complexity of using MRenderItem. Each UI drawable uses the

appropriate geometry, shader and matrix transformation automatically based on the type. For

example, text has an appropriate “text shader” and 2D drawing has an appropriate “2D” matrix

transformation. This knowledge is hidden from the user for simplicity.

✓ Suitable for simple UI, where simple means a small amount of UI, or a when a small number

of objects are drawing the UI.

✓ Supports text, icons, lines, circles, basic 2D and 3D primitives, and arbitrary meshes.

✓ Easier to port legacy draw code as it looks like fixed function drawing.

✓ Requires only one set of code which can be reused across all supported drawing APIs.

6.3.3.3.2 Scalability

✓ As noted in the API documentation for MUIDrawManager, VP2 may batch the same type of

UI drawables which are created by the same call to the addUIDrawables() method. To

determine whether UI drawables are batched, enable the debug tracing of VP2 render

pipeline.

o If the associated DAG object is instanced, a subscene override should create UI

drawables for all instances in the addUIDrawables() method. This allows VP2 batching

optimization to be used, but it is up to the plug-in to transform each UI drawable

between object spaces of two DAG instances. For cases where the cost of matrix

transformation outweighs the batching optimization, e.g. complex meshes, the

MRenderItem interface should be used instead.

o Plug-ins can consolidate the geometries and reduce the number of UI drawables in their

code to avoid the internal repetitive batching for the same set of UI drawables.

Page 33 of 138

 UI drawables are transient render items in nature, so they cannot use consolidation or

hardware instancing, and they may not scale well due to the potential cost of reallocation.

To avoid any unnecessary overhead due to the frequency of recreating UI drawables:

o A draw override should be constructed with the MPxDrawOverride constructor argument

isAlwaysDirty set to false whenever possible.

o A subscene override should override the areUIDrawablesDirty() method to return false

when UI drawables doesn’t need to be updated.

6.3.3.3.3 Compatibility/Flexibility

✓ Drawing API agnostic.

✓ Selectability of UI drawables can be specified in the beginDrawable() method. If a UI

drawable is set selectable, picking is handled automatically except the following case.

o As noted in Section 6.3.2.4, selection picking via UI drawables in a subscene override is

not supported, when the associated DAG object is instanced.

 Only a fixed set of shading options and single-textured drawing are provided.

 The geometry attributes that can be specified are fixed.

 No inherent concept of participating based on viewport display modes. Requires the

implementation to track these modes manually.

 No override options for participating in post effects and advanced transparency algorithms.

6.3.4 Porting Using a Draw Override

This example uses an MPxDrawOverride to access low-level graphics APIs, e.g. OpenGL Core

Profile and DirectX 11, for drawing a locator. The example code listed in this section is taken

from the rawfootPrintNode sample plug-in, where an implementation of MPxDrawOverride is

provided by RawFootPrintDrawOverride.

6.3.4.1 MPxDrawOverride (Revisited)

The required classification string for draw overrides must start with “drawdb/geometry”. In

rawfootPrintNode the full classification is “drawdb/geometry/rawfootPrint”.

registerDrawOverrideCreator() and deregisterDrawOverrideCreator() on MDrawRegistry

are the corresponding interfaces to associate a Maya DAG object with a draw overrides.

The whole configuration for a draw override appears as follows. In addition to the

MUIDrawManager interface which queues UI drawables at DG update time, a proxy render item

is maintained internally to allow user-defined callback to be invoked at draw time. The callback

is the only place where low-level graphics APIs can be accessed. Note that it should be set to

null when only the MUIDrawManager interface is used, as demonstrated in Section 6.3.3,

Page 34 of 138

because VP2 may attempt to disable and filter out the proxy render item earlier in the rendering

pipeline to skip unnecessary traversal.

Figure 6: At DG update time user data is prepared and UI drawables are queued. At draw time callback is invoked.

6.3.4.2 MPxDrawOverride Interfaces

By default, a draw override is always updated via prepareForDraw() and addUIDrawables()

without checking the dirty state of the DAG object. To avoid unnecessary overhead, the

constructor argument isAlwaysDirty should be set to false, then the update methods will only

be called when the DAG object is marked dirty via DG evaluation or dirty messages.

• MPxDrawOverride(const MObject& obj,

 GeometryDrawOverrideCb callback, bool isAlwaysDirty = true);

Object-space bounding box and world transformation are updated at an early pipeline phase.

The information will then be used for visibility test; if the object is all outside the view frustum, it

will stop traversing later phases and thus the update and draw methods will not be called.

• bool isBounded(const MDagPath& obj, const MDagPath& camera) const;

• MBoundingBox boundingBox(const MDagPath& obj, const MDagPath& camera) const;

• MMatrix transform(const MDagPath& obj, const MDagPath& camera) const;

After visibility test, the prepareForDraw() method will be called for “dirty” objects during DG

update phase, to pull from Maya any data that will be required when drawing. Display

properties, including participation in post effects and transparency, can also be updated here

and will then be queried afterwards.

• MUserData* prepareForDraw(const MDagPath& obj, const MDagPath& camera,

 const MFrameContext& frameContext, MUserData* oldData) = 0;

• bool excludedFromPostEffects() const;

• bool isTransparent() const;

Page 35 of 138

At draw time, the user-defined callback may be invoked multiple times, once for each render

pass in which the object should participate as per its display properties.

• typedef void (*GeometryDrawOverrideCb)(const MDrawContext&, const MUserData*);

At selection time, the following method is called to determine whether a user-customized

selection behavior or the VP2 default selection behavior is needed.

• bool wantUserSelection() const;

If it is overridden to return true, the following method is called to determine the selection status.

• bool userSelect(MSelectionInfo& selectInfo,

const MDrawContext& context,

MPoint& hitPoint,

const MUserData* data);

The method should return true if the object should be selected regarding the provided

information. In this case, hitPoint may be used by VP2 to sort selected objects for correct

selection result based on viewport visibility. It uses the origin of the object’s local frame in world

space as the default value, but can be set to a precise intersection position in world space if

implemented by the plug-in.

6.3.4.3 MPxDrawOverride Usage

As with the MUIDrawManager example, the draw override constructor argument isAlwaysDirty

is set to false, to avoid repetitive performance overhead of calling the update methods. The

draw override can still be updated when the associated DAG object is marked as being dirty via

DG evaluation or dirty messages, however, for global state changes which don’t trigger dirty

propagation, e.g. switching display appearance of a model editor, additional callbacks should be

registered and the MRenderer::setGeometryDrawDirty() method should be called in these

callbacks to explicitly mark the object as being dirty.

class RawFootPrintDrawOverride : public MHWRender::MPxDrawOverride
{

public:
 RawFootPrintDrawOverride(const MObject& obj)
 : MHWRender::MPxDrawOverride(obj, RawFootPrintDrawOverride::draw, false)
 , fRawFootPrint(obj)
 {
 fModelEditorChangedCbId = MEventMessage::addEventCallback(
 "modelEditorChanged", OnModelEditorChanged, this);
 }

 ~RawFootPrintDrawOverride() override
 {
 if (fModelEditorChangedCbId != 0)
 {
 MMessage::removeCallback(fModelEditorChangedCbId);
 fModelEditorChangedCbId = 0;
 }

Page 36 of 138

}

 void OnModelEditorChanged(void *clientData)
 {
 RawFootPrintDrawOverride *ovr =
 static_cast<RawFootPrintDrawOverride*>(clientData);
 if (ovr) MHWRender::MRenderer::setGeometryDrawDirty(ovr->fRawFootPrint);
 }
}

In the prepareForDraw() method, DG evaluation is performed. Any required information can be

pulled from Maya DG and stored in a user data structure. The user data will be cached internally

and passed to the draw callback as it is invalid to trigger DG evaluation at draw time. The

implementation also determines display properties which will later be returned by the

excludedFromPostEffects() and isTransparent() method.

MUserData* RawFootPrintDrawOverride::prepareForDraw(
 const MDagPath& objPath,
 const MDagPath& cameraPath,
 const MHWRender::MFrameContext& frameContext,
 MUserData* oldData)
{
 // Update the display properties that will then be queried afterwards.

float transparency = getTransparency(objPath);
mIsTransparent = (transparency < 1.0);
mExcludedFromPostEffects = (frameContext.getDisplayStyle() &
 (MHWRender::MFrameContext::kGouraudShaded |
 MHWRender::MFrameContext::kFlatShaded) == 0);

 // Retrieve the old user data if any, create otherwise.
 RawFootPrintData* data = dynamic_cast<RawFootPrintData*>(oldData);

if (!data) data = new RawFootPrintData();

// Store any information required by the draw callback in the user data.
// DG evaluation should only be triggered in this method.

 if (MHWRender::MGeometryUtilities::displayStatus(objPath) == MHWRender::kActive)
 {
 MColor color = MHWRender::MGeometryUtilities::wireframeColor(objPath);
 data->fColor[0] = color.r;
 data->fColor[1] = color.g;
 data->fColor[2] = color.b;
 }
 else
 {
 data->fColor[0] = 0.6f;
 data->fColor[1] = 0.6f;
 data->fColor[2] = 0.6f;

}

 data->fColor[3] = transparency;

 return data;
}

bool RawFootPrintDrawOverride::excludedFromPostEffects() const
{

Page 37 of 138

 return mExcludedFromPostEffects;
}

bool RawFootPrintDrawOverride::isTransparent() const
{
 return mIsTransparent;
}

Depending on visibility test, the user-defined callback may or may not be invoked at draw time.

An MDrawContext and optionally an MUserData will be supplied for the callback. In

comparison to the VP1 draw interface on MPxLocatorNode:

• MPxLocatorNode::draw(M3dView & view,

const MDagPath & path, M3dView::DisplayStyle style, M3dView::DisplayStatus status);

There is no longer any access to an M3dView, a display style or display status. Instead, the

required information should be extracted from the draw context, or retrieved from the user data.

/* static */
void RawFootPrintDrawOverride::draw(

const MHWRender::MDrawContext& context,
const MUserData* data)

{
 const RawFootPrintData* footData = dynamic_cast<const RawFootPrintData*>(data);
 if (!footData) return;

// Retrieve any required information from the user data.
float color[4] = { footData->fColor[0] * footData->fColor[3],
 footData->fColor[1] * footData->fColor[3],
 footData->fColor[2] * footData->fColor[3],
 footData->fColor[3] };

// Access draw context to retrieve viewport interaction states.

 if (context.inUserInteraction() || context.userChangingViewContext())
 {
 }

// Access draw context to retrieve the state manager.
 MHWRender::MStateManager* stateMgr = context.getStateManager();

 // Access draw context to retrieve various information.

footPrint_DebugCameraInformation(context);
footPrint_DebugDisplayStyle(context);
footPrint_DebugRenderOverride(context);
footPrint_DebugPassInformation(context);
footPrint_DebugPostEffects(context);
footPrint_DebugFogStatus(context);
footPrint_DebugObjectTypeExclusions(context);
footPrint_DebugBackground(context);
footPrint_DebugDestination(context);

Any DG evaluation update should be avoided in the callback. For this example, the custom data

(RawFootPrintData) is declared to hold a color regarding the display status; checking display

status and retrieving color might invoke DG evaluation and thus should only be done in the

prepareForDraw() phase.

Page 38 of 138

By default, the callback is invoked once for the opaque pass and each shadow map pass as

required. If isTransparent() returns true, the callback will not be invoked by the opaque pass, but

once for the front-culling pass and once for the back-culling pass. If excludedFromPostEffects()

is overridden to return false, the render passes for post effects can also invoke the callback

several times. It is totally up to the plug-in to query pass semantic from the draw context and

draw the object correctly for each pass. See Effects Interfaces section in Maya Developer Help

for more information.

Note: If the deleteAfterUse flag is true, an MUserData will be deleted by VP2 immediately after

the callback returns. So, if the callback is expected to be invoked for multiple times in a refresh,

the flag should be set to false. In this case, the user data will be cached until it is explicitly

deleted by the prepareForDraw() implementation or the owning object is deleted.

In this example, the actual draw code is wrapped as a base class RawFootPrintDrawAgent and

a set of its derived classes to support all draw APIs as required by the plug-in. Note that if a

plug-in only needs to support a certain draw API, only one derived class, i.e. one set of codes, is

required to be implemented.

 // Each draw agent is derived from the base class for each draw API.
 // It is a singleton responsible for managing GPU resources and the
 // actual drawing, thus geometries and shaders are shared among all
 // copies/instances of the associated DAG object.
 RawFootPrintDrawAgent* drawAgent = NULL;
 if (theRenderer->drawAPI() == MHWRender::kOpenGLCoreProfile)

 drawAgent = &RawFootPrintDrawAgentCoreProfile::getDrawAgent();
 #ifdef _WIN32
 else if (theRenderer->drawAPI() == MHWRender::kDirectX11)

 drawAgent = &RawFootPrintDrawAgentDX::getDrawAgent();
 #endif
 else
 drawAgent = &RawFootPrintDrawAgentGL::getDrawAgent();

 // Store parameter values which will later be passed to a custom shader
 // used to draw the object for color pass.
 drawAgent->setColor(MColor(color[0], color[1], color[2], color[3]));
 drawAgent->setMatrix(context);

// Low-level draw APIs are called here for GPU resource management and
// drawing.

 drawAgent->beginDraw(context, passShaderOverride);
 if (requireShaded) drawAgent->drawShaded();
 if (requireWireframe) drawAgent->drawWireframe();
 if (requireBoundingBox) drawAgent->drawBoundingBox();
 drawAgent->endDraw();

The draw callback can be invoked by a render pass which has a shader instance override, e.g.

SSAO has a normal-depth pass which uses a specific shader instance override to output normal

and depth values, Motion Blur has a motion-vector pass which uses another specific shader

instance override to output motion vectors. Shader instance override can be retrieved using the

MPassContext::shaderOverrideInstance() method and be bound/unbound as appropriate.

/*virtual*/

Page 39 of 138

void RawFootPrintDrawAgent::beginDraw(
const MHWRender::MDrawContext& context,
MHWRender::MShaderInstance* passShaderOverride)

{
mDrawContext = &context;
mShaderOverride = passShaderOverride;

if (mShaderOverride)
{
 mShaderOverride->bind(context);

 mShaderOverride->updateParameters(context);
 mShaderOverride->activatePass(context, 0);
 }
}

/*virtual*/
void RawFootPrintDrawAgent::endDraw()
{

if (mShaderOverride)
{
 mShaderOverride->unbind(*mDrawContext);
 mShaderOverride = NULL;
}
mDrawContext = NULL;

}

Note that shader instance overrides only fit basic requirements for most common objects. In

case there is any custom per-object requirement, a shader can be defined and bound using

either the MShaderManager / MShaderInstance interface or low-level draw APIs. See Effects

Interfaces on the Maya Developer Help for more information.

/*virtual*/
void RawFootPrintDrawAgentCoreProfile::beginDraw(

const MHWRender::MDrawContext& context,
MHWRender::MShaderInstance* passShaderOverride)

{
 // One-time initialization.
 if (!mInitialized)
 {
 GLCP::initGLFunctionsCoreProfile();
 mValid = initShadersCoreProfile() && initBuffersCoreProfile();
 mInitialized = true;
 }

 if (!mValid) return;

RawFootPrintDrawAgent::beginDraw(context, passShaderOverride);

// Bind a custom shader if there is no shader instance override for the
// current pass, e.g. color pass.
if (!mShaderOverride)
{

 GLCP::UseProgram(mShaderProgram);
 }
}

/*virtual*/

Page 40 of 138

void RawFootPrintDrawAgentCoreProfile::endDraw()
{
 if (!mValid) return;

GLCP::BindVertexArray(0);

 // Unbind the custom shader.

if (!mShaderOverride)
{
 GLCP::UseProgram(0);
}

RawFootPrintDrawAgent::endDraw();

}

/*virtual*/
void RawFootPrintDrawAgentCoreProfile::drawShaded()
{
 if (!mValid) return;

// Set parameter values for the custom shader.
 if (!mShaderOverride)
 {
 GLCP::UniformMatrix4fv(mWVPIndex, 1, GL_FALSE, (float*)mMVPMatrix);
 GLCP::Uniform4f(mColorIndex, mColor.r, mColor.g, mColor.b, mColor.a);

}

// Bind geometry streams and draw. Streams can be further merged when the
// performance is bound on # of draw calls (a.k.a. small batch problem).

 GLCP::BindVertexArray(mSoleShadedVAO);
 glDrawElements(GL_TRIANGLES, 3 * (soleCount-2), GL_UNSIGNED_SHORT, 0);
 GLCP::BindVertexArray(mHeelShadedVAO);
 glDrawElements(GL_TRIANGLES, 3 * (heelCount-2), GL_UNSIGNED_SHORT, 0);
}

6.3.4.4 Analysis

The MPxDrawOverride class is designed for accessing low-level drawing APIs which gives

complete and total control (and responsibility) for drawing the associated DAG object.

6.3.4.4.1 Portability

 Required to implement multiple sets of codes if required to support multiple drawing APIs.

o OpenGL Legacy mode and OpenGL Core Profile with compatibility mode may reuse the

legacy fixed draw code.

o OpenGL Core Profile strict mode and DirectX 11 need new sets of codes if required.

6.3.4.4.2 Scalability

 Due to the wide-open nature of the interface, it is up to the implementation to use its own

performance schemes as Viewport 2.0 performance schemes will not be used, otherwise

Page 41 of 138

equivalent performance cannot be expected when compared to a geometry or subscene

override, although it should still outperform MUIDrawManager.

6.3.4.4.3 Compatibility/Flexibility

✓ A draw override is free to act as necessary in the draw callback to draw the DAG object

(apart from triggering evaluation of the Maya dependency graph).

o If the override needs to modify the state (in any manner), it must be sure to restore that

state before completing execution to avoid state corruption.

✓ A draw override can participate in post effects by overriding excludedFromPostEffects(). It is

up to the implementation to draw correctly for each render pass based on the context

information.

✓ Transparency is supported; however a draw override cannot participate in advanced

transparency algorithms when isTransparent() is set to true.

✓ Selection is fully supported. A draw override can either choose the default VP2 selection

behavior, or provide a customized selection implementation. The default VP2 selection

behavior fits well for WYSIWYG (What You See Is What You Get) selection, and works no

matter whether camera-based selection is on or off as of 2017 Update 4. A customized

selection implementation may be required when the plug-in wants to use proxy geometry

(like explicit or implicit surfaces represented in analytical forms) for selection test. In this

case, it is up to the implementation to perform selection test correctly, e.g. by the OpenGL

pick mode, or a CPU geometry intersection method.

6.4 Porting Surface Shapes using MPxGeometryOverride

This section discusses the added complexity required to support a surface shape

(MPxSurfaceShape or MPxComponentShape) as opposed to a locator. This complexity will be

examined with respect to an MPxGeometryOverride implementation of the apiMeshShape

sample plugin. This includes:

• the handling of render items created due to Maya shader node association

• the handling of components

• the handling of VP2 selection

For comparison, a version which is implemented using MPxSubsceneOverride will also be

examined.

Page 42 of 138

6.4.1 MPxGeometryOverride (Revisited)

This section will revisit the logic for MPxGeometryOverride, and add render items for shaders.

The UI drawable interface has already been examined and will not be looked at again. The

“custom” render items are those created by the override. This section will also examine the

association between Maya node components and how they are supported using these render

items.

6.4.2 Render Items Assigned Shaders for MPxGeometryOverride

Maya automatically adds render items with the appropriate shader instance for each surface

shader assigned to an object.

If additional custom render items are required, then the updateRenderItems() method should

be overridden. Within this method, it is possible to disable any or all existing shaded mode

render items and provide custom ones instead. These render items need not be associated

with any actual Maya shader assignment.

The sample code below shows how to find existing shading items. Note that there can be

shaded items for textured and non-texture display modes as indicated by the render items draw

mode (drawMode()).

// Scan through MRenderItemList passed in via updateRenderItems()
for (int i=0; i<list.length(); i++)
{
 MHWRender::MRenderItem *item = list.itemAt(i);
 if (!item)
 continue;

 // By default the only shaded or textured items are ones provided
 // by Maya.
 MHWRender::MGeometry::DrawMode drawMode = item->drawMode();

Geometry

Override
“Custom”

RenderItem

Maya

Surface

Shader

Node

RenderItem for

Shader

Maya

DAG

Object

1. Update DG 2. Update Render Items

2

“Custom”

RenderItem

2

MGeometry

3. Populate Geometry

MVertexBuffer

3

MIndexBuffer

Update Indexing

UI Drawable

4. Up UI Drawables

Page 43 of 138

 if (drawMode == MHWRender::MGeometry::kShaded ||
 drawMode == MHWRender::MGeometry::kTextured)
 {
 // Found an internally provided shaded render item.
 }
}

Even though these render items are not created by the geometry override, their requirements

will be merged with any requirements for shaders explicitly used on render items created by the

override.

6.4.3 Wireframe Render Item Example

This section will cover the support required to draw the wireframe for the apiMeshShape plug-in.

As the draw modes in which the dormant / template wireframe are displayed differ from active

wireframe, separate render items are required.

6.4.3.1 Depth Priority for “UI” Items

If an active render item does not currently exist, one must be created. It must also take into

account “depth priority”. When drawing more than one render item, depth fighting should be

avoided if the render items overlap in depth when drawing. In order to do this, a “depth priority”

should be specified for each render item.

Page 44 of 138

The following diagram demonstrates how depth priority can place an object either closer or

further away from the current camera used for drawing. Hard-coded values are provided in

MRenderItem, but plug-ins can also specify their own priority number as desired.

It is not necessary to provide a “material” depth priority because, unlike in VP1, non-material

render items are pulled closer to the camera as opposed to being pushed further away.

A
ctive W

irefram
e

H
ilite W

ire

fram
e

D
orm

ant W
irefram

e

M
aterial

A
ctive Line

D
orm

ant P
oint

A
ctive P

oint

C
am

er
a“C

ustom
”

Figure 7: This figure demonstrates how depth priority determines proximity to the camera and hence help avoid
depth fighting. In this case, the dormant wireframe priority is lower than that of the active wireframe, but above that of
the shaded (material) value.

The render item creation is shown below. Persistent storage for the shader instance on the

override is not required, as assignment to a render item will add an additional reference.

MShaderInstance::releaseShader() is thus called after assignment to return a reference.

// Look for the active wireframe item indicated by name by
// the variable “sSelectedWireframeItemName”
MHWRender::MRenderItem* selectItem = NULL;
int index = list.indexOf(sSelectedWireframeItemName);
if (index < 0)
{
 // This item does not exist yet so create a new one
 selectItem = MHWRender::MRenderItem::Create(
 sSelectedWireframeItemName,
 // Item is a decoration (UI)
 MHWRender::MRenderItem::DecorationItem,
 // Drawing lines
 MHWRender::MGeometry::kLines);
 // Active wireframe shows up in all display modes (shaded,wire,textured etc)
 selectItem->setDrawMode(MHWRender::MGeometry::kAll);
 // Set the depth priority to that used internally for active wireframe
 selectItem->depthPriority(MHWRender::MRenderItem::sActiveWireDepthPriority);

Page 45 of 138

 // Add the new item to the render item list
 list.append(selectItem);

 // For active wireframe we will require a shader to draw a single color
 //
 MHWRender::MShaderInstance* shader =
 shaderMgr->getStockShader(MHWRender::MShaderManager::k3dSolidShader);
 if (shader)
 {
 // Assign shader to the render item
 selectItem->setShader(shader);
 // Once assigned, no need to hold on to shader instance
 shaderMgr->releaseShader(shader);
 }
}
else
{
 selectItem = list.itemAt(index);
}

6.4.3.2 Handling Display State for “UI”

To support the display status coloring for a node, the convenience method

MGeometryUtilities::wireframeColor() can be used to return the appropriate color for a given

MDagPath (path).

It is also possible to explicitly check the display status using the

MGeometryUtilities::displayStatus() method. Based on the return status, custom colors may

be set.

The first option is shown here. The custom color sample code is available as part of the

apiMeshShape example in the developer kit.

The display status can also be used to determine whether to enable or disable a render item

(show / hide). For active wireframe, this logic takes into account display status.

// Get the display status for the dag path
MHWRender::DisplayStatus displayStatus =
 MHWRender::MGeometryUtilities::displayStatus(path);

// Get the color for the given display state
MColor wireColor = MHWRender::MGeometryUtilities::wireframeColor(path);

// Check the display status. If it is not lead, active, hilite, or active
// component then hide the active wireframe render item
switch (displayStatus)
{
 // Only want to show the item when these node states are set
 case MHWRender::kLead:
 case MHWRender::kActive:
 case MHWRender::kHilite:
 case MHWRender::kActiveComponent:
 MHWRender::MShaderInstance* shader = selectItem->getShader();
 if (shader)

Page 46 of 138

 {
 // Set the shader color parameter
 const MString colorParameterName = "solidColor";
 shader->setParameter(colorParameterName, &(wireColor.r));
 }
 selectItem->enable(true);
 break;

 default:
 // Hide / disable the item otherwise
 selectItem->enable(false);
 break;
};

The dormant and template render items have similar logic to the active render item for creation

and update. The main differences would be that those items would only be enabled for

“wireframe” draw mode, have different depth priority, and use different colors.

It is important to note that the dormant render item has a different name identifier to allow

different options to be set for different render items.

The following code creates the dormant / template render item:

 wireframeItem = MHWRender::MRenderItem::Create(
 sWireframeItemName, // Dormant/template wireframe render item name
 MHWRender::MRenderItem::DecorationItem, // UI item
 MHWRender::MGeometry::kLines); // Draw lines
 wireframeItem->setDrawMode(MHWRender::MGeometry::kWireframe);

 // Set dormant wireframe with appropriate priority to not clash with
 // any active wireframe which may overlap in depth.
 wireframeItem->depthPriority(MHWRender::MRenderItem::sDormantWireDepthPriority);
 list.append(wireframeItem);

 MHWRender::DisplayStatus displayStatus =
 MHWRender::MGeometryUtilities::displayStatus(path);

 MColor wireColor = MHWRender::MGeometryUtilities::wireframeColor(path);

 // Enable / disable dormant / template wireframe item and
 // update the shader parameters. Note that this differs from active checks.
 if (wireframeItem)
 {
 MHWRender::MShaderInstance* shader = wireframeItem->getShader();

 switch (displayStatus) {
 case MHWRender::kTemplate:
 case MHWRender::kActiveTemplate:
 case MHWRender::kDormant:
 case MHWRender::kActiveAffected:
 MHWRender::MShaderInstance* shader = selectItem->getShader();
 // Set the shader color parameter
 const MString colorParameterName = "solidColor";
 shader->setParameter(colorParameterName, &(wireColor.r));

Page 47 of 138

 // Enable the item
 wireframeItem->enable(true);
 break;
 default:
 // Otherwise disable
 wireframeItem->enable(false);
 break;
 }
 }

6.4.4 Populating Geometry for Wireframe and Shaded Render Items

Similar to the locator example using MPxGeometryOverride, two parts are involved in the

update that is required when populateGeometry() is called: data stream update based on

requirements and index stream update for render items.

This section examines an additional update: the shaded render items update.

This example assumes that the total requirement for all assigned shaders comprises: positions,

normals and texture coordinates. If there is a stream that is required but not supplied, the

internal update system will attempt to create “stand-in” streams just so that there is data

specified. As the internal update knows nothing about the specific override’s object geometry,

the same logic will always be applied. For example, if a texture coordinate stream is missing,

then the values (0,0) could be used for all values.

For data streams, the requirements are scanned (MVertexBufferDescriptionList) and the

semantic required for each requirement checked (MVertexBufferDescriptor::semantic()). The

steps are the same for each requirement:

• Create a data stream (MVertexBuffer) via MGeometry::createVertexBuffer().

• Acquire a reference / pointer to the CPU memory in the stream.

(MVertexBuffer::acquire()).

• Fill in the data as appropriate for the object.

• Commit the data to the GPU via MVertexBuffer::commit().

The code is very similar for all data streams, with the key difference being that the vertex buffer

description is used to create the data. When filling in the data, this description should be

checked to ensure that the data provided is in the correct format. For example, one texture

coordinate requirement could be for a 4-coordinate value while another for a 2-coordinate value.

The onus is on the plug-in to provide the correct data.

// Buffers for each data stream this geometry supports
MHWRender::MVertexBuffer* positionBuffer = NULL;
MHWRender::MVertexBuffer* normalBuffer = NULL;
MHWRender::MVertexBuffer* cpvBuffer = NULL;
MHWRender::MVertexBuffer* uvBuffer = NULL;
// Pointers to access the CPU data in the buffers
float* positions = NULL;
float* normals = NULL;
float* cpv = NULL;

Page 48 of 138

float* uvs = NULL;

unsigned int totalVerts = <total number of vertices in object>;

// Scan through the requirements one requirement at a time
//
const MHWRender::MVertexBufferDescriptorList& descList =
 requirements.vertexRequirements();

int numVertexReqs = descList.length();
MHWRender::MVertexBufferDescriptor desc;

for (int reqNum=0; reqNum<numVertexReqs; reqNum++)
{
 if (!descList.getDescriptor(reqNum, desc))
 {
 continue;
 }

 // Check the semantic for the description to determine the stream
 // that requires update…

 // Fill vertex stream data used for dormant vertex, wireframe and shaded drawing.
 switch (desc.semantic())
 {
 case MHWRender::MGeometry::kPosition:
 {
 if (!positionBuffer)
 {
 // Create the buffer and acquire a CPU pointer to it
 positionBuffer = data.createVertexBuffer(desc);
 if (positionBuffer)
 {
 positions = (float*)positionBuffer->acquire(totalVerts,
 true /*writeOnly */);
 }
 }

 }
 break;

 case MHWRender::MGeometry::kNormal:
 {
 if (!normalBuffer)
 {
 normalBuffer = data.createVertexBuffer(desc);
 if (normalBuffer)
 {
 // Create the buffer and acquire a CPU pointer to it
 normals = (float*)normalBuffer->acquire(totalVerts,
 true /*writeOnly */);
 }
 }
 }
 break;
 case MHWRender::MGeometry::kTexture:
 {
 // Fill in uv values

Page 49 of 138

 if (!uvBuffer)
 {
 // Create the buffer and acquire a CPU pointer to it
 uvBuffer = data.createVertexBuffer(desc);
 if (uvBuffer)
 {
 uvs = (float*)uvBuffer->acquire(totalVerts,
 true /*writeOnly */);
 }
 }
 }
 break;
 case MHWRender::MGeometry::kColor:
 {
 if (!cpvBuffer)
 {
 cpvBuffer = data.createVertexBuffer(desc);
 if (cpvBuffer)
 {
 // Create the buffer and acquire a CPU pointer to it
 cpv = (float*)cpvBuffer->acquire(totalVerts,
 true /*writeOnly */);
 }
 }
 }
 break;
 default:
 // do nothing for streams we do not understand
 break;
 }
}

The actual filling in of the CPU data is not shown here as it is purely data filling. When the data

has been filled in, the streams need to be committed (transferred to the GPU). This is done for

all streams (positions, normals, texture coordinates and color per vertex).

if (positions)
 positionBuffer->commit(positions);

if (normals)
 normalBuffer->commit(normals);

if (uvs)
 uvBuffer->commit(uvs);
}
if (cpv)
 cpvBuffer->commit(cpv);

Note in the code below (for the apiMeshShape developer kit example), the position stream data

is the same for drawing dormant vertices, wireframe as well as shaded drawing (render items).

The data organization and the amount of reuse are up to the plug-in.

Page 50 of 138

In this case, an attempt is made to reduce GPU data size by reusing the same data streams for

different render items.

The indexing that is used for each render item differs as vertex drawing requires point indexing,

wireframe: line indexing, and shaded: triangle indexing.

The apiMeshShape has a set of support methods used to fill in the indexing for each of these

render items. The basic update logic is the same for each:

• Create a new index buffer using MGeometry::createIndexBuffer().

• Get access to the CPU data using MIndexBuffer::acquire() (vs MVertexBuffer::acquire

for data streams)

• Fill in the appropriate indexing for the topology desired.

• Commit the data to the GPU using MIndexBuffer::commit().

• Set the indexing for the appropriate render item using

MRenderItem::associateWithIndexBuffer().

The code snippet below demonstrates the indexing update for shaded triangles. The code here

has the number of triangles passed in (numTriangles). fMeshGeom is the mesh data being

examined to pull out the indexing.

void apiMeshGeometryOverride::updateIndexingForShadedTriangles(const
 MHWRender::MRenderItem* item,
 MHWRender::MGeometry& data,
 unsigned int numTriangles)
{
 // Create an index buffer. We use 32-bit indexing
 MHWRender::MIndexBuffer* indexBuffer =
 data.createIndexBuffer(MHWRender::MGeometry::kUnsignedInt32);
 if (indexBuffer)
 {
 // Get access to CPU data buffer. We are drawing triangles so
 // we require 3 indices per triangle. Thus 3 * number of triangles
 // index data is allocated.
 unsigned int* buffer = (unsigned int*)indexBuffer->acquire(3*numTriangles,
 true /*writeOnly */);
 if (buffer)
 {
 // Compute index data for triangulated convex polygons sharing
 // poly vertex data among triangles.
 unsigned int base = 0;
 unsigned int idx = 0;
 for (int faceIdx=0; faceIdx<fMeshGeom->faceCount; faceIdx++)
 {
 // Ignore degenerate faces
 int numVerts = fMeshGeom->face_counts[faceIdx];
 if (numVerts > 2)
 {
 for (int v=1; v<numVerts-1; v++)
 {
 buffer[idx++] = base;
 buffer[idx++] = base+v;
 buffer[idx++] = base+v+1;

Page 51 of 138

 }
 base += numVerts;
 }
 }

 // Commit the data to the GPU and set the indexing on the
 // render item.
 indexBuffer->commit(buffer);
 item->associateWithIndexBuffer(indexBuffer);
 }
 }
}

The update for wireframe is very similar, except that, since lines are being drawn, the acquire()

would allocate (2 * the number of vertices) and hence the data filling code would also differ.

6.4.5 Component Handling (MPxGeometryOverride)

If a shape supports components, then additional render items are required for them to display

properly.

This section will only discuss vertex component drawing, although the apiMeshShape developer

kit example also shows how edge and face components can be handled. There are also other

render items that draw other UI “decorations” such as face centers in the example.

The example points out the changes in the drawing calls if VP2.0 selection support is required.

In summary, additional classes are required to handle intersection testing as well as remapping

from rendering geometry to component indexing. For more information on component selection,

see Porting Selection from Viewport 1 to 2 in the Maya Developer Help.

6.4.5.1 Vertex Render Item Update

The method in the example that updates dormant vertex render items is

updateDormantVertexItem(). This method creates an item as required for drawing, but includes

additional code for VP2 selection as follows:

• The render item is always marked as being selectable if MGeometry::kAll is used for the

draw mode.

• The render item, by default, uses the same selection mask as the shape. A vertex

component selection mask is enabled by calling MRenderItem::setSelectionMask().

• A reference to the internal geometry is part of custom user data placed on the render

item to allow for remapping of indexing from the internal geometry to a component. Refer

to the MPxComponentConverter C++ API Reference documentation, and Porting

Selection from Viewport 1 to 2 in the Maya Developer Help for more information. .

void apiMeshGeometryOverride::updateDormantVerticesItem(const MDagPath& path,
 MHWRender::MRenderItemList& list,
 const MHWRender::MShaderManager* shaderMgr)
{
 MHWRender::MRenderItem* vertexItem = NULL;
 int index = list.indexOf(sVertexItemName);

Page 52 of 138

 if (index < 0)
 {
 // Create new UI item which draws points
 vertexItem = MHWRender::MRenderItem::Create(
 sVertexItemName,
 MHWRender::MRenderItem::DecorationItem,
 MHWRender::MGeometry::kPoints);

 // Set draw mode to kAll indicating it will be visible in the
 // viewport and also during viewport 2.0 selection
 vertexItem->setDrawMode(
 MHWRender::MGeometry::DrawMode)(MHWRender::MGeometry::kAll);

 // VP2 Selection: Set selection mask to kSelectMeshVerts indicating
 // we want the render item to be used for “Vertex Component” selection
 vertexItem->setSelectionMask(MSelectionMask::kSelectMeshVerts);

 // Set depth priority higher than wireframe and shaded render items,
 // but lower than active points. Raising higher than wireframe will make
 // them not seem embedded into the surface
 vertexItem->depthPriority(
 MHWRender::MRenderItem::sDormantPointDepthPriority);

 // We want a shader which can draw “fat” points
 MHWRender::MShaderInstance* shader = shaderMgr->getStockShader(
 MHWRender::MShaderManager::k3dFatPointShader);
 if (shader)
 {
 // Set the point size parameter
 static const float pointSize = 3.0f;
 setSolidPointSize(shader, pointSize);

 // Assign shader to the render item
 vertexItem->setShader(shader);

 // Once assigned there is no need to hold on to the shader instance
 shaderMgr->releaseShader(shader);
 }

 // Add the item to the render item list
 list.append(vertexItem);
 }
 else
 {
 vertexItem = list.itemAt(index);
 }

After the appropriate render item has been created or found, its color is set, and its enable

status is set based on its display status. For example, the example checks to see if the object

has been templated, and if so, vertex display is disabled accordingly.

 if (vertexItem)

Page 53 of 138

 {
 MHWRender::MShaderInstance* shader = vertexItem->getShader();
 if (shader)
 {
 // Set color for the vertices
 static const float theColor[] = { 0.0f, 0.0f, 1.0f, 1.0f };
 setSolidColor(shader, theColor);
 }

 MHWRender::DisplayStatus displayStatus =
 MHWRender::MGeometryUtilities::displayStatus(path);

 // Generally if the display status is hilite then we
 // draw components.
 if (displayStatus == MHWRender::kHilite)
 {
 // In case the object is templated
 // we will hide the components to be consistent
 // with how internal objects behave.
 if (path.isTemplated())
 vertexItem->enable(false);
 else
 vertexItem->enable(true);
 }
 else
 {
 vertexItem->enable(false);
 }

 }
}

The updating of the position data stream for dormant vertices is covered above. See the

updateIndexingForDormantVertices() method in this example for index stream updating. This

code is very similar to the wireframe or shaded render item update.

6.5 Porting Surface Shapes using MPxSubSceneOverride

This section will revisit the logic for MPxSubSceneOverride. The apiMeshShape example also

serves as a simple example of implementing a subscene override for surface shapes. In this

example, an alternate implementation to MPxGeometryOverride is provided in the

apiMeshSubSceneOverride class which is derived from MPxSubSceneOverride. Note that

multiple override implementations cannot be associated with the same object and the subscene

override implementation is chosen only when the environment variable

MAYA_APIMESHSHAPE_USE_SUBSCENEOVERRIDE is set.

Compared to “simple” objects (Section 6.3.2), surface shapes require more complex

implementation for handling material assignment, viewport draw modes, component display and

selection. UI drawables and hardware instancing in this example are the same and will not be

looked at again.

Page 54 of 138

Subscene Override Evaluator

Render Item

Container
Render Item

References

Render Item

References

2
. C

re
a

te
 d

a
ta

s
tre

a
m

s
 fo

r

re
q

u
ire

m
e

n
ts

Shader InstanceShader Instance

Vertex Buffer Descriptions

Vertex Buffer Descriptions

Index BufferIndex Buffer

Vertex Buffer Vertex Buffer

References

References

Owned By

Owns

Owns

Vertex Buffer List Vertex Buffer List

References

References

References

3
. C

re
a

te
 in

d
e

x

s
tre

a
m

s
 fo

r re
n

d
e

r

ite
m

s

4
.

S
e

t
G

e
o

m
e

tr
y

F
o

r
R

e
n

d
e

r
It
e

m
References

1. Create items and

Set Shader

5
.
A

s
s
ig

n

In
s
ta

n
c
in

g
 D

a
ta

6.5.1 Shaders

To allow for reuse, all shaders are created once and reused. For example, the dormant and

active wireframe and vertex/edge/face component shaders are shown. A reference of each

shader is held by the override and will be released when the subscene override is destroyed,

i.e. the associated shape is deleted.

// Set up shared shaders if needed
if (!fWireShader)
{

Page 55 of 138

 fWireShader = shaderMgr->getStockShader(
 MShaderManager::k3dSolidShader);
 fWireShader->setParameter("solidColor", sRed);
}

if (!fSelectShader)
{
 fSelectShader = shaderMgr->getStockShader(
 MShaderManager::k3dSolidShader);
 fSelectShader->setParameter("solidColor", sGreen);
}

if (!fVertexComponentShader)
{
 fVertexComponentShader = shaderMgr->getStockShader(
 MShaderManager::k3dFatPointShader);
 fVertexComponentShader->setParameter("solidColor", sWhite);
 const float pointSize[2] = {5.0, 5.0};
 fVertexComponentShader->setParameter("pointSize", pointSize);
}

if (!fEdgeComponentShader)
{
 fEdgeComponentShader = shaderMgr->getStockShader(
 MShaderManager::k3dThickLineShader);
 fEdgeComponentShader->setParameter("solidColor", sWhite);
 const float lineWidth[2] = {2.0, 2.0};
 fEdgeComponentShader->setParameter("lineWidth", lineWidth);
}

if (!fFaceComponentShader)
{
 fFaceComponentShader = shaderMgr->getStockShader(
 MShaderManager::k3dSolidShader);
 fFaceComponentShader->setParameter("solidColor", sWhite);
}

In the case where it is desired to use a shader that is defined for a node (such as using an

MPxSurfaceShadingNodeOverride), then it is possible to find that node and associate it with a

given render item. Note that it is solely the responsibility of the plug-in to handle notifications

about life-time management of the node.

The MRenderItem::setShaderForNode() is the key interface used in the following code. This

code explicitly searches for connected shaders to the current DAG object. If it finds a surface

shader, then it associates that shader with the render item. Note that a shadedItemLinkLost()

function has been added to support the scenario when the node lifetime changes.

// Find the shaded item if exists, create one otherwise.
MRenderItem* shadedItem = container.find(sShadedName);
if (!shadedItem)
{
 shadedItem = MRenderItem::Create(
 sShadedName,
 MRenderItem::MaterialSceneItem,
 MGeometry::kTriangles);

Page 56 of 138

 shadedItem->setDrawMode(MGeometry::kShaded);
 shadedItem->setExcludedFromPostEffects(false);
 shadedItem->castsShadows(true);
 shadedItem->receivesShadows(true);
 container.add(shadedItem);
}

// Get the shading node associated with the first component of the first DAG instance
// and use it to get an MShaderInstance. This could be extended to support all DAG
// instances and all components as required.
MPlugArray connectedPlugs;
MObjectArray sets, comps;
if (node.getConnectedSetsAndMembers(0, sets, comps, true))
{
 for (unsigned int i=0; i<sets.length(); i++)
 {
 MFnDependencyNode fnSet(sets[i], &status);
 if (status)
 {
 MPlug shaderPlug = fnSet.findPlug("surfaceShader");
 if (!shaderPlug.isNull())
 {
 shaderPlug.connectedTo(connectedPlugs, true, false);
 if (connectedPlugs.length() > 0) break;
 }
 }
 }
}

// Update shader for the shaded item.
if (fMesh->materialDirty() || !shadedItem->isShaderFromNode())
{
 ShadedItemUserData *userData = new ShadedItemUserData(this);

if (connectedPlugs.length() > 0 &&
 shadedItem->setShaderFromNode(connectedPlugs[0].node(),
 instances[0],
 shadedItemLinkLost,
 userData,
 true))
 {
 fLinkLostCallbackData.push_back(userData);
 }
 else
 {
 shadedItem->setShader(fShadedShader);
 delete userData;
 }
}

// Reset the dirty flag since shader has been updated.
fMesh->setMaterialDirty(false);

6.5.2 Data and Index Streams

In this example, positions and normals for mesh display are created, as well as addtional

positions for bounding box. The vertex descriptions are determined by the override, and new

Page 57 of 138

buffers are explicitly created. The value of totalVerts (total number of vertices) is determined

elsewhere.

// Acquire vertex buffers.
// We build 2 buffers which can be shared by different render items: position, normal
// and one which is used for bounding box positions (which don’t reside on the mesh)
const MVertexBufferDescriptor posDesc("", MGeometry::kPosition, MGeometry::kFloat, 3);
const MVertexBufferDescriptor normalDesc("", MGeometry::kNormal, MGeometry::kFloat, 3);

fPositionBuffer = new MVertexBuffer(posDesc);
float* positions = (float*)fPositionBuffer->acquire(totalVerts, true);

fNormalBuffer = new MVertexBuffer(normalDesc);
float* normals = (float*)fNormalBuffer->acquire(totalVerts, true);

// A bounding box has only 8 positions.
fBoxPositionBuffer = new MVertexBuffer(posDesc);
float* boxPositions = (float*)fBoxPositionBuffer->acquire(8, true);

Note that MVertexBuffer::acquire() is still used to allocate CPU memory.

Index streams are maintained by the override. Three index streams are created to handle the

drawing of wireframe, shaded triangles and bounding box.

// Acquire index buffers.
fWireIndexBuffer = new MIndexBuffer(MGeometry::kUnsignedInt32);
unsigned int* wireBuffer = (unsigned int*)fWireIndexBuffer->acquire(2*totalVerts, true);

fShadedIndexBuffer = new MIndexBuffer(MGeometry::kUnsignedInt32);
unsigned int* shadedBuffer = (unsigned int*)fShadedIndexBuffer->acquire(3*numTriangles,
true);

// Short index is used because a bounding box has only 8 positions.
fBoxIndexBuffer = new MIndexBuffer(MGeometry::kUnsignedInt16);
unsigned short* boxBuffer = (unsigned short*)fBoxIndexBuffer->acquire(24, true);

In addition, three index streams are created to handle the drawing of active vertex/edge/face

components if needed.

// Acquire and fill index buffer for active (selected) vertices
fActiveVerticesIndexBuffer = new MIndexBuffer(MGeometry::kUnsignedInt32);
unsigned int* buffer = (unsigned int*)fActiveVerticesIndexBuffer->acquire(

numActiveVertices, true);

// Acquire and fill index buffer for active (selected) edges
fActiveEdgesIndexBuffer = new MIndexBuffer(MGeometry::kUnsignedInt32);
unsigned int* buffer = (unsigned int*)fActiveEdgesIndexBuffer->acquire(

2*numActiveEdges, true);

// Acquire and fill index buffer for active (selected) faces
fActiveFacesIndexBuffer = new MIndexBuffer(MGeometry::kUnsignedInt32);
unsigned int* buffer = (unsigned int*)fActiveFacesIndexBuffer->acquire(
 3*numActiveFacesTriangles, true);

The code to fill in the buffer is not shown. The commit() still needs to occur for all data and index

streams.

Page 58 of 138

6.5.2.1 Advanced: Client Side Buffers

It is possible to assign user created GPU buffers (called “client side buffers”) to either data or

index streams. This is sometimes useful to avoid duplication of data if that data needs to be

used outside of Maya. As long as context sharing is performed, then the data can be referenced

by Maya.

The resourceHandle() methods for MVertexBuffer and MIndexBuffer can be used to assign

data as opposed to using the corresponding acquire() methods.

The example code demonstrates the use of resourceHandle() for a simple case of the bounding

box data, for both OpenGL Core Profile and OpenGL Legacy.

static MGLFunctionTable* gGLFT = NULL;
if (!gGLFT)
{
 MHardwareRenderer* pRenderer = MHardwareRenderer::theRenderer();

if (pRenderer)
{

 gGLFT = pRenderer->glFunctionTable();
 }
}

if (gGLFT)
{
 // Position buffer
 gGLFT->glGenBuffersARB(1, &fBoxPositionBufferId);
 if (fBoxPositionBufferId != 0)
 {
 gGLFT->glBindBufferARB(MGL_ARRAY_BUFFER_ARB, fBoxPositionBufferId);
 gGLFT->glBufferDataARB(MGL_ARRAY_BUFFER_ARB, 8*3*sizeof(float),
 boxPositions, MGL_STATIC_DRAW_ARB);
 gGLFT->glBindBufferARB(MGL_ARRAY_BUFFER_ARB, 0);
 fBoxPositionBuffer->resourceHandle(&fBoxPositionBufferId, 8*3);
 }

 // Index buffer (short index)
 gGLFT->glGenBuffersARB(1, &fBoxIndexBufferId);
 if (fBoxIndexBufferId != 0)
 {
 gGLFT->glBindBufferARB(MGL_ELEMENT_ARRAY_BUFFER_ARB, fBoxIndexBufferId);
 gGLFT->glBufferDataARB(MGL_ELEMENT_ARRAY_BUFFER_ARB, 24*sizeof(unsigned short),
 boxIndices, MGL_STATIC_DRAW_ARB);
 gGLFT->glBindBufferARB(MGL_ELEMENT_ARRAY_BUFFER_ARB, 0);
 fBoxIndexBuffer->resourceHandle(&fBoxIndexBufferId, 24);
 }
}

and DirectX11:

// Get the current device
ID3D11Device* pDevice = (ID3D11Device*)renderer->GPUDeviceHandle();

// Fill in a data buffer description.
D3D11_BUFFER_DESC bufferDesc;
bufferDesc.Usage = D3D11_USAGE_DEFAULT;

Page 59 of 138

bufferDesc.ByteWidth = sizeof(float) * 3 * 8;
bufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
bufferDesc.CPUAccessFlags = 0;
bufferDesc.MiscFlags = 0;

// Fill in the sub-resource data.
D3D11_SUBRESOURCE_DATA InitData;
InitData.pSysMem = boxPositions;
InitData.SysMemPitch = 0;
InitData.SysMemSlicePitch = 0;

if (pDevice)
{
 pDevice->CreateBuffer(&bufferDesc, &InitData, &fBoxPositionBufferDX);
 if (fBoxPositionBufferDX)
 fBoxPositionBuffer->resourceHandle((void*)fBoxPositionBufferDX, 8*3);
}

// Index buffer (short index)
bufferDesc.ByteWidth = sizeof(unsigned short) * 24;
bufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
InitData.pSysMem = boxIndices;

if (pDevice)
{
 pDevice->CreateBuffer(&bufferDesc, &InitData, &fBoxIndexBufferDX);
 if (fBoxIndexBufferDX)
 fBoxIndexBuffer->resourceHandle((void*)fBoxIndexBufferDX, 24);
}

6.5.3 Render Items

In this example, a set of render items are created as required to handle the drawing for shaded

triangles, wireframe, bounding box and active components. They will be stored and managed by

an instance of MSubSceneContainer associated with the subscene override.

Also shown in the example is that unused items are removed from the container. As noted in the

API documentation, the container assumes ownership of those render items. Implementations

of MPxSubSceneOverride are free to maintain separate pointers to render items stored in the

container, but those pointers will become invalid as soon as the associated render item is

removed from the container. This example shows a very simple case of only a few render items.

If there are many items, then, in general, it is more efficient to disable them rather than remove

them from the container depending on the frequency of reuse.

// Always create a render item to handle the drawing of shaded triangles.
MRenderItem* shadedItem = container.find(sShadedName);
if (!shadedItem)
{
 shadedItem = MRenderItem::Create(
 sShadedName,
 MRenderItem::MaterialSceneItem,
 MGeometry::kTriangles);

shadedItem->setDrawMode(MGeometry::kShaded);

Page 60 of 138

 container.add(shadedItem);
}

// Always create a render item to handle the drawing of textured triangles.
MRenderItem* texturedItem = container.find(sTexturedName);
if (!texturedItem)
{
 texturedItem = MRenderItem::Create(
 sTexturedName,
 MRenderItem::MaterialSceneItem,
 MGeometry::kTriangles);
 texturedItem->setDrawMode(MGeometry::kTextured);
 container.add(texturedItem);
}

// If needed, create a render item to handle the drawing of wireframe.
MRenderItem* wireItem = container.find(sWireName);
if (!wireItem && anyInstanceUnselected)
{
 wireItem = MRenderItem::Create(
 sWireName,
 MRenderItem::DecorationItem,
 MGeometry::kLines);
 wireItem->setDrawMode(MGeometry::kWireframe);
 wireItem->depthPriority(MRenderItem::sActiveWireDepthPriority);
 wireItem->setShader(fWireShader);
 container.add(wireItem);
}
else if (wireItem && !anyInstanceUnselected)
{
 container.remove(sWireName);
 wireItem = NULL;
}

// If needed, create a render item to handle the drawing of bounding box.
MRenderItem* boxItem = container.find(sBoxName);
if (!boxItem && anyInstanceUnselected)
{
 boxItem = MRenderItem::Create(
 sBoxName,
 MRenderItem::NonMaterialSceneItem,
 MGeometry::kLines);
 boxItem->setDrawMode(MGeometry::kBoundingBox);
 boxItem->setShader(fWireShader);
 container.add(boxItem);
}
else if (boxItem && !anyInstanceUnselected)
{
 container.remove(sBoxName);
 boxItem = NULL;
}

// If needed, create a render item to handle the drawing of active objects.
MRenderItem* selectItem = container.find(sSelectName);
if (!selectItem && anyInstanceSelected)
{
 selectItem = MRenderItem::Create(
 sSelectName,

Page 61 of 138

 MRenderItem::DecorationItem,
 MGeometry::kLines);

selectItem->setDrawMode((MGeometry::DrawMode)
 (MGeometry::kWireframe | MGeometry::kShaded | MGeometry::kTextured));
 selectItem->depthPriority(MRenderItem::sActiveWireDepthPriority);
 selectItem->setShader(fSelectShader);
 container.add(selectItem);
}
else if (selectItem && !anyInstanceSelected)
{
 container.remove(sSelectName);
 selectItem = NULL;
}

// If needed, create a render item to handle the drawing of active bounding box.
MRenderItem* selectedBoxItem = container.find(sSelectedBoxName);
if (!selectedBoxItem && anyInstanceSelected)
{

selectedBoxItem = MRenderItem::Create(
 sSelectedBoxName,
 MRenderItem::NonMaterialSceneItem,
 MGeometry::kLines);
selectedBoxItem->setDrawMode(MGeometry::kBoundingBox);

 selectedBoxItem->setShader(fSelectShader);
container.add(selectedBoxItem);

}
else if (selectedBoxItem && !anyInstanceSelected)
{
 container.remove(sSelectedBoxName);
 selectedBoxItem = NULL;
}

// If needed, create a render item to handle the drawing of active vertices.
MRenderItem* activeVertexItem = container.find(sActiveVertexName);
if (!activeVertexItem && anyVertexSelected)
{
 activeVertexItem = MRenderItem::Create(
 sActiveVertexName,
 MRenderItem::DecorationItem,
 MGeometry::kPoints);
 activeVertexItem->setDrawMode(MGeometry::kAll);
 activeVertexItem->depthPriority(MRenderItem::sActivePointDepthPriority);
 activeVertexItem->setShader(fVertexComponentShader);
 container.add(activeVertexItem);
}
else if (activeVertexItem && !anyVertexSelected)
{
 container.remove(sActiveVertexName);
 activeVertexItem = NULL;
}

// If needed, create a render item to handle the drawing of active edges.
MRenderItem* activeEdgeItem = container.find(sActiveEdgeName);
if (!activeEdgeItem && anyEdgeSelected)
{
 activeEdgeItem = MRenderItem::Create(
 sActiveEdgeName,
 MRenderItem::DecorationItem,

Page 62 of 138

 MGeometry::kLines);
 activeEdgeItem->setDrawMode(MGeometry::kAll);
 activeEdgeItem->depthPriority(MRenderItem::sActiveLineDepthPriority);
 activeEdgeItem->setShader(fEdgeComponentShader);
 container.add(activeEdgeItem);
}
else if (activeEdgeItem && !anyEdgeSelected)
{
 container.remove(sActiveEdgeName);
 activeEdgeItem = NULL;
}

// If needed, create a render item to handle the drawing of active faces.
MRenderItem* activeFaceItem = container.find(sActiveFaceName);
if (!activeFaceItem && anyFaceSelected)
{
 activeFaceItem = MRenderItem::Create(
 sActiveFaceName,
 MRenderItem::DecorationItem,
 MGeometry::kTriangles);
 activeFaceItem->setDrawMode(MGeometry::kAll);
 activeFaceItem->depthPriority(MRenderItem::sActiveLineDepthPriority);
 activeFaceItem->setShader(fFaceComponentShader);
 container.add(activeFaceItem);
}
else if (activeFaceItem && !anyFaceSelected)
{
 container.remove(sActiveFaceName);
 activeFaceItem = NULL;
}

6.5.4 Setting Data on Render Items

The sample code below demonstrates the geometry update for the drawing of shaded triangles,

bounding box, wireframe and active components. Each adds the appropriate data streams to an

array, and then set that array along with the appropriate index stream reference and bounding

box. Streams are still owned by the override, but they are now referenced and can be shared by

render items.

// Get the bounding box for the geometry to draw
MBoundingBox bounds = fMesh->boundingBox();

// Update geometry for shaded and textured triangles
MVertexBufferArray shadedBuffers;
shadedBuffers.addBuffer("positions", fPositionBuffer);
shadedBuffers.addBuffer("normals", fNormalBuffer);
setGeometryForRenderItem(*shadedItem, shadedBuffers, *fShadedIndexBuffer, &bounds);
setGeometryForRenderItem(*texturedItem, shadedBuffers, *fShadedIndexBuffer, &bounds);

// Update geometry for bounding box
MVertexBufferArray boxBuffers;
boxBuffers.addBuffer("positions", fBoxPositionBuffer);
if (boxItem)
 setGeometryForRenderItem(*boxItem, boxBuffers, *fBoxIndexBuffer, &bounds);
if (selectedBoxItem)

Page 63 of 138

 setGeometryForRenderItem(*selectedBoxItem, boxBuffers, *fBoxIndexBuffer, &bounds);

// Update geometry for wireframe
MVertexBufferArray vertexBuffer;
vertexBuffer.addBuffer("positions", fPositionBuffer);
if (wireItem)
 setGeometryForRenderItem(*wireItem, vertexBuffer, *fWireIndexBuffer, &bounds);
if (selectItem)
 setGeometryForRenderItem(*selectItem, vertexBuffer, *fWireIndexBuffer, &bounds);

// Update geometry for active components
if (activeVertexItem)
 setGeometryForRenderItem(*activeVertexItem, vertexBuffer,
 *fActiveVerticesIndexBuffer, &bounds);
if (activeEdgeItem)
 setGeometryForRenderItem(*activeEdgeItem, vertexBuffer,

 *fActiveEdgesIndexBuffer, &bounds);
if (activeFaceItem)
 setGeometryForRenderItem(*activeFaceItem, vertexBuffer,

 *fActiveFacesIndexBuffer, &bounds);

6.5.5
6.5.5

6.5.5 Selection

In addition to object-level selection, component-level selection is also demonstrated in this

example. Maya calls the updateSelectionGranularity() function during the pre-filtering phase

of VP2 selection pipeline, to determine selection level for a given instance of the associated

DAG object. A subscene override can override this method to specify an appropriate selection

level, otherwise object-level selection will be performed. In the sample code, the selection

context is modified to component-level for several cases. For all the other cases object-level

selection will still be used although not specified explicitly.

void apiMeshSubSceneOverride::updateSelectionGranularity(
 const MDagPath& path, MHWRender::MSelectionContext& selectionContext)
{
 if (MHWRender::MGeometryUtilities::displayStatus(path) == MHWRender::kHilite)

{
 // The global selection mode is being checked to update the selection context
 // which is used to specify an appropriate selection level.
 MSelectionMask globalComponentMask =

MGlobal::selectionMode() == MGlobal::kSelectComponentMode ?
MGlobal::componentSelectionMask() : MGlobal::objectSelectionMask();

 MSelectionMask supportedComponents(MSelectionMask::kSelectMeshVerts);
 supportedComponents.addMask(MSelectionMask::kSelectMeshEdges);
 supportedComponents.addMask(MSelectionMask::kSelectMeshFaces);
 supportedComponents.addMask(MSelectionMask::kSelectPointsForGravity);

 if (globalComponentMask.intersects(supportedComponents))
 {
 selectionContext.setSelectionLevel(MHWRender::MSelectionContext::kComponent);
 }
 }
 else if (pointSnappingActive())

{
 // For snapping to points, the selection context should be updated to use

Page 64 of 138

 // component-level selection.
 selectionContext.setSelectionLevel(MHWRender::MSelectionContext::kComponent);
 }
}

For more information, see Porting Selection from Viewport 1 to 2 in the Maya Developer Help.

The render items created for the drawing of wireframe, bounding box and shaded triangles can

be used for picking automatically. We also create render items for the drawing of active

components, but to allow selection picking for all components, we must create additional

“selection-only” render items which include geometry data of all components and participate in

the selection pipeline only (but not the rendering pipeline as we don’t need to draw them).

Selection mask should be set as appropriate so that these render items can be picked at the

desired selection level, such as vertex, edge or face selection. The code for vertex and edge

selection is demonstrated, selection for other component types, e.g. faces, are similar.

MRenderItem* vertexSelectionItem = container.find(sVertexSelectionName);
if (!vertexSelectionItem)
{
 // Create render item for vertex selection

vertexSelectionItem = MRenderItem::Create(sVertexSelectionName,
 MRenderItem::DecorationItem, MGeometry::kPoints);

 // Use for selection only, not visible in viewport
 vertexSelectionItem->setDrawMode(MHWRender::MGeometry::kSelectionOnly);
 // Set selection mask: to be used for vertex selection
 MSelectionMask mask(MSelectionMask::kSelectMeshVerts);
 mask.addMask(MSelectionMask::kSelectPointsForGravity);
 vertexSelectionItem->setSelectionMask(mask);
 // Set selection priority: on top
 vertexSelectionItem->depthPriority(MRenderItem::sSelectionDepthPriority);
 vertexSelectionItem->setShader(fVertexComponentShader);
 container.add(vertexSelectionItem);
}

MRenderItem* edgeSelectionItem = container.find(sEdgeSelectionName);
if (!edgeSelectionItem)
{
 // Create render item for edge selection
 edgeSelectionItem = MRenderItem::Create(
 sEdgeSelectionName,
 MRenderItem::DecorationItem,
 MGeometry::kLines);
 // Use for selection only, not visible in viewport
 edgeSelectionItem->setDrawMode(MHWRender::MGeometry::kSelectionOnly);
 // Set selection mask: to be used for edge selection

edgeSelectionItem->setSelectionMask(MSelectionMask::kSelectMeshEdges);
 // Set selection priority: on top
 edgeSelectionItem->depthPriority(MRenderItem::sSelectionDepthPriority);
 edgeSelectionItem->setShader(fWireShader);
 container.add(edgeSelectionItem);
}

// Point vertex buffer is fully sequential, use an empty index buffer
// for non-indexed draw.
setGeometryForRenderItem(*vertexSelectionItem,

Page 65 of 138

wireBuffers, MIndexBuffer(MGeometry::kUnsignedInt32), &bounds);
// Indexing data for both active and inactive edges are included.
setGeometryForRenderItem(*edgeSelectionItem,
 wireBuffers, *fWireIndexBuffer, &bounds);

if (!fIsInstanceMode && numInstances == 1)
{
 // Set object-to-world matrix.
 vertexSelectionItem->setMatrix(&objToWorld);
 edgeSelectionItem->setMatrix(&objToWorld);
}
else
{
 // Set the object-to-world matrix array and use hardware instancing.
 setInstanceTransformArray(*vertexSelectionItem, instanceMatrixArray);

setInstanceTransformArray(*edgeSelectionItem, instanceMatrixArray);
}

When component-level selection is used, a registered component converter can be called for

each associated render item that intersects the selection frustum to convert the intersection data

to a list of object components, by mapping the index buffer positions to valid component ids.

Refer to the MPxComponentConverter C++ API Reference documentation for more information.

void simpleComponentConverter::addIntersection(MHWRender::MIntersection& intersection)
{
 // Convert the intersection index, which represent the primitive position in
 // the index buffer, to the correct component id.
 // For vertex and edge: the primitive id is the same as the component id

// For face: a lookup table has been set up at initialization and can be
// used to get the component id from the primitive (triangle) id.

 int idx = intersection.index();
if (fComponentType == MFn::kMeshPolygonComponent)

 if (idx >= 0 && idx < (int)fLookupTable.size())
 idx = fLookupTable[idx];
 fComponent.addElement(idx);
}

The pair of the getInstancedSelectionPath() and getSelectionPath() method is called once for

each render item that intersects the selection frustum to specify the selected DAG path. Note

that getSelectionPath() is maintained for backward compatibility only; it doesn’t need to be

overridden if a getInstancedSelectionPath() implementation handles both instancing and non-

instancing cases.

bool apiMeshSubSceneOverride::getInstancedSelectionPath(
const MHWRender::MRenderItem& renderItem,
const MHWRender::MIntersection& intersection,
MDagPath& dagPath) const

{
 MStatus status;
 MFnDagNode node(fObject, &status);
 if (!status) return false;

 MDagPathArray instances;
 if (!node.getAllPaths(instances)) return false;

Page 66 of 138

unsigned int numInstances = instances.length();
 if (numInstances == 0) return false;

int instanceId = intersection.instanceID();

 // The instance ID starts from 1 for the first DAG instance. (instanceID-1)

// is used as index to MDAGPathArray returned by MFnDagNode:: getAllPaths().
 // In case of one instance or nested instancing, return the first instance.

if (numInstances == 1 || instanceId == -1 || instanceId > (int)numInstances)
 instanceId = 1;

 dagPath = instances[instanceId - 1];
 return true;
}

The selected DAG path, combining with the components returned by component converter if

component-level selection is used, will form a selection item that is added to the active selection

list.

6.6 Porting Shaders

6.6.1 Software Shading Node Attribute Matching

If the minimum requirement for any existing software shader node or new shading node is basic

shading, then all that is required is that the names of the attributes on a given node match the

names of the parameters on an internal shader.

As an example, the anisotropicShader shader plug-in is shown below. The attribute with the

name “color” is recognized as a match to the name of an internal shader input parameter, and

thus its value as well as its DG connections is tracked. The upstream checker and ramp

textures are natively supported in hardware. Internal examination of the connections results in

these nodes being supported in the exact same way as they would be if they were connected to

an internally provided surface shader.

Page 67 of 138

Internally, the name mapping for “color” can be illustrated as follows. In addition,

“Incandescence” is another attribute that is recognized as a match.

Maya

Dag

Object

Maya

Shading

Engine

Maya

2D Texture

Plug-in

Maya Surface

Shader

Color

Incandescence

Color

Incandescence

Texture

“Shader”

N
a
m

e
 M

a
tc

h

N
am

e
M

at
ch

Figure 8 : Plug-in attribute name “Color” matches the internal shader parameter name “Color”. The same is
true for “Incandescence” or any other attribute names. The Maya 2D Texture maps internally to a texture
“shader”. The connected internal shader graph is examined to produce the final shader instance used for
rendering.

Within the plug-in code these are the attribute definitions:

MFnNumericAttribute nAttr;

aColor = nAttr.createColor("color", "c"); // “color” name is recognized
aIncandescence = nAttr.createColor("incandescence","ic"); // “incandescence” name is
recognized

Page 68 of 138

6.6.2 Phong Fragment Description

The internal fragments used for VP2 can be accessed via the MFragmentManager class.

The Maya Phong shader fragment is used for default support (as discussed in the previous

section). The parameters for this fragment can be examined by dumping out the XML using the

fragmentDumper sample plug-in (dumpFragment command).

In the XML code, the properties section provides a list of parameters of interest. The Phong

shader is the fragment named “phong_1”. The parameters are written as data members.

The following snippet shows parameter names in bold. For example, for

“phong_1.specularColor”, the fragment is “phong_1” and the parameter is “specularColor”.

<float name="phong_1diffuse" ref="phong_1.diffuse" />
<float name="phong_1translucence" ref="phong_1.translucence" />
<float name="phong_1translucenceDepth" ref="phong_1.translucenceDepth" />
<float name="phong_1translucenceFocus" ref="phong_1.translucenceFocus" />
<float3 name="phong_1specularColor" ref="phong_1.specularColor" />
<float name="phong_1cosinePower" ref="phong_1.cosinePower" />
<float3 name="phong_1color" ref="phong_1.color" />
<float3 name="phong_1transparency" ref="phong_1.transparency" />
<float3 name="phong_1ambientColor" ref="phong_1.ambientColor" />
<float3 name="phong_1incandescence" ref="phong_1.incandescence" />
<float name="phong_1reflectivity" ref="phong_1.reflectivity" />
<float3 name="phong_1reflectedColor" ref="phong_1.reflectedColor" />

6.6.3 Software Shading Node Fragments

The next logical step for greater control is to specify an explicit shader fragment as opposed to

the fixed internal one.

The two possible scenarios are:

1) Providing a fragment for a node that is upstream of the surface shader node, regardless

of whether or not the surface shader is a plug-in.

2) Providing a fragment for a plug-in surface shader node.

The MPxShadingNodeOverride interface can be used for the first scenario and its subclass

MPxSurfaceShadingNodeOverride for the second.

The following examples will be used as reference to describe how this is accomplished for the

two scenarios:

• brickShader: Provides an implementation of a brick texture (MPxShadingNodeOverride)

• onbShader: Provides an implementation of an Oren-Nayer shader

(MPxSurfaceShadingNodeOverride)

Page 69 of 138

The following sections will focus on the VP2 additions required and not the implementation of

the software node or its corresponding computation.

6.6.4 Intermediate Nodes (Brick Texture Example)

The first step is to add registration code in the initializePlugin() and uninitializePlugin() functions

respectively. Find the following code in the brickShader developer kit example:

static const MString sRegistrantId("brickTexturePlugin");

// In initializePlugin()
// To form an association the classification string used for the shading node
// override must match the one added to the software shading node.
// In this case it is “drawdb/shader/texture/2d/brickTexture”
//
// Register software node
const MString UserClassify("texture/2d:drawdb/shader/texture/2d/brickTexture");
CHECK_MSTATUS(plugin.registerNode("brickTexture", brickTextureNode::id,
 &brickTextureNode::creator,
 &brickTextureNode::initialize,
 MPxNode::kDependNode,
 &UserClassify));

// Register shading node override
MHWRender::MDrawRegistry::registerShadingNodeOverrideCreator(
 "drawdb/shader/texture/2d/brickTexture",
 sRegistrantId,
 brickTextureNodeOverride::creator));

…

// In uninitializePlugin()
// Deregister shading node override
MHWRender::MDrawRegistry::deregisterShadingNodeOverrideCreator(
 "drawdb/shader/texture/2d/brickTexture",
 sRegistrantId));

For the override to be recognized as an evaluator for a shading node, the “drawdb/shader”

string must be specified. The “brickTexture” string is added to distinguish this particular shading

node. The optional classification “texture/2d” string is added to make it consistent with Maya’s

internal naming scheme and to provide a unique string, although it is not strictly required. That

is, a “drawdb/shader/brickTexture” classification would also work but may result in accidental

reuse of the same classification string. For duplicate classifications, only the last registration will

be used.

To associate the evaluator / override with the plug-in shader node, the same classification string

must exist as one of the classifications when registerNode() is called.

The class brickTextureNodeOverride derives from the override class

MPxShadingNodeOverride, with a creator() method which will instantiate one instance of the

override per Maya shading node.

Page 70 of 138

The code for an MPxShadingNodeOverride which will provide the fragment definition with

default handling of input parameters and output parameters are:

1. virtual MString fragmentName() const = 0;

2. virtual MHWRender::DrawAPI supportedDrawAPIs() const;

Fragment registration is via the MFragmentManager class.

6.6.4.1 Fragment Definition

For the brick example, the definition is embedded as a string within the code (as opposed to a

separate XML file).

First, the fragment name must be available so that it can be returned. In the example, the name

“brickTextureNodePluginFragment” is specified.

// Define fragments needed for VP2 version of shader, this could also be
// defined in a separate XML file
//
// 1. We require a fragment name
static const MString sFragmentName("brickTextureNodePluginFragment");

The fragment body must be specified next. This is composed of the following:

• The input parameter definitions

• The input parameter default values

• The output parameter definition

• The implementation(s) for each supported shader language

Within the body definition, the fragment name must be specified, in this case,

“brickTextureNodePluginFragment”. The “class” value is a “ShaderFragment”, as a shader

fragment is defined. In the onbShader example a different class value is used to indicate a

fragment graph.

// 2. The fragment body is defined in one string
//
static const char* sFragmentBody =
"<fragment uiName=\"brickTextureNodePluginFragment\" name=\"brickTextureNodePluginFragment\"
type=\"plumbing\" class=\"ShadeFragment\" version=\"1.0\">"
" <description><![CDATA[Brick procedural texture fragment]]></description>"

The <properties>, <values> and <outputs> sections define the input and output parameters and

their default values. The <properties> section lists the parameters one at a time as well as their

type. A semantic can be applied to allow for binding of various supported parameters. [See

Shading Node Overrides in the Maya Developer Help for more information.]

// 3a. The properties define the input parameters to the shader
" <properties>"
" <float3 name=\"brickColor\" />"
" <float3 name=\"jointColor\" />"

Page 71 of 138

" <float name=\"blurFactor\" />"
" <float2 name=\"uvCoord\" semantic=\"mayaUvCoordSemantic\"
flags=\"varyingInputParam\" />"
" <float2 name=\"uvFilterSize\" />"
" </properties>"

// 3b. The values define the default values for the parameters
" <values>"
" <float3 name=\"brickColor\" value=\"0.75,0.3,0.1\" />"
" <float3 name=\"jointColor\" value=\"0.75,0.75,0.75\" />"
" </values>"

For this fragment, there is one 3-float output which is called “outColor”:

// 4. The output section defines the output parameter for the shader
" <outputs>"
" <float3 name=\"outColor\" />"
" </outputs>"

After the description of the interfaces to the fragment has been defined, all that is left is to define

the actual implementation. Currently, three possible shader languages are supported: Cg, GLSL

and HLSL.

The brick texture plug-in includes all 3 implementations, which is reflected in the overridden

method: supportedDrawAPIs(). kOpenGLCoreProfile indicates that an OpenGL core profile is

supported via an GLSL implementation.

MHWRender::DrawAPI brickTextureNodeOverride::supportedDrawAPIs() const
{
 return MHWRender::kOpenGL | MHWRender::kDirectX11 | MHWRender::kOpenGLCoreProfile;
}

The implementation section starts with the <implementation> tag.

// 5. The output section defines the output parameter for the shader
// We have one for each of the supported languages: Cg, GLSL and HLSL
// Not all are required but this must be reflected in the
// MPxShadingNodeOverride::supportedDrawAPIs() method
//
" <implementation>"

The Cg implementation is indicated via the language option on the <implementation> tag: “Cg”.

The function name provided within the <function_name> tag should match the name of the

fragment so that the correct function can be used. Again, this is

“brickTextureNodePluginFragment”. The actual source is specified within the

<source></source> tags. This code is only interpreted when the shader is compiled.

It is worth noting that the actual procedure argument names do not have to match the property

name, but the ordering and type needs to match. For example shader argument “color1” will

Page 72 of 138

match the “brickColor” property. In general it is recommended that the property names be re-

used for clarity.

// 5a. Cg implementation

"<implementation render=\"OGSRenderer\" language=\"Cg\" lang_version=\"2.1\">"

"<function_name val=\"brickTextureNodePluginFragment\" />"
"<source><![CDATA["
"float btnplinearstep(float t, float a, float b) \n"
"{ \n"
" if (t < a) return 0.0f; \n"
" if (t > b) return 1.0f; \n"
" return (t - a)/(b - a); \n"
"} \n"
// Note that the color1 argument matches brickColor property which are both 3-float
"float3 brickTextureNodePluginFragment(float3 color1, float3 color2, float blur, float2 uv,
float2 fs) \n"
"{ \n"
" uv -= floor(uv); \n"
" float v1 = 0.05f; float v2 = 0.45f; float v3 = 0.55f; float v4 = 0.95f; \n"
" float u1 = 0.05f; float u2 = 0.45f; float u3 = 0.55f; float u4 = 0.95f; \n"
" float du = blur*fs.x/2.0f; \n"

" float dv = blur*fs.y/2.0f; \n"
" float t = max(\n"
" min(btnplinearstep(uv.y, v1 - dv, v1 + dv) - btnplinearstep(uv.y, v2 - dv, v2 +
dv), \n"
" max(btnplinearstep(uv.x, u3 - du, u3 + du), 1.0f - btnplinearstep(uv.x,
u2 - du, u2 + du))), \n"
" min(btnplinearstep(uv.y, v3 - dv, v3 + dv) - btnplinearstep(uv.y, v4 - dv, v4 +
dv), \n"
" btnplinearstep(uv.x, u1 - du, u1 + du) - btnplinearstep(uv.x, u4 - du,

u4 + du))); \n"

" return t*color1 + (1.0f - t)*color2; \n"
"} \n]]>"
" </source>"
" </implementation>"

The HLSL implementation is very similar to the Cg implementation, except that a proper

language version “lang_version” must be defined. This must be “11.0” to indicate specific

support for DirectX version 11.

// 5b. HLSL implementation

//

" <implementation render=\"OGSRenderer\" language=\"HLSL\" lang_version=\"11.0\">"

" <function_name val=\"brickTextureNodePluginFragment\" />"
" <source><![CDATA["
"float btnplinearstep(float t, float a, float b) \n"
"{ \n"
" if (t < a) return 0.0f; \n"
" if (t > b) return 1.0f; \n"
" return (t - a)/(b - a); \n"
"} \n"

Page 73 of 138

"float3 brickTextureNodePluginFragment(float3 color1, float3 color2, float blur, float2 uv,
float2 fs) \n"
"{ \n"
" uv -= floor(uv); \n"
" float v1 = 0.05f; float v2 = 0.45f; float v3 = 0.55f; float v4 = 0.95f; \n"
" float u1 = 0.05f; float u2 = 0.45f; float u3 = 0.55f; float u4 = 0.95f; \n"
" float du = blur*fs.x/2.0f; \n"

" float dv = blur*fs.y/2.0f; \n"
" float t = max(\n"
" min(btnplinearstep(uv.y, v1 - dv, v1 + dv) - btnplinearstep(uv.y, v2 - dv, v2 +
dv), \n"
" max(btnplinearstep(uv.x, u3 - du, u3 + du), 1.0f - btnplinearstep(uv.x, u2 - du,
u2 + du))), \n"
" min(btnplinearstep(uv.y, v3 - dv, v3 + dv) - btnplinearstep(uv.y, v4 - dv, v4 +
dv), \n"
" btnplinearstep(uv.x, u1 - du, u1 + du) - btnplinearstep(uv.x, u4 - du, u4 +

du))); \n"

" return t*color1 + (1.0f - t)*color2; \n"
"} \n]]>"
" </source>"
" </implementation>"

The GLSL implementation is also very similar, but with the language option set to “GLSL”. As

different video cards may support different GLSL versions, ensure that your code matches the

version supported. Again, the source code will be checked at shader compile time.

// 5c. GLSL implementation

//

" <implementation render=\"OGSRenderer\" language=\"GLSL\" lang_version=\"3.0\">"

" <function_name val=\"brickTextureNodePluginFragment\" />"

" <source><![CDATA["

"float btnplinearstep(float t, float a, float b) \n"

"{ \n"

" if (t < a) return 0.0f; \n"

" if (t > b) return 1.0f; \n"

" return (t - a)/(b - a); \n"

"} \n"

"vec3 brickTextureNodePluginFragment(vec3 color1, vec3 color2, float blur, vec2 uv, vec2 fs)

\n"

"{ \n"
" uv -= floor(uv); \n"
" float v1 = 0.05f; float v2 = 0.45f; float v3 = 0.55f; float v4 = 0.95f; \n"
" float u1 = 0.05f; float u2 = 0.45f; float u3 = 0.55f; float u4 = 0.95f; \n"
" float du = blur*fs.x/2.0f; \n"

" float dv = blur*fs.y/2.0f; \n"
" float t = max(\n"
" min(btnplinearstep(uv.y, v1 - dv, v1 + dv) - btnplinearstep(uv.y, v2 - dv, v2 +
dv), \n"
" max(btnplinearstep(uv.x, u3 - du, u3 + du), 1.0f - btnplinearstep(uv.x, u2 - du,
u2 + du))), \n"
" min(btnplinearstep(uv.y, v3 - dv, v3 + dv) - btnplinearstep(uv.y, v4 - dv, v4 +
dv), \n"
" btnplinearstep(uv.x, u1 - du, u1 + du) - btnplinearstep(uv.x, u4 - du, u4 +

Page 74 of 138

du))); \n"

" return t*color1 + (1.0f - t)*color2; \n"
"} \n]]>"
" </source>"
" </implementation>"

We close off the string by indicating the end of the implementations and the end of the fragment

definition.

" </implementation>"
"</fragment>";

6.6.4.2 Fragment Registration

In order to use this fragment, it must be added to the internal fragment manager via the

MFragmentManager class. Because the fragment is a string buffer in this example, the

MFragmentManager::addShaderFragmentFromBuffer() method is used.

sFragmentName is the fragment name and sFragmentBody is the string containing the XML

description.

// Register fragment with the manager
MHWRender::MRenderer* theRenderer = MHWRender::MRenderer::theRenderer();
if (theRenderer)
{
 MHWRender::MFragmentManager* fragmentMgr =
 theRenderer->getFragmentManager();
 if (fragmentMgr)
 {
 // Add fragment if it has not already been added.
 bool fragAdded = fragmentMgr->hasFragment(sFragmentName);
 if (!fragAdded)
 {
 fragAdded = (sFragmentName ==
 fragmentMgr->addShadeFragmentFromBuffer(sFragmentBody, false));
 }

 // Use the fragment on successful add
 if (fragAdded)
 {
 fFragmentName = sFragmentName;
 }
 }
}

In order for the override to indicate the fragment name used, the fragmentName() method is

overridden. Note that, at the end of the registration code (above), the member fFragmentName

is set to be the name of the fragment if it is successfully added to the fragment manager.

MString brickTextureNodeOverride::fragmentName() const
{
 return fFragmentName;

Page 75 of 138

}

If the fragment is correctly registered, it is possible to retrieve the fragments XML description

from the fragment manager. In this case, the XML for the fragment graph wrapper would appear

as follows (as retrieved via the fragmentDumper plug-in). Note that the values for each of the

parameters are exposed. Also note that, when created, a unique name has been given for the

particular instance of the fragment. (As a fragment graph is shown, the implementation is not

described).

<fragment_graph name="MFragmentManager_getFragmentXML_TempGraph"
ref="MFragmentManager_getFragmentXML_TempGraph" class="FragmentGraph" version="1.0" feature_level="0" >
 <fragments>
 <fragment_ref name="brickTexture_1" ref="brickTexture_1" />
 </fragments>
 <connections>
 </connections>
 <properties>
 <float3 name="brickTexture_1brickColor" ref="brickTexture_1.brickColor" />
 <float3 name="brickTexture_1jointColor" ref="brickTexture_1.jointColor" />
 <float name="brickTexture_1blurFactor" ref="brickTexture_1.blurFactor" />
 <float2 name="uvCoord" ref="brickTexture_1.uvCoord" semantic="mayaUvCoordSemantic"
flags="varyingInputParam" />
 <float2 name="brickTexture_1uvFilterSize" ref="brickTexture_1.uvFilterSize" />
 </properties>
 <values>
<float3 name="brickTexture_1brickColor" value="0.750000,0.300000,0.100000" />
<float3 name="brickTexture_1jointColor" value="0.750000,0.750000,0.750000" />
 </values>
 <outputs>
 <float3 name="outColor" ref="brickTexture_1.outColor" />
 </outputs>
</fragment_graph>

6.6.4.3 Attribute-Parameter Mappings (Part 1)

In most cases, the values for the parameters on the shading effect are automatically driven by

the attributes of the Maya nodes that were used to create the effect. This is done by matching

the attributes on each Maya node to the parameters of the corresponding fragment. The name

and type of the attributes must match the name and type of the parameters for this automatic

relationship to be established.

In the sample code, the input parameters (or properties) of the brick texture fragment have the

same name and data type as the input attributes defined for the brickTexture plug-in node.

Thus, Maya automatically sets the values for those parameters on the final shading effect using

the values from the attributes on the brickTexture node. No further work is required by the

shading node override.

Page 76 of 138

6.6.4.3.1 Example in Use

As previously mentioned Maya combines the fragments for each node in a shading network and

turns the overall fragment graph into a shading effect. In the example above

• The brick texture node is connected to a Blinn shader via the “outColor” attribute. No

additional code has been added to map the attribute to the parameter since “outColor” is

the name of the output parameter on the fragment.

• A checker node has been connected to the “brickColor” attribute as input. Again no

additional code is required since the attribute name matches a corresponding parameter

name.

• A place2dTexture node (2d texture placement) is connected to the “uvCoord” attribute

and again, automatic mapping occurs as the parameter name is also called “uvCoord”.

The number of repeats on the placed2Dtexture node has been increased from its default

value of 1 to 5.

The result of the shader compiled from the fragment graph is shown on the right on a 2d plane.

6.6.4.4 Attribute-Parameter Mappings (Part 2: fileTexture Example)

To add custom handling of attribute-parameter mappings, use the following methods:

1. virtual void updateDG();

2. virtual void updateShader(MShaderInstance& shader, const

MAttributeParameterMappingList& mappings);

3. virtual void getCustomMappings(MAttributeParameterMappingList& mappings);

The fileTexture developer kit example demonstrates use of these methods.

Plug-ins may specify associations between attributes and parameters of the same type, but with

different names, by implementing MPxShadingNodeOverride::getCustomMappings(). This

method is called immediately after the fragment is created, but before the automatic mappings

Page 77 of 138

are done. No automatic mapping is performed for any parameter on the fragment that already

has a custom mapping.

Any attribute on the node that has no mapping to a parameter on the fragment is ignored.

Similarly, any parameters on the fragment without a mapping to an attribute on the node is

ignored (unless custom parameter setting is done by

MPxShadingNodeOverride::updateShader()).

In the fileTexture example, method mappings are added for the “map” and “textureSampler”

parameters.

void FileNodeOverride::getCustomMappings(
 MHWRender::MAttributeParameterMappingList& mappings)
{
 // Set up some mappings for the parameters on the file texture fragment,
 // there is no correspondence to attributes on the node for the texture
 // parameters.
 MHWRender::MAttributeParameterMapping mapMapping(
 "map", "", false, true);
 mappings.append(mapMapping);

 MHWRender::MAttributeParameterMapping textureSamplerMapping(
 "textureSampler", "", false, true);
 mappings.append(textureSamplerMapping);
}

The mappings should be handled by deriving from the

MPxShadingNodeOverride::updateShader() method. If this is not done, then no remapping will

be performed.

Note that all functionality is driven through these attribute parameter mappings. When Maya is

traversing the shading network and building and connecting fragments, it only traverses

connections where the input attribute on the node has a defined mapping (custom or automatic).

Also, as fragments are combined for all the nodes in the Maya shading graph, their parameters

are renamed (resolved) in order to avoid “collisions” (allowing the same fragment type to be

used multiple times in a graph). Only parameters with mappings are renamed; all others may

suffer name collisions which produce unpredictable results.

For the fileTexture node example the updateShader() method will receive the name of the

parameter that is created after the fragment graph has had its names resolved / renamed.

void FileNodeOverride::updateShader(
 MHWRender::MShaderInstance& shader,
 const MHWRender::MAttributeParameterMappingList& mappings)
{
 // Handle resolved name caching
 if (fResolvedMapName.length() == 0)
 {
 const MHWRender::MAttributeParameterMapping* mapping =
 mappings.findByParameterName("map");
 if (mapping)

Page 78 of 138

 {
 fResolvedMapName = mapping->resolvedParameterName();
 }
 }
 if (fResolvedSamplerName.length() == 0)
 {
 const MHWRender::MAttributeParameterMapping* mapping =
 mappings.findByParameterName("textureSampler");
 if (mapping)
 {
 fResolvedSamplerName = mapping->resolvedParameterName();
 }
 }

.

The plug-in retrieves the resolved names using the

MAttributeParameterMapping::resolvedParameterName() method. The names are then used to

find the parameters on the shader instance. In this example the code will set the appropriate

hardware texture and hardware sampler for two parameters using the appropriate

MShaderInstance::setParameter() method variant. The example also shows how to use the

texture manager (MTextureManager) to acquire a hardware texture based on a file texture

name that is stored in a data member called fFileName.

 // Set the parameters on the shader
 if (fResolvedMapName.length() > 0 && fResolvedSamplerName.length() > 0)
 {
 // Set sampler to linear-wrap
 if (!fSamplerState)
 {
 MHWRender::MSamplerStateDesc desc;
 desc.filter = MHWRender::MSamplerState::kAnisotropic;
 desc.maxAnisotropy = 16;
 fSamplerState = MHWRender::MStateManager::acquireSamplerState(desc);
 }
 if (fSamplerState)
 {
 shader.setParameter(fResolvedSamplerName, *fSamplerState);
 }

 // Set texture if we can acquire a texture from the texture
 // manager via MTextureManager::acquireTexture().
 MHWRender::MRenderer* renderer = MHWRender::MRenderer::theRenderer();
 if (renderer)
 {
 MHWRender::MTextureManager* textureManager =
 renderer->getTextureManager();
 if (textureManager)
 {
 MHWRender::MTexture* texture =
 textureManager->acquireTexture(fFileName);
 if (texture)
 {
 MHWRender::MTextureAssignment textureAssignment;
 textureAssignment.texture = texture;
 shader.setParameter(fResolvedMapName,

Page 79 of 138

 textureAssignment);

 // Release our reference now that it is set on the
 // shader
 textureManager->releaseTexture(texture);
 }
 }
 }
 }
}

The updateDG() method is overridden in the example to cache data that is used for the

updateShader() method. In this case, its purpose is to cache the file texture name into the

fFileTexture member variable.

void FileNodeOverride::updateDG()
{
 // Pull the file name from the DG for use in updateShader
 MStatus status;
 MFnDependencyNode node(fObject, &status);
 if (status)
 {
 MString name;
 node.findPlug("fileName").getValue(name);
 MRenderUtil::exactFileTextureName(name, false, "", fFileName);
 }
}

6.6.4.5 Output Parameter Handling

Like input parameters, if the output parameters of the fragment specified by an override match

the name and type of the output attributes on the associated shading node, Maya automatically

forms connections between the output of the fragment and the inputs of other fragments as

required by the shading network.

Currently, the fragment system only supports one output parameter per fragment for normal

shading fragments. To create a fragment with multiple outputs (to match multiple outputs on a

Maya shading node), such a fragment must define its single output parameter as a “struct”

output. A separate fragment must be created to define the struct type and the main fragment

must be connected to this new struct definition fragment in a fragment graph. The graph can

then be used by Maya and Maya automatically matches the names and types of the struct

members to the output attributes of the shading node where required.

In the fileTexture example, the following structure is created to support an output structure that

can return a 3-channel output color as well as a 3-channel output alpha. The type in this case is

a “structure” and a unique id (fileTexturePluginFragmentOutput) is used for the structure name

(struct_name). (Only the GLSL implementation is shown below for brevity, although all three

implementations exist in the sample code).

Page 80 of 138

static const MString sFragmentOutputName("fileTexturePluginFragmentOutput");
static const char* sFragmentOutputBody =
// Fragment is defined as a structure
"<fragment uiName=\"fileTexturePluginFragmentOutput\"
name=\"fileTexturePluginFragmentOutput\" type=\"structure\" class=\"ShadeFragment\"
version=\"1.0\">"
" <description><![CDATA[Struct output for simple file texture
fragment]]></description>"
" <properties>"

// Define the structure property
" <struct name=\"fileTexturePluginFragmentOutput\"
struct_name=\"fileTexturePluginFragmentOutput\" />"
" </properties>"
" <values>"
" </values>"
" <outputs>"
" <alias name=\"fileTexturePluginFragmentOutput\"
struct_name=\"fileTexturePluginFragmentOutput\" />"
" <float3 name=\"outColor\" />" // Output color is part of the struct
" <float name=\"outAlpha\" />" // Output alpha is part of the struct
" </outputs>"

// Add shader source code implementation(s) for the structure

" <implementation>"

" <implementation render=\"OGSRenderer\" language=\"GLSL\" lang_version=\"3.0\">"

" <function_name val=\"\" />"

" <declaration name=\"fileTexturePluginFragmentOutput\"><![CDATA["

// Output structure GLSL source code

"struct fileTexturePluginFragmentOutput \n"

"{ \n"

" vec3 outColor; \n"

" float outAlpha; \n"

"}; \n]]>"

" </declaration>"

" </implementation>"

" </implementation>"

"</fragment>";

Within the body definition, the <outputs> section must reference the defined output structure.

Note how the struct keyword is used as the return type and the previously specified structure

name (fileTexturePluginFragmentOutput) is used for the struct_name keyword, which differs

from the previous example for the brick shader which just returns a single float3 value.

"<outputs>"
<struct name=\"output\" struct_name=\"fileTexturePluginFragmentOutput\" />"
"</outputs>"

As with the body, the output structure must be added to the fragment manager using

MFragmentManager::addShaderFragmentFromBuffer().

Page 81 of 138

In the fileTexture example, the names of the output parameters on the fragment match the

names of the output attributes on the node (and the types match also).

As with input parameters, the plug-in can define custom mappings for outputs. The

MPxShadingNodeOverride::outputForConnection() needs to be overridden to handle

custom output mappings. The following sample code show a sample scenario:

MString sampleOverride::outputForConnection(
 const MPlug& sourcePlug,
 const MPlug& destinationPlug)
{
 // Map attribute names outValue/outValueA to parameter name outColor/outAlpha
 MFnAttribute attribute(sourcePlug.attribute());
 if (attribute.name() == "outValue")
 {
 return "outColor";
 }
 else if (attribute.name() == "outValueA")
 {
 return "outAlpha";
 }
 else
 {
 return attribute.name();
 }
}

Here, the nodes attributes are called outValue and outValueA. The code maps them to return

outColor and outAlpha respectively.

Whenever Maya detects a change in an attribute value, the method

valueChangeRequiresFragmentRebuild() is called. If this method returns true, then Maya

assumes that a new configuration of the fragment graph is required, which will trigger a rebuild

of the shading effect. For example:

bool sampleOverride::valueChangeRequiresFragmentRebuild(
 const MPlug* plug) const
{
 MStatus status;
 if (plug)
 {
 if (*plug == sampleNode::aMyAttribute)
 {
 return true;
 }
 }
 return false;
}

Here the attribute sampleNode::aMyAttribute is checked when a value change occurs and will

return true indicating that a graph rebuild is required.

6.6.4.6 XML file example

The checkerShader plug-in is an example of using a shader description which is written as an

XML file on disk. Like the fileTexture node example, it also has an output structure description.

Page 82 of 138

The main difference is the usage of the MFragmentManager::addShadeFragmentFromFile()

interface to add fragments to the fragment manager, and the usage of

MFragmentManager::addFragmentPath() to allow for an additional search path to be

specified to search for XML files.

In the sample code, a fragment to define the checker logic, an output structure definition, and a

graph to connect the two are stored in three different XML files:

• checkerNodePluginFragment.xml

• checkerNodePluginFragmentOutput.xml

• checkerNodePluginGraph.xml

The XML files are assumed to be stored in the “devkit/plug-ins/checkShader” relative folder.

// Fragments are defined in separate XML files, add the checker node
// directory to the search path and load from the files.
static const MString sFragmentName("checkerNodePluginFragment");
static const MString sFragmentOutputName("checkerNodePluginFragmentOutput");
static const MString sFragmentGraphName("checkerNodePluginGraph");

// Add search path (once only)
static bool sAdded = false;
if (!sAdded)
{
 MString location;
 if(! MGlobal::executeCommand(MString("getModulePath -moduleName \"devkit\""),
location, false)) {
 location = MString(getenv("MAYA_LOCATION")) + MString("/devkit");
 }
 location += "/plug-ins/checkerShader";
 fragmentMgr->addFragmentPath(location);
 sAdded = true;
}

// Add fragments if needed
bool fragAdded = fragmentMgr->hasFragment(sFragmentName);
bool structAdded = fragmentMgr->hasFragment(sFragmentOutputName);
bool graphAdded = fragmentMgr->hasFragment(sFragmentGraphName);
if (!fragAdded)
{
 fragAdded = (sFragmentName == fragmentMgr->addShadeFragmentFromFile(sFragmentName
+ ".xml", false));
}
if (!structAdded)
{
 structAdded = (sFragmentOutputName == fragmentMgr-
>addShadeFragmentFromFile(sFragmentOutputName + ".xml", false));
}
if (!graphAdded)
{
 graphAdded = (sFragmentGraphName == fragmentMgr-
>addFragmentGraphFromFile(sFragmentGraphName + ".xml"));
}

Page 83 of 138

6.6.5 Surface Shader Node Example (Oren-Nayer)

The shader example onbShader shows how a surface shader can be implemented with a series

of fragments using the MPxSurfaceShadingNodeOverride override.

6.6.5.1 Registration

The registration interfaces on MDrawRegistry are:

• registerSurfaceShadingNodeOverrideCreator()

• deregisterSurfaceShadingNodeOverrideCreator()

The classification string must start with the string “drawdb/shader/surface” for it to be

recognized as a surface shader. As shown in the registration code, the same classification

string used to register the override must exist on the shader node to form an association.

MString OnbShader::drawDbClassification("drawdb/shader/surface/onbShader");
// Include the override classification as part of the shader node classification
MString OnbShader::classification("shader/surface:" + drawDbClassification);

plugin.registerNode(
 OnbShader::nodeName,
 OnbShader::id,
 OnbShader::creator,
 OnbShader::initialize,
 MPxNode::kDependNode,
 &OnbShader::classification));

MHWRender::MDrawRegistry::registerSurfaceShadingNodeOverrideCreator(
 OnbShader::drawDbClassification,
 sRegistrantId,
 onbShaderOverride::creator));

6.6.5.2 Fragment Definition

For a surface shader that handles lights, there are a number of inputs that can be automatically

bound by Maya in order to “pass” internal information to the shader. These are referred to as

“pass through” fragments.

In the onbShader example, an “onbFloat3PassThrough” fragment is declared to pass through 3-

float values.

Additionally, a fragment is added that computes various dot products are required to compute

specular and diffuse contributions. This fragment is called “onbShaderGeom”. Example

products include: normal and light vector, half-angle, view and half-angle.

The diffuse and specular computations are a simplified version of the Oren-Nayer model

(“onbDiffuse” and “onbSpecular”).

To handle light binding, a “light accumulator” fragment called “onb16LightAccum” exists in the

example. This fragment takes as input an automatically generated Maya “light selector”

fragment. The accumulator fragment indicates to Maya that an internal light loop must be

performed, and to select a given light using the “selector” for each loop iteration. For example,

Page 84 of 138

there is a selector called “mayaLightSelector16” that allows a maximum of 16 lights to be looped

through

In the code below, the diffuse and specular irradiance is accumulated over a maximum of 16

lights. Note that the type is “accum” versus “plumbing”.

fragmentName = "onb16LightAccum";
fragmentBody =
"<fragment uiName=\"onb16LightAccum\" name=\"onb16LightAccum\" type=\"accum\"
class=\"ShadeFragment\" version=\"1.0\"> \r\n"
" <description><![CDATA[Accumulates specular & diffuse irradiance for 16
lights]]></description> \r\n"
" <properties> \r\n"
" <float3 name=\"scaledDiffuse\" /> \r\n"
" <float3 name=\"scaledSpecular\" /> \r\n"
" <string name=\"selector\" /> \r\n"
" </properties> \r\n"
" <values> \r\n"
" <string name=\"selector\" value=\"mayaLightSelector16\" /> \r\n"
" </values> \r\n"
" <outputs> \r\n"
" <alias name=\"scaledDiffuse\" /> \r\n"
" <alias name=\"scaledSpecular\" /> \r\n"
" </outputs> \r\n"

" <implementation> \r\n"

" </implementation> \r\n"

"</fragment> \r\n";

An output structure is specified in order to support multiple outputs. This fragment is called

“onbShaderOutput”. The output structure has parameters to output color, transparency, and

surface (color with alpha).

The “glue” which connects the light contribution to the shading is a “combiner” fragment called

“onbCombiner”. It takes in the computed diffuse and specular results and combines them with

other shader fragments to compute the values for the output structure. Any ambient light

contribution is also factored as an input parameter.

6.6.5.3 Fragment Graph Building

With the appropriate fragments specified, it is possible to form a surface shader fragment graph.

The class type for this fragment is a “FragmentGraph”. The final graph can be described as

follows:

Page 85 of 138

onbFloat3PassThrough(Nw)

nbFloat3PassThrough(Vw)

nbFloat3PassThrough(Lw)onbShaderGeom

onbSpecular

onbDiffuse

onb16LightAccum

onbCombiner

onbShaderOutput

Figure 9: Fragment Graph for the onbShader example.

The fragment graph definition begins with specifying the referenced fragments. All of the

previously mentioned fragments are referenced using the <fragment ref name = “” /> notation

within the <fragments> </fragments> section.

"<fragment_graph name=\"onbShaderSurface\" ref=\"onbShaderSurface\"
class=\"FragmentGraph\" version=\"1.0\"> \r\n"
" <fragments> \r\n"
" <fragment_ref name=\"nwPassThrough\" ref=\"onbFloat3PassThrough\" /> \r\n"
" <fragment_ref name=\"vwPassThrough\" ref=\"onbFloat3PassThrough\" /> \r\n"
" <fragment_ref name=\"lwPassThrough\" ref=\"onbFloat3PassThrough\" /> \r\n"
" <fragment_ref name=\"onbShaderGeom\" ref=\"onbShaderGeom\" /> \r\n"

Page 86 of 138

" <fragment_ref name=\"onbDiffuse\" ref=\"onbDiffuse\" /> \r\n"

" <fragment_ref name=\"onbSpecular\" ref=\"onbSpecular\" /> \r\n"
" <fragment_ref name=\"onb16LightAccum\" ref=\"onb16LightAccum\" /> \r\n"
" <fragment_ref name=\"onbCombiner\" ref=\"onbCombiner\" /> \r\n"
" <fragment_ref name=\"onbShaderOutput\" ref=\"onbShaderOutput\" /> \r\n"
" </fragments> \r\n"

The names used for the references can be chosen as desired.

These names can be used to form connections by specifying the name and the parameter

name used for the connection. For example, the nwPassThrough fragments “output” parameter

is connected to the “onbDiffuse” fragments “Nw” (normal world) parameter using the notation:

<connect from = “fragmentName.parameterName” to “fragmentName2.parameterName” name

= “connection name”

This is done within the <connections></connections> section.

The following code builds the fragment graph shown in the Figure 15.

Of note is the connection between the light accumulator (“onb16LightAccum”) and the combiner

(“onbCombiner”). There are actually no explicit connections to lights defined. These connections

are done by the renderer internally based on the current set of active lights specified. This is a

key difference between fragment based interfaces and effects based interface (such as

MPxShaderOverride) in that light binding is all handled automatically by the renderer.

" <connections> \r\n"
" <connect from=\"nwPassThrough.output\" to=\"onbDiffuse.Nw\" name=\"Nw\" />
\r\n"
" <connect from=\"vwPassThrough.output\" to=\"onbDiffuse.Vw\" name=\"Vw\" />
\r\n"
" <connect from=\"lwPassThrough.output\" to=\"onbDiffuse.Lw\" name=\"Lw\" />
\r\n"
" <connect from=\"nwPassThrough.output\" to=\"onbShaderGeom.Nw\" name=\"Nw\"
/> \r\n"
" <connect from=\"vwPassThrough.output\" to=\"onbShaderGeom.Vw\" name=\"Vw\"
/> \r\n"
" <connect from=\"lwPassThrough.output\" to=\"onbShaderGeom.Lw\" name=\"Lw\"
/> \r\n"

" <connect from=\"onbShaderGeom.onbShaderGeom\"
to=\"onbDiffuse.shaderGeomInput\" name=\"shaderGeomInput\" /> \r\n"
" <connect from=\"onbShaderGeom.onbShaderGeom\"
to=\"onbSpecular.shaderGeomInput\" name=\"shaderGeomInput\" /> \r\n"

" <connect from=\"onbDiffuse.onbDiffuse\"
to=\"onb16LightAccum.scaledDiffuse\" name=\"scaledDiffuse\" /> \r\n"
" <connect from=\"onbSpecular.onbSpecular\"
to=\"onb16LightAccum.scaledSpecular\" name=\"scaledSpecular\" /> \r\n"

" <connect from=\"onb16LightAccum.scaledDiffuse\"

Page 87 of 138

to=\"onbCombiner.diffuseIrradIn\" name=\"diffuseIrradIn\" /> \r\n"
" <connect from=\"onb16LightAccum.scaledSpecular\"
to=\"onbCombiner.specularIrradIn\" name=\"specularIrradIn\" /> \r\n"
" <connect from=\"onbCombiner.onbCombiner\"

to=\"onbShaderOutput.onbShaderOutput\" name=\"onbShaderOutput\" /> \r\n"
" </connections> \r\n"

Properties are specified to expose graph parameters with specific names. For example

“nwPassThrough.input” is exposed as “Nw”. Additionaly, automatic binding can be indicated

using the “semantic” keyword. In the example the “Nw” semantic indicates to auto-bind world

space normals and the “flags=varyingInputParam” indicates it varies per vertex.

Values specify initial values. Of note here is that the exposed “selector” parameter is set to the

value: “mayaLightSelector16” (16 light selector).

The final output structure name for the graph (“onbShaderOutput”) is also specified to indicate

which one of all the possible outputs returns the final shaded values.

" <properties> \r\n"
" <float3 name=\"Nw\" ref=\"nwPassThrough.input\" semantic=\"Nw\"
flags=\"varyingInputParam\" /> \r\n"
" <float3 name=\"Vw\" ref=\"vwPassThrough.input\" semantic=\"Vw\"
flags=\"varyingInputParam\" /> \r\n"
" <float3 name=\"Lw\" ref=\"lwPassThrough.input\" /> \r\n"
" <float3 name=\"HLw\" ref=\"onbShaderGeom.HLw\" /> \r\n"
" <float3 name=\"diffuseI\" ref=\"onbDiffuse.diffuseI\" /> \r\n"

" <float name=\"roughness\" ref=\"onbDiffuse.roughness\" /> \r\n"
" <float3 name=\"specularI\" ref=\"onbSpecular.specularI\" /> \r\n"
" <float3 name=\"specularColor\" ref=\"onbSpecular.specularColor\" /> \r\n"
" <float name=\"eccentricity\" ref=\"onbSpecular.eccentricity\" /> \r\n"
" <float name=\"specularRollOff\" ref=\"onbSpecular.specularRollOff\" />
\r\n"
" <string name=\"selector\" ref=\"onb16LightAccum.selector\" /> \r\n"
" <float3 name=\"color\" ref=\"onbCombiner.color\" /> \r\n"
" <float3 name=\"transparency\" ref=\"onbCombiner.transparency\" /> \r\n"
" <float3 name=\"ambientColor\" ref=\"onbCombiner.ambientColor\" /> \r\n"
" <float3 name=\"ambientIn\" ref=\"onbCombiner.ambientIn\" /> \r\n"
" <float3 name=\"incandescence\" ref=\"onbCombiner.incandescence\" /> \r\n"
" </properties> \r\n"
" <values> \r\n"
" <float3 name=\"Lw\" value=\"0.0,0.0,0.0\" /> \r\n"
" <float3 name=\"HLw\" value=\"0.0,0.0,0.0\" /> \r\n"
" <float3 name=\"diffuseI\" value=\"0.0,0.0,0.0\" /> \r\n"
" <float name=\"roughness\" value=\"0.3\" /> \r\n"
" <float3 name=\"specularI\" value=\"0.0,0.0,0.0\" /> \r\n"
" <float3 name=\"specularColor\" value=\"1.0,1.0,1.0\" /> \r\n"
" <float name=\"eccentricity\" value=\"0.1\" /> \r\n"
" <float name=\"specularRollOff\" value=\"0.7\" /> \r\n"
" <string name=\"selector\" value=\"mayaLightSelector16\" /> \r\n"
" <float3 name=\"color\" value=\"0.5,0.5,0.5\" /> \r\n"
" <float3 name=\"transparency\" value=\"0.0,0.0,0.0\" /> \r\n"
" <float3 name=\"ambientColor\" value=\"0.0,0.0,0.0\" /> \r\n"

Page 88 of 138

" <float3 name=\"ambientIn\" value=\"0.0,0.0,0.0\" /> \r\n"
" <float3 name=\"incandescence\" value=\"0.0,0.0,0.0\" /> \r\n"
" </values> \r\n"
" <outputs> \r\n"
" <struct name=\"onbShaderOutput\" ref=\"onbShaderOutput.onbShaderOutput\" />
\r\n"
" </outputs> \r\n"

"</fragment_graph> \r\n";

In the example, all input parameter names match attribute names, and as such, no mappings

are required.

6.6.6 Custom Effect Nodes (MPxShaderOverride)

The amount of work required to add support for shaders using an MPxShaderOverride is a

reflection of the complexity required to support custom shading nodes. In addition to handling

drawing, the override may potentially have to include code for parsing, compiling and binding

shaders, as well as handling all associated input resources, state management and integration

with the internal pipeline. It can basically be a renderer in itself.

By comparison, a shader instance (MShaderInstance) can take advantage of the internal shader

manager, as well as take advantage of fragments and the fragment manager. It is still possible

for MPxShaderOverride to take advantage of the internal shader mechanisms to a certain extent

if it uses MShaderInstances. This interface can not take direct advantage of the fragment

system nor the internal fragment building logic to automatically evaluate any connected nodes.

A simplified comparison between the two strategies is shown below:

Figure 10

In some cases, it may be required to take full control of rendering. Some possible reasons

include:

• Requirement for custom light types

• Requirement for custom geometry or tessellation shaders

MShaderManager
Shader

MShaderInstance

(from file)

Shader

R
e
fe

re
n
c
e

User Effects

File
Compile

To

MShaderInstance

(from internal)

R
e

fe
re

n
c
e

MPxHwShader

“Custom”

shader

parser /

compiler /

manager etc.

“Custom”

state /

texture /

pass /

technique

manager

“Custom”

parameter

update and

binding

User Effects

File

Other

“custom” per

plugin

support

systems...

Shader

Instance

Shader

Instance

Page 89 of 138

• Requirement for custom semantics or annotations

• Requirement for custom packing of data (data or indexing streams)

• Requirement for custom shader building

• Requirement to draw API specific features

To illustrate the complexity of this interface, the following sections will discuss two

implementations: One that uses an internal shader instance and one that writes an independent

shader system.

6.6.6.1 Basic Connections

 The following section discusses the basic layout of how a shader override interacts with Maya

nodes, render items and geometry requirements.

It continues to use the model wherein an override is associated with a DG node by

classification. In this case, the DG node is a plug-in hardware shader. Assume that there is no

difference between the two existing VP1 interfaces. The details of how these interfaces work will

not be covered here.

Shader overrides will “produce” a shader instance. This can either be an explicit one returned by

the plug-in (MShaderInstance) or an internal one which is used to allow association with a

render item (MRenderItem) for an object. The association between a shader instance and a

render item is generally determined by the shader assignments specified via DG connections

between a shading engine and a given object.

As with any shader, a series of geometry stream or indexing requirements must be specified

when an object needs to update the data required for its associated render items.

Page 90 of 138

Figure 11: Basic associations for an MPxShaderOverrde. Usage for one render item is shown, but there can
be 0 or more render items that use a shader based on Maya shading node assignments. 0 is when the shader
is not assigned to any geometry. Only stream (vertex buffer requirements) are shown, but index buffers
could also be required.

6.6.6.2 Starting Example

The developer kit vp2BlinnShader plug-in example demonstrates basic support. To reduce

complexity, the plug-in uses internal utilities while still attempting to show a complete override

implementation. The greater complexity inherent with more customization will be covered via

different examples.

6.6.6.3 Attribute Specification

Unlike an MPxShadingNodeOverride or MPxSurfaceShadingNodeOverride, there is no built in

monitoring for attributes on a hardware shader node that performs name matching and

automated update. It is up to the plug-in writer to determine the attributes that are appropriate

and map them accordingly. Any mapped (upstream) node connections, whether to an internal

node or a plug-in node, will never be automatically evaluated for the MPxShaderOverride as

part of internal shader evaluation.

The vp2BlinnShader example adds a few static attributes for simple mapping for diffuse color

and specular color and transparency. This is done as part of the static initialization method for

the hardware shader node (MPxNode::initialize()).

Dynamic attribute creation in VP2 follows the same timing as it does for VP1. The

MUniformParameter utility classes can be created and used in VP2 in the same manner as for

VP1. (For further details on MUniformParameter usage for VP2, see Uniform Data Handling.)

MRenderItem

MPxShaderOverride

MPxHwShaderNode

d
ra

w
D

b
/s

h
a

d
e

r

a
s
s
o

c
ia

ti
o

n

Maya

Surface

Shader Node
“hardwareShader”

MGeometryRequirements

Produces

Shader Instance

Produces

Assign To

MVertexBufferDescriptor

MVertexBufferDescriptor

MVertexBufferDescriptor

Dag Object
Assign To

Assign To

Page 91 of 138

As the logic for the node’s compute() method is based on software rendering and is performed

independently of any hardware rendering, no further details will be provided here.

6.6.6.3.1 Override Registration

The first requirement is registration. This requires that a “drawdb/shader” classification be

specified for both the node (vp2BlinnShader) and the shader override (vp2BlinnShaderOverride)

to form the proper association.

In this example, the classification “drawdb/shader/surface/vp2BlinnShader” is used.

A shader override is registered using the MDrawRegistry::registerShaderOverrideCreator()

method.

Note that the “drawdb” classification is not used for the purposes of filtering any UI as the node

classification does (“shader/surface/utility” here). The registration id, as with other overrides,

simply provides a unique identifier. Each time a new hardware shader node is created, the

“Creator()” method will create a new vp2BlinnShaderOverride instance.

static const MString svp2BlinnShaderRegistrantId("vp2BlinnShaderRegistrantId");
const MString UserClassify(
"shader/surface/utility/:drawdb/shader/surface/vp2BlinnShader);

MFnPlugin plugin(obj, PLUGIN_COMPANY, "1.0", "Any");
plugin.registerNode("vp2BlinnShader", vp2BlinnShader::id,
 vp2BlinnShader::creator, vp2BlinnShader::initialize,
 MPxNode::kHardwareShader, &UserClassify);

// Register a shader override for this node
MHWRender::MDrawRegistry::registerShaderOverrideCreator(
 "drawdb/shader/surface/vp2BlinnShader",
 svp2BlinnShaderRegistrantId,
 vp2BlinnShaderOverride::Creator);

The corresponding deregistration code uses the same classification string and registration id.

// Deregister a shader override for this node
MHWRender::MDrawRegistry::deregisterShaderOverrideCreator(
 "drawdb/shader/surface/vp2BlinnShader", svp2BlinnShaderRegistrantId);

6.6.6.3.2 Override “Phases”

A shader override has a series of “phases” that will be executed. For each of these phases,

there are some key interfaces that are required. For a more information on phases, see Effect

Overrides in the Maya Developer Help.

As an overview, the phases are summarized here. Key interfaces are in bold, with minimally

required methods being underlined.

1. Initialization: This phase occurs whenever a shader is deemed as requiring a “rebuild”.

This could be for a number of reasons, including shader assignment change, and

attribute value change. This is the phase responsible for:

a. Geometry requirements specification

Page 92 of 138

b. Shader “Key” generation, where a key is used to uniquely identify an instance of

a shader. Unique keys are used when attempting to group render items to

amortize shader setup / clean-up cost.

c. User data may be specified, but for the simple use case, it is not recommended

that data be added.

Interfaces involved in this phase include:

1. virtual MString initialize(MObject shader);

2. virtual MString initialize(const MInitContext& initContext, MInitFeedback&

initFeedback);

3. virtual bool overridesDrawState();

4. virtual bool supportsAdvancedTransparency() const;

• virtual MHWRender::MShaderInstance* nonTexturedShaderInstance(bool

&monitorNode) const;

2. Data Update: This can be described in two parts, a DG data update and a device data

update.

a. DG node evaluation should always occur within the DG data update interface for

thread-safety.

b. The device update would generally be hardware resource update and shader

parameter updates.

Not all interfaces for this phase need to be overridden. If the shader is independent of

any associated node attributes, the DG update method does not need to be overridden.

If the shader parameters are static, then the device update method does not need to be

overridden. Both methods have empty implementations by default.

Interfaces involved in this phase include the following. Note that none have to be

overridden for a static shader.

1. virtual bool rebuildAlways();

2. virtual void updateDG(MObject object);

3. virtual void updateDevice();

4. virtual bool isTransparent();

5. virtual void endUpdate();

3. Drawing: Shader binding and unbinding are the responsibilities of the interfaces in this

phase. This corresponds to the concept of “activating” the shader “key” provided at

initialization time and “deactivating” the same key. Between a bind/unbind pair, one or

more render items geometry may be drawn. Unless required, geometry drawing for a

given render item should be performed via a provided utility interface.

Interfaces involved in this phase include:

Page 93 of 138

1. virtual bool handlesDraw(MDrawContext& context);

2. virtual void activateKey(MDrawContext& context, const MString& key);

3. virtual bool draw(MDrawContext& context,

 const MRenderItemList& renderItemList) const = 0;

4. virtual void terminateKey(MDrawContext& context, const MString& key);

Geometry requirements handling can be thought of as a “phase” that occurs sometime between

shader update and drawing. The shader override itself does not know what render items it will

be associated with and hence which DAG object’s evaluator will be handling the update. The

evaluator could be for either plug-in geometry or internal geometry or both.

MPxGeometryOverride

Pipeline Update Pipeline Draw

Updates Geometric Data

MPxShaderOverride

Produce requirements

for shader parameters

MGeometryRequirementsReceives Requirements

MVertexBufferDescriptor

MVertexBufferDescriptor

MIndexBufferDescriptor

MRenderItem

MRenderItem
MVertexBuffer

MIndexBuffer

MVertexBuffer

MIndexBuffer

Renders

MRenderItem

Figure 12: Diagram shows how the shader override specifies the requirements (descriptions), which are handled by
an DAG object evaluator (a MPxGeometryOverride in this case). It will update the data for the appropriate render
items. These items are shown “flowing” down the pipeline until the “draw phase” is reached for the shader override.
At this time, the properly updated render items are sent back to the shader override.

More complex plug-in examples will be examined to discuss the complexities of each phase.

6.6.6.3.3 “Phase” Support in VP1

By comparison, the interfaces for VP1 hardware shaders are similar to those of VP2, but have

different execution time and frequency of execution. Of note is that, almost all interfaces are

Page 94 of 138

called at draw time, and hence the lack of any explicit DG, device update and draw only

interfaces. The concept of explicit shader identification (key) also does not exist. VP1 hardware

shaders can basically be thought of as providing custom draw request handling when a VP1 UI

shape is asked to draw itself.

The concept of “batching” geometry calls between shader bind/unbind is similar, although the

granularity in VP1 is for blocks of CPU geometry instead of render items (and GPU geometry).

VP1 data blocks mostly have a 1:1 correspondence with per object or per object component

shader assignments. As previously noted, VP2 a render item does not necessarily require this

correspondence (for example, a user generated render item, or a render item after

consolidation).

The VP1 MPxHardwareShader interface can be described as follows:

• Initialization:

o No concept and no shader key concept.

• Data Update:

o Part of draw.

• Drawing: Has no concept of device and DG separation. DG evaluation generally ends up

occurring at arbitrary places, including at draw time.

o Get geometry requirements from the shader via populateRequirements().

o Check for transparency via transparencyOptions() [roughly a combination if

MPxShaderOverride isTransparent() and overridesDrawState()].

o Draw using the render(MGeometryList& iterator) method. Iterator is for the

batching concept.

The older MPxHwShaderNode interface, which is no longer recommended for use with VP1,

can be described as follows:

• Initialization:

o No concept and no shader key concept.

• Data Update:

o Part of draw.

• Drawing: Has no concept of device and DG separation. DG evaluation generally ends up

occurring at arbitrary places including at draw time.

o Get geometry requirements, which are limited to asking for normal spaces, color

and UV set counts: normalsPerVertex(), getColorSetNames(),

getTexCoordSetNames().

o Check for transparency via transparencyOptions().

o Draw using bind(), unbind() and geometry() and OpenGL specific equivalent

methods. There is no batching concept here.

6.6.6.3.4 Basic “Phase” Support: Initialization

In the vp2BlinnShader example, the MPxShaderOverride::initialize() method uses a single

MShaderInstance class member called fColorShaderInstance. The shader key is a constant

Page 95 of 138

value, as the number and type of shader parameters as well as geometry stream requirements

never change.

if (fColorShaderInstance)
{
 // This plugin is using the utility method
 // MPxShaderOverride::drawGeometry(). For DX11 drawing,
 // a shader signature is required. We use
 // the signature from the same MShaderInstance used to
 // set the geometry requirements so that the signature
 // will match the requirements.
 //
 addShaderSignature(*fColorShaderInstance);

 // Set the geometry requirements based on the shader instance
 setGeometryRequirements(*fColorShaderInstance);
}
// Return constant shader key
return MString("Autodesk Maya vp2 Blinn Shader Override");

The geometry requirements can be obtained from the shader instance using the

MPxShaderOverride::setGeometryRequirements() utility method. However, due to the nature

of DirectX11 shading binding, a specific shader signature must be specified. The utility method

MPxShaderOverride::addShaderSignature() is used to obtain this from the shader instance.

6.6.6.3.5 Base “Phase” Support: Update

Using the attributes defined for the hardware shader node for the vp2BlinnShader example, the

values need to be cached during DG update within the MPxShaderOverride::updateDG()

methods, and then bound during the device update method

MPxShaderOverride::updateDevice(). As stated previously, if this shader had static parameter

values, then these virtual methods would not need to be overridden.

The code for the DG update is a straight forward evaluation of the color, transparency and

specular attributes to cache to the fDiffuse, fTransparency and fSpecular data members on the

override.

virtual void updateDG(MObject object)
{
 // Get the hardware shader node from the MObject.
 vp2BlinnShader *shaderNode = (vp2BlinnShader *)
 MPxHardwareShader::getHardwareShaderPtr(object);

 // Cache any data from the node to local data members.
 MStatus status;
 MFnDependencyNode node(object, &status);
 if (status)
 {
 node.findPlug("colorR").getValue(fDiffuse[0]);
 node.findPlug("colorG").getValue(fDiffuse[1]);
 node.findPlug("colorB").getValue(fDiffuse[2]);
 node.findPlug("transparency").getValue(fTransparency);
 fDiffuse[3] = 1.0f - fTransparency;

Page 96 of 138

 node.findPlug("specularColorR").getValue(fSpecular[0]);
 node.findPlug("specularColorG").getValue(fSpecular[1]);
 node.findPlug("specularColorB").getValue(fSpecular[2]);
 }
}

The shader update is also straight forward, using MShaderInstance parameter setting methods

to update from values cached during a DG update. To allow for transparent drawing, the shader

instance is set as transparent.

virtual void updateDevice()
{
 // Update shader to mark it as drawing with transparency or not.
 fColorShaderInstance->setIsTransparent(isTransparent());
 fColorShaderInstance->setParameter("diffuseColor", &fDiffuse[0]);
 fColorShaderInstance->setParameter("specularColor", &fSpecular[0]);
}

After the updates have been processed, the override can provide a transparency “hint” by

overriding the MPxShaderOverride::isTransparent() method. The example overrides this and

uses the cached fTransparency value as an indicator:

virtual bool isTransparent()
{
 return (fTransparency > 0.0f);
}

6.6.6.3.6 Base “Phase” Support: Draw

Assuming that the DAG objects have updated the geometry for the render items using this

shader at draw time, the draw interfaces on the override are called.

Since the vp2BlinnShader example is using a MShaderInstance, it should return that instance

by overriding the MPxShaderOverride::shaderInstance() method.

virtual MHWRender::MShaderInstance* shaderInstance() const
{
 return fColorShaderInstance;
}

This will trigger the appropriate setup for an internal shader instance.

MPxShaderOverride::activateKey(), MPxShaderOverride::terminateKey() will be called to

allow for the plug-in to bind and unbind the shader instance. The MShaderInstance::bind()

method is used to set up the shader instance.

virtual void activateKey(MHWRender::MDrawContext& context, const MString& key)
{
 // Bind the shader
 fColorShaderInstance->bind(context);
}

Page 97 of 138

The terminateKey() method will unbind the shader within the MShaderInstance::unbind()

method.

virtual void terminateKey(MHWRender::MDrawContext& context, const MString& key)
{
 // Unbind the shader
 fColorShaderInstance->unbind(context);
}

MPxShaderOverride::draw() can allow custom drawing. In this example, the utility method

MPxShaderOverride::drawGeometry() can simply be used. For completeness, all passes on

the shader instance are looped through, even though, in this case the shader has only one

pass. The drawGeometry() method does not need to loop through the render item list as it can

access this data internally.

virtual bool draw(MHWRender::MDrawContext& context,
 const MHWRender::MRenderItemList& renderItemList) const
{
 // Activate all the shader passes and draw using internal draw methods.
 unsigned int passCount = fColorShaderInstance->getPassCount(context);
 for (unsigned int i=0; i<passCount; i++)
 {
 fColorShaderInstance->activatePass(context, i);
 MHWRender::MPxShaderOverride::drawGeometry(context);
 }
 return true;
}

6.6.6.3.7 Override Swatch Rendering

Swatch rendering still resides within either MPxHwShaderNode::renderSwatchImage() or

MPxHardwareShader::renderSwatchImage().

Non-VP2 based swatch rendering relies on the use of the MHardwareRenderer class which is

based on the legacy hardware renderer. Utilities are provided to get swatch parameters such as

light and background parameters and the ability to extract CPU stock geometry. All drawing

must be done explicitly by the plug-in, and if the utility context is used, then it must be drawn

using OpenGL.

The recommended interface for VP2 swatch rendering is

MRenderUtilities::renderMaterialViewerGeometry(). The capabilities of this interface are

based on the Material Viewer in the Hypershade. The interface only requires the specification of

the environment, removing any requirement for data handling and drawing.

In the vp2BlinnShader example, the “shader ball” geometry is used if the size of the swatch is

large enough; otherwise a stock sphere is used. The swatch camera and single directional light

are also used.

MStatus vp2BlinnShader::renderSwatchImage(MImage & outImage)

Page 98 of 138

{
 MString meshSphere("meshSphere");
 MString meshShaderball("meshShaderball");

 // Find out the size of the swatch to render
 unsigned int targetW, targetH;
 outImage.getSize(targetW, targetH);

 // Render the swatch
 return MHWRender::MRenderUtilities::renderMaterialViewerGeometry(
 targetW > 128 ? meshShaderball : meshSphere,
 thisMObject(),
 outImage,
 MHWRender::MRenderUtilities::kPerspectiveCamera,
 MHWRender::MRenderUtilities::kSwatchLight);
}

The following snapshot shows an example of the geometry in the scene (on the left) and the

swatch render image (on the right).

Figure 13: Swatch for vp2BlinnShader instance on the right. Material attributes are from the shader instance but
camera, lighting and geometry are internally provided.

For reference, the hwPhongShader plug-in example can be examined to compare the usage of

the VP2 interface versus the raw OpenGL drawing that was used previously in VP1.

6.6.6.4 Initialization: Shader Uniqueness and Rebuild Logic

The first example used an MShaderInstance that was essentially a static parameter description

internally. Thus, a static shader key was used.

This will not be true if the override is meant to handle a generic set of shaders. This is the case

with the sample cgFxShader, dx11Shader, and glslShader plug-ins which support CgFx, FX and

OGSFX effects frameworks respectively. Depending on the flexibility a given plug-in wishes to

provide, a unique key should be generated. Assuming that the plug-in supports an effects

framework, this key could be based on the following factors:

• Differing effects file name (if from disk), string content (if from buffer), or binary identifier

(if from precompiled Effect)

Page 99 of 138

• Differing effect “techniques”

• Differing number of effect “passes”

More generally, this can include:

• Variations in uniform or varying parameter inputs

• Variations in usage and combination of code for various shader stages (vertex,

geometry, tessellation, pixel)

The Autodesk defined OGSFX effect format supports multiple shader language

implementations, and thus differences in language will also be a variation.

For example, for the glslShader plug-in, the key definition includes the shader name, effect file

name, and technique. The effect file extension is used to indicate shading language. The same

key combination is used for the dx11Shader.

// Build key string, note that if any attribute on the node changes that
// would affect the value of this string, then we must trigger rebuild of
// the shader
MString result = MString("Autodesk Maya GLSLShaderOverride, nodeName=");
result += fShaderNode ? fShaderNode->name() : MString("null");
result += MString(", effectFileName=");
result += fShaderNode ? fShaderNode->effectName() : MString("null");
result += MString(", technique=");
result += (fShaderNode) ? fShaderNode->techniqueName() : MString("null");
return result;

For all shaders mentioned above, an effect change means that a new key is required and hence

re-initialization is required. As such, the MPxShaderOverride::rebuildAlways() method will

return “true” to indicate that the initialization phase must be re-invoked.

Rebuild is also required when attribute / parameter changes occur during the update phase,

which means a different shader is required. For example, changing a “technique” attribute for an

effect means that the shader will become different. This type of check is similar to the

MPxShadingNodeOverrides::valueChangeRequiresFragmentRebuild() indicator which

forces the re-initialization of fragment based shaders.

Care should be taken to determine the minimal frequency for rebuilding, as this is roughly

equivalent to reassigning the shader to all affected render items, and hence can trigger

geometry rebuilding on all affected items (DAG object evaluator re-evaluation).

If a rebuild/re-initialization is not required, then attribute changes can continue to only invoke

update and draw phase execution.

6.6.6.5 Initialization: Explicitly Specification of Varying Data

In the case where the geometry requirements cannot be determined based on

MShaderInstance usage, it is up to the plug-in to determine the varying parameter data

requirements and use MPxShaderOverride::addGeometryRequirement() for each varying

parameter using a suitable MVertexBufferDescriptor description instance each time.

Page 100 of 138

See the hwColorPerVertexShader plug-in for a simple example, where a sample position

description is being added as a requirement.

// Set position requirement
MString reqName;
addGeometryRequirement(
 MHWRender::MVertexBufferDescriptor(
 reqName,
 MHWRender::MGeometry::kPosition,
 MHWRender::MGeometry::kFloat,
 3));

When multiple streams of the same type are not required, an empty name should be specified

for the description. This example requests the default position stream with data returned as 3

floating point (x,y,z) values.

Not all combinations of semantic, data type and dimension are available, and the

addGeometryRequirement() C++ API Reference documentation should be referenced for the

available options. Unless custom data is available, it is advisable to reuse the basic formats

provided by internal geometry. This is the same for both VP1 and VP2 interfaces. For example,

texture coordinates are a property of Maya’s polygonal object representation, and are always 2-

float (u,v) values regardless of which interfaces are used to access the data.

A name specification makes the shader more geometry dependent, and as such a named set

may or may not exist for all geometry instances that use the shader. In the same example,

usage of a color set name (as reqName) does not guarantee that the data will be available.

addGeometryRequirement(
 MHWRender::MVertexBufferDescriptor(
 reqName,
 MHWRender::MGeometry::kColor,
 MHWRender::MGeometry::kFloat,
 4));

For internally defined DAG object evaluators, an attempt will be made to either use a “default”

set or some fallback data but this is not guaranteed. There is also no guarantee that a plug-in

shape will provide the appropriate data. It is thus up to the plug-in shader to handle situations

where data may not be available. This same logic applies for VP1 interfaces.

The previously mentioned usage of a DX11 shader signature specification

(MPxShaderOverride::addShaderSignature() is not necessary for the dx11Shader as it does not

use an MShaderInstance and the input layout is handled at draw time by the shader. The

glslShader (like the vp2BlinnShader) plug-in uses an MShaderInstance and hence requires a

specification if reading in a DX11 FX files.

6.6.6.6 Initialization: Custom Geometry Specification

For more details on how to handle advanced use cases, such as:

• Allowing for customized data streams to be provided.

• Allowing for custom data formats.

• Allowing for data repackaging.

Page 101 of 138

See Customizing Geometry Data for Shaders in the Maya Developer Help. All additional

requirements must be specified at initialization time, with any support classes such as mutators

registered during plug-in initialization.

The hwPhongShader plug-in is an example that shows sample code custom primitives (using

the customPrimitiveGenerator plug-in), as well as custom data repackaging (using the

vertexBufferMutator plug-in).

The dx11Shader and glslShader plug-ins each use custom primitive generators which are

supplied as part of the plug-in to create the appropriate data for hardware tessellation.

Previously, Figure 18 demonstrated the requirements for passing to evaluators. The next figure

adds the locations data repackaging (MPxVertexBufferMutator), and custom data formats

(MPxPrimitiveGenerator for indexing + MPxVertexBufferGenerator for data). Instances of

each class can be registered via MDrawRegistry. The name used for registration can be used

as the semantic name for data or index descriptors when filling in geometry requirements.

MPxGeometryOverride

Update

Phase

Draw

Phase

Updates Geometric Data

MPxShaderOverride

Produce requirements

for shader parameters

MGeometryRequirementsReceives Requirements

MVertexBufferDescriptor

MVertexBufferDescriptor

MIndexBufferDescriptor

MPxVertexBufferMutator

MPxPrimitiveGenerator

MPxVertexBufferGenerator

MRenderItem

MRenderItem
MVertexBuffer

MIndexBuffer

MVertexBuffer

MIndexBuffer

Renders

MRenderItem

Figure 14: An MPxVertexBufferGenerator class instance can fill in data for a data stream (MVertexBuffer). It is
registered and can be specified as the semantic name for an MVertexBufferDescriptor. An MPxPrimitiveGenerator
class instance can fill in data for an indexing stream (MIndexBuffer). It is registered and can be specified as the
semantic name for a MIndexBufferDescriptor. Data repackaging can be performed on an existing data stream using

Page 102 of 138

an MPxVertexBufferMutator. Once registered, it can be specified as the semantic name for an
MVertexBufferDescriptor.

In the hwPhongShader example a custom primitive type (indexing requirement) called

“customPrimitiveTest” is created, which is the name of a registered primitive generator. The

“customPositionStream” and “customNormalStream” semantic names are used to reference

custom stream generators.

MString customPrimitiveName("customPrimitiveTest");
MHWRender::MIndexBufferDescriptor indexingRequirement(
 MHWRender::MIndexBufferDescriptor::kCustom,
 customPrimitiveName,
 MHWRender::MGeometry::kTriangles);

addIndexingRequirement(indexingRequirement);

MHWRender::MVertexBufferDescriptor positionDesc(
 empty,
 MHWRender::MGeometry::kPosition,
 MHWRender::MGeometry::kFloat,
 3);
positionDesc.setSemanticName("customPositionStream");

MHWRender::MVertexBufferDescriptor normalDesc(
 empty,
 MHWRender::MGeometry::kNormal,
 MHWRender::MGeometry::kFloat,
 3);
normalDesc.setSemanticName("customNormalStream");

addGeometryRequirement(positionDesc);
addGeometryRequirement(normalDesc);

The example also demonstrates an alternate specification for data by adding a mutator to

swizzle the position data. If the mutator is not found, then no mutation is performed. The normal

stream is not affected by the mutator, as no semantic name is specified.

MHWRender::MVertexBufferDescriptor positionDesc(
 empty,
 MHWRender::MGeometry::kPosition,
 MHWRender::MGeometry::kFloat,
 3);
// Use the custom semantic name "swizzlePosition"
// When the vertexBufferMutator plugin is loaded,
// this will swap the x,y and z values of the vertex buffer.
positionDesc.setSemanticName("swizzlePosition");

MHWRender::MVertexBufferDescriptor normalDesc(
 empty,
 MHWRender::MGeometry::kNormal,
 MHWRender::MGeometry::kFloat,
 3);

addGeometryRequirement(positionDesc);
addGeometryRequirement(normalDesc);

Page 103 of 138

6.6.6.7 Initialization: Using Effect Annotations

The dx11Shader and glslShader plug-ins both have implementations that are based on the

contents of a shader effect.

At initialization time, both plug-ins make use of technique level annotations to determine certain

characteristics of the shader. This includes: the type of indexing (tessellation requirement),

transparency algorithm supported, and state override indication. As the glslShader plug-in uses

an MShaderInstance to represent the shader, various utilities are available for annotation

parsing at the parameter, pass and technique level.

For example, in the glslShader example, after the MShaderInstance has been loaded,

MShaderInstance::techniqueAnnotationAsString() is used to parse transparency, custom

indexing and transparency state override. Note that glslShaderAnnotationValue is used to keep

track of custom annotations for this shader.

// Setup Transparency using technique annotation
//
fTechniqueIsTransparent = false;
const MString transparency = fGLSLShaderInstance-
>techniqueAnnotationAsString(glslShaderAnnotation::kTransparency, opStatus);
if (opStatus == MStatus::kSuccess)
{
 fTechniqueIsTransparent = (strcmp(transparency.asChar(),
glslShaderAnnotationValue::kValueTransparent)==0);
}

// Setup index buffer mutators using annotations
//
fTechniqueIndexBufferType = MString();
const MString indexBufferType = fGLSLShaderInstance-
>techniqueAnnotationAsString(glslShaderAnnotation::kIndexBufferType, opStatus);
if (opStatus == MStatus::kSuccess)
{
 fTechniqueIndexBufferType = indexBufferType;
}

// Query technique if it should follow the Maya transparent object rendering or is self-
// managed (multi-passes)
fTechniqueOverridesDrawState = false;
MString overridesDrawState = fGLSLShaderInstance-
>techniqueAnnotationAsString(glslShaderAnnotation::kOverridesDrawState, opStatus);
if (opStatus == MStatus::kSuccess)
{
 fTechniqueOverridesDrawState = (strcmp(overridesDrawState.toLowerCase().asChar(),
glslShaderAnnotationValue::kValueTrue)==0);
}

The dx11Shader uses DX11 code to directly parse its internally kept DX11 effect instance.

The next section examines uniform handling, and discusses how annotations can be used at the

parameter level.

Page 104 of 138

6.6.6.8 Uniform Data Handling: Initialization

If an effects file is used, then the uniform parameters need to be parsed to determine if they

have any semantics or annotations.

The semantics can be stored to determine if any data supplied by the renderer can be bound

during the draw or update phases.

If the uniform is exposed as an attribute, then the annotations can be parsed to determine the

formatting for the attribute in the Attribute Editor, such as, to determine the minimum and

maximum range values for a slider used to control an attribute.

The dx11Shader and glslShader plug-ins both use MUniformParameter instances for attribute

handling and to parse semantics and annotations to update these instances upon an effects file

change.

If an MShaderInstance is used, the semantic and annotation utility methods can be used.

An example can be found in the glslShader implementation. In the code snippet below, the

MShaderInstance::annotationAsInt() method is used to check for annotations that represent

UI minimum and maximum values on the MShaderInstance fGLSLShaderInstance , and the

result is stored in an MUniformParameter called uniformParam. Other annotations can be

extracted as appropriate.

MUniformParameter uniformParam;

uniformParam.setUIHidden(false);

// Set UIMin and UIMax on the uniform parameter instance based
// on values extracted out from the shader instance
int uiMin = fGLSLShaderInstance->annotationAsInt(uniformParam.name(),
glslShaderAnnotation::kUIMin, opStatus);
if (opStatus == MStatus::kSuccess)
{
 uniformParam.setRangeMin(uiMin);
}
int uiMax = fGLSLShaderInstance->annotationAsInt(uniformParam.name(),
glslShaderAnnotation::kUIMax, opStatus);
if (opStatus == MStatus::kSuccess)
{
 uniformParam.setRangeMax(uiMax);
}

Note that this code sets the name for the uniformParam to be the same name as the

MShaderInstance parameter name.

This is done as part of the logic to loop over each of the parameters on the MShaderInstance to

extract the semantic for a given parameter using MShaderInstance::semantic(), as well as any

annotation information.

// Get the parameter list from the shader
MStringArray params;
fGLSLShaderInstance->parameterList(params);

Page 105 of 138

unsigned int numParams = params.length();

// Loop through the parameter list
for (unsigned int i=0; i<numParams; i++)
{
 // Create a MuniformParameter for each parameter. Give it a name the same
 // as the shader’s parmeter name. UniformDataType and UniformSemantic are
 // are values remapped from MShaderInstance values values that can be
 // set on an MUniformParameter.
 //
 MUniformParameter::DataType UniformDataType =
 ConvertParameterDataType(
 fGLSLShaderInstance->parameterType(params[i]));
 MUniformParameter::DataSemantic UniformSemantic
 glslShaderSemantic::ConvertShaderSemantics(
 fGLSLShaderInstance->semantic(params[i]).asChar());

 MHWRender:: ParameterType paramType = fGLSLShaderInstance->parameterType(params[i]
 UniformDataType = ConvertParameterDataType(paramType);
 MUniformParameter uniParam(params[i].asChar(), UniformDataType, UniformSemantic);
 {

MShaderInstance::parameterList() is used to get the names of the parameters,

MShaderInstance::parameterType() is used to get a type based on a parameter name, and

MShaderInstance::semantic() is used to get a semantic based on a parameter name.

6.6.6.9 Uniform Data Handling: Drawing

In general, most of the uniform renderer data is bound during the draw phase, when an

MDrawContext is available for use. As light binding is more complex, it will be examined in the

next section.

Some parameters with internally defined semantics can have parameter values automatically

bound at draw time if an MShaderInstance is used. If this is not the case, or there are additional

custom semantics, then explicit binding by the plug-in is required. For example, code such as

the following can be used to extract view parameters, where context is a passed in

MDrawContext parameter.

MMatrix wMatrix, vMatrix, pMatrix, sMatrix;

MMatrix wvMatrix, wvpMatrix, wvpsMatrix;

MMatrix vpMatrix, vpsMatrix;

wvpMatrix = context.getMatrix(MHWRender::MFrameContext::kWorldViewProjMtx);

wvMatrix = context.getMatrix(MHWRender::MFrameContext::kWorldViewMtx);

wMatrix = context.getMatrix(MHWRender::MFrameContext::kWorldMtx);

vMatrix = context.getMatrix(MHWRender::MFrameContext::kViewMtx);

pMatrix = context.getMatrix(MHWRender::MFrameContext::kProjectionMtx);

vpMatrix = context.getMatrix(MHWRender::MFrameContext::kViewProjMtx)

If MUniformParameter instances are used to keep track of uniform parameters, then there are

a series of VP2 utility interfaces that can be used to extract data, given an MDrawContext

Page 106 of 138

• bool MUniformParameter::hasChanged(const MHWRender::MDrawContext& context)

const;

• const float* MUniformParameter:getAsFloatArray(const

MHWRender::MDrawContext& context) const;

• float MUniformParameter::getAsFloat(const MHWRender::MDrawContext& context)

const;

• MString MUniformParameter::getAsString(const MHWRender::MDrawContext&

context) const;

• bool MUniformParameter::getAsBool(const MHWRender::MDrawContext& context)

const;

• int MUniformParameter::getAsInt(const MHWRender::MDrawContext& context)

const;

The MUniformParameter::semantic() method can also be explicitly checked, and direct calls

to MDrawContext can be made as shown above.

For a list of internally supported semantics, see Shader semantics supported by Viewport 2.0 in

the Maya Developer Help.

6.6.6.10 Draw: Explicit Lighting Handling

Light binding can be explicitly performed regardless of whether an MShaderInstance is used. In

this case, a light parameter interface is available on MDrawContext for querying the available

light values, including values such as shadow map textures.

In summary, lights can be bound at draw time via the following interfaces:

• unsigned int MDrawContext::numberOfActiveLights(LightFilter

lightFilter=kFilteredToLightLimit, MStatus* ReturnStatus=NULL) const;

• MLightParameterInformation*

MDrawContext::getLightParameterInformation(unsigned int lightNumber,

LightFilter lightFilter=kFilteredToLightLimit) const;

• MStatus MDrawContext::getLightInformation(unsigned int lightNumber,

MFloatPointArray& positions, MFloatVector& direction, float& intensity, MColor& color,

bool& hasDirection, bool& hasPosition, LightFilter lightFilter=kFilteredToLightLimit)

const;

The last interface getLightInformation() allows you to obtain a simple set of parameters that

roughly matches what would be required for fixed-function lighting. If a plug-in is using raw

OpenGL lighting calls, it should be noted that all lighting values are specified in world space.

Note that either the active set or the full list of lights can be returned. It is possible to control

which lights affect which shader by selecting the set of lights from the full list.

Sample code and further details can be found in the Light Interfaces section of the Maya

Developer Help.

Page 107 of 138

There is no equivalent interface in VP1, as no light information is ever provided to the plug-in.

Thus it is up to the plug-in code to parse the Maya scene and extract light information as

desired.

6.6.6.11 Update: Explicit Transparency and State Handling

There are a few methods that allow for transparency control. The level of control is similar to

what is available with VP1 hardware shaders. Setting a shader as transparent also marks the

render item that uses that shader as transparent if no other override shader is active. In general,

the amount of batching is reduced and the affected items will be consolidated.

After the device level update, the shader can update and mark itself as transparent by returning

true from MPxShaderOverrdie::isTransparent(). The default logic for transparent object

drawing is very similar to that of VP1, which is per object sorting relative to the camera. The

shader is called to draw twice using a simplistic cull-back / cull-front approach. The method

MPxShaderOverride::overridesDrawState() can be called to avoid double calls.

In this snippet, the dx11Shader override determines this based on a technique level annotation

(as previously mentioned). The logic is left up to the plug-in.

bool dx11ShaderOverride::overridesDrawState()
{
 return (fShaderNode && fShaderNode->techniqueOverridesDrawState());
}

As VP2 supports more transparency algorithms, a method that returns whether the shader

override can support advanced transparency algorithms is the

MPxShaderoverride::supportsAdvancedTransparency() method. The dx11Shader override

again uses a per technique annotation to determine the level of support.

bool dx11ShaderOverride::supportsAdvancedTransparency() const
{
 return (fShaderNode && fShaderNode->techniqueSupportsAdvancedTransparency());
}

Sample shader code that uses the dx11Shader plug-in and that handles advanced transparency

algorithms can be found in the AutodeskUberShader.fx shader file (provided in the

presets/HLSL11/examples folder of the Maya installation directory). The following code snippet

shows the transparency as well as other technique level annotations for a shader that does not

support hardware tessellation:

technique11 TessellationOFF
<
 bool overridesDrawState = false; // we do not supply our own render state
settings
 int isTransparent = 3;
 // objects with clipped pixels need to be flagged as isTransparent to avoid the
occluding underlying geometry since Maya renders the object with flat shading when
computing depth
 string transparencyTest = "Opacity < 1.0 || (UseDiffuseTexture &&
UseDiffuseTextureAlpha) || UseOpacityMaskTexture || OpacityFresnelMax > 0 ||

Page 108 of 138

OpacityFresnelMin > 0";
 // 'VariableNameAsAttributeName = false' can be used to tell Maya's DX11ShaderNode
to use the UIName annotation string for the Maya attribute name instead of the shader
variable name.
 // When changing this option, the attribute names generated for the shader inside
Maya will change and this can have the side effect that older scenes have their shader
attributes reset to default.
 // bool VariableNameAsAttributeName = false;
#ifdef _MAYA_
 // Tells Maya that the effect supports advanced transparency algorithm,
 // otherwise Maya would render the associated objects simply by alpha
 // blending on top of other objects supporting advanced transparency
 // when the viewport transparency algorithm is set to depth-peeling or
 // weighted-average.
 bool supportsAdvancedTransparency = true;
#endif
>

Depending on the internal transparency algorithm that is chosen, a different pass is invoked.

Continuing the example (technique) above, passes are listed below. Pass p0 is used for default

color pass rendering. Passes pTransparentPeel, pTransparentPeelAndAvg, and

pTransparentWeightedAvg are variants used for “advanced” algorithms such as depth peeling.

Note that there is a special annotation drawContext used for each pass. This is the pass

semantic identifier which is supplied by the renderer as described in the next section (Pass

Semantic Handling).

pass p0
<
string drawContext = "colorPass"; // tell maya during what draw context this shader
should be active, in this case 'Color'
>
{
// even though overrideDrawState is false, we still set the pre-multiplied alpha state
here in
// case Maya is using 'Depth Peeling' transparency algorithm
// This unfortunately won't solve sorting issues, but at least our object can draw
transparent.
// If we don't set this, the object will always be opaque.
#ifdef _MAYA_
 SetBlendState(PMAlphaBlending, float4(0.0f, 0.0f, 0.0f, 0.0f), 0xFFFFFFFF);
#endif
 SetVertexShader(CompileShader(vs_5_0, v()));
 SetHullShader(NULL);
 SetDomainShader(NULL);
 SetGeometryShader(NULL);
 SetPixelShader(CompileShader(ps_5_0, f()));
}

pass pTransparentPeel
<
 // Depth-peeling pass for depth-peeling transparency algorithm.
 string drawContext = "transparentPeel";
>

Page 109 of 138

{
 SetVertexShader(CompileShader(vs_5_0, v()));
 SetHullShader(NULL);
 SetDomainShader(NULL);
 SetGeometryShader(NULL);
 SetPixelShader(CompileShader(ps_5_0, fTransparentPeel()));
}

pass pTransparentPeelAndAvg
<
 // Weighted-average pass for depth-peeling transparency algorithm.
 string drawContext = "transparentPeelAndAvg";
>
{
 SetVertexShader(CompileShader(vs_5_0, v()));
 SetHullShader(NULL);
 SetDomainShader(NULL);
 SetGeometryShader(NULL);
 SetPixelShader(CompileShader(ps_5_0, fTransparentPeelAndAvg()));
}

pass pTransparentWeightedAvg
<
 // Weighted-average algorithm. No peeling.
 string drawContext = "transparentWeightedAvg";
>
{
 SetVertexShader(CompileShader(vs_5_0, v()));
 SetHullShader(NULL);
 SetDomainShader(NULL);
 SetGeometryShader(NULL);
 SetPixelShader(CompileShader(ps_5_0, fTransparentWeightedAvg()));
}

As the dx11Shader also handles hardware tessellation, a different technique is used with a

similar set of pass specifications. In this case hull and domain shaders are required:

pass p0
<
 string drawContext = "colorPass";
>
{
 SetBlendState(PMAlphaBlending, float4(0.0f, 0.0f, 0.0f, 0.0f), 0xFFFFFFFF);
 SetVertexShader(CompileShader(vs_5_0, vt()));
 SetHullShader(CompileShader(hs_5_0, HS()));
 SetDomainShader(CompileShader(ds_5_0, DS()));
 SetGeometryShader(NULL); // without geo
 SetPixelShader(CompileShader(ps_5_0, f()));
}

pass pTransparentPeel
<
 // Depth-peeling pass for depth-peeling transparency algorithm.
 string drawContext = "transparentPeel";
>
{
 SetVertexShader(CompileShader(vs_5_0, vt()));

Page 110 of 138

 SetHullShader(CompileShader(hs_5_0, HS()));
 SetDomainShader(CompileShader(ds_5_0, DS()));
 SetGeometryShader(NULL);
 SetPixelShader(CompileShader(ps_5_0, fTransparentPeel()));
}
pass pTransparentPeelAndAvg
<
 // Weighted-average pass for depth-peeling transparency algorithm.
 string drawContext = "transparentPeelAndAvg";
>
{
 SetVertexShader(CompileShader(vs_5_0, vt()));
 SetHullShader(CompileShader(hs_5_0, HS()));
 SetDomainShader(CompileShader(ds_5_0, DS()));
 SetGeometryShader(NULL);
 SetPixelShader(CompileShader(ps_5_0, fTransparentPeelAndAvg()));
}

pass pTransparentWeightedAvg
<
 // Weighted-average algorithm. No peeling.
 string drawContext = "transparentWeightedAvg";
>
{
 SetVertexShader(CompileShader(vs_5_0, vt()));
 SetHullShader(CompileShader(hs_5_0, HS()));
 SetDomainShader(CompileShader(ds_5_0, DS()));
 SetGeometryShader(NULL);
 SetPixelShader(CompileShader(ps_5_0, fTransparentWeightedAvg()));
}

6.6.6.12 Pass Semantic Handling

To disambiguate, within this section, when we mention the term “pass” or “pipeline pass” this

refers to the passes that are performed by the VP2 pipeline and not necessarily the passes

associated with a given effects file, which will be called a “technique-pass”.

With the API class MDrawContext we expose where in the pipeline a shader is invoked from

using a series of pass semantics and pass identifiers.

The method

MPxShaderOverride::handlesDraw()

can be overridden by the shader override to indicate the passes for which the override will be

used. By default, the override is called for color passes (such as “beauty passes”). It is not

necessary to override any other passes. If the override indicates that it will not handle a pass,

default internal shaders will be used instead during execution of the given pass.

As shown in the previous section, if the override returns that it will handle a given pass, it can

switch to use the desired shader before drawing geometry.

Page 111 of 138

For the dx11Shader plug-in, the following code indicates handling of color

(MPassContext::kColorPassSemantic), as well as shadow passes

(MPassContext::kShadowPassSemantic), transparency passes, as well as passes used for

post-effects such as SSAO.

bool dx11ShaderOverride::handlesDraw(MHWRender::MDrawContext& context)
{

 const MHWRender::MPassContext & passCtx = context.getPassContext();

 const MStringArray & passSem = passCtx.passSemantics();

 // For color passes, only handle if there isn't already
 // a global override. This is the same as the default
 // logic for this method in MPxShaderOverride
 //
 bool handlePass = false;
 for (unsigned int i=0; i<passSem.length() && !handlePass; i++)
 {
 if (passSem[i] == MHWRender::MPassContext::kColorPassSemantic)
 {
 bool hasOverrideShader = passCtx.hasShaderOverride();
 if (!hasOverrideShader)
 handlePass = true;
 }

 // Handle special pass drawing.
 //
 else if (passSem[i] == MHWRender::MPassContext::kShadowPassSemantic ||
 passSem[i] == MHWRender::MPassContext::kDepthPassSemantic ||
 passSem[i] == MHWRender::MPassContext::kNormalDepthPassSemantic ||
 passSem[i] == MHWRender::MPassContext::kTransparentPeelSemantic ||
 passSem[i] ==
 MHWRender::MPassContext::kTransparentPeelAndAvgSemantic ||
 passSem[i] ==
 MHWRender::MPassContext::kTransparentWeightedAvgSemantic)
 {
 handlePass = fShaderNode->techniqueHandlesContext(passSem[i]);
 }
 }
 return handlePass;
}

A test exists for the transparency pass semantic. As part of the implementation we saw the

corresponding technique-pass definitions to invoke.

A key area of the code in the dx11Shader plug-in is the activation of a technique-pass. Here, a

check is made based on MDrawContext information to determine how to draw. In particular, the

pass context MPassContext’s list of active semantics (passSem) is checked. passId is produced

by looping through all the technique-passes for a given technique.

dx11ShaderDX11Pass* dx11ShaderNode::activatePass(dx11ShaderDX11Device *dxDevice,
 dx11ShaderDX11DeviceContext *dxContext, dx11ShaderDX11EffectTechnique*
 dxTechnique, unsigned int passId, const MStringArray& passSem, ERenderType
 renderType) const
{
 // Look for a pass with a given id

Page 112 of 138

 dx11ShaderDX11Pass* dxPass = dxTechnique->GetPassByIndex(passId);
 if(dxPass == NULL || dxPass->IsValid() == false)
 {
 MStringArray args;
 args.append(MStringFromInt(passId));
 args.append(fTechniqueName);

 fErrorLog += dx11ShaderStrings::getString(
 dx11ShaderStrings::kErrorSetPass, args);
 displayErrorAndWarnings();
 return NULL;
 }

 bool canActivate = true;

 // Check if we have a drawContext annotation for the pass (see .fx file)
 MString drawContext;
 getAnnotation(dxPass, "drawContext", drawContext);
 if (drawContext.length())
 {
 // If the shader defines pass contexts, then we must make sure we are in
 // the right one before activating:
 canActivate = false;
 for (unsigned int i=0; i<passSem.length() && !canActivate; i++)
 {
 if (::_stricmp(passSem[i].asChar(), drawContext.asChar()) == 0)
 {
 canActivate = true;
 }
 }
 }

The pass information is extracted from within the MPxShaderOverride::render() method using

MDrawContext::getPassContext(), and the MPassContext::passSematics() to get the list of

“active” pass semantics.

bool dx11ShaderNode::render(const MHWRender::MDrawContext& context, const
 MHWRender::MRenderItemList& renderItemList)
{
 // Pull out pass information from the draw context:
 const MHWRender::MPassContext & passCtx = context.getPassContext();

 const MStringArray & passSem = passCtx.passSemantics();

Note that this code is only an example of how the dx11Shader handles pipeline passes (as

technique passes that are annotated using the pipeline pass name). It is not required that a

given plug-in work this way.

Further details about specific algorithms for certain passes can be found within the sample code

for the dx11Shader and glslShader plug-ins as well as the API Guide (See Advanced Topics-

>Effect Instances, and Plug-in Entry Points->Effects Overrides sections).

Page 113 of 138

6.6.6.13 Initialization: Non-textured Mode Shader

Non-textured display mode drawing adheres to VP1 logic, where hardware shaders do not

affect the rendered outcome. Instead, for better performance, a fixed internal shader instance is

used for all render items using shader overrides.

It is, however, possible to specify an override shader instance by overriding the

MPxShaderOverride::nonTexturedShaderInstance()

method to return a non NULL value during the initialization phase. This can be useful if some

differentiation in rendering is required when in non-textured mode.

The more the shader instance is reused, the better the possibility for geometry batching.

However, it can never achieve the same level of reuse as the internally provided shader.

See the vp2BlinnShader example for sample code. fNonTexturdColorShaderInstance is a data

member kept per override.

virtual MHWRender::MShaderInstance* nonTexturedShaderInstance(bool &monitor) const
{
 if (fNonTexturedColorShaderInstance)
 {
 monitor = true;
 return fNonTexturedColorShaderInstance;
 }
 return NULL;
}

This frequency of storage is used as the code keeps track of a non-textured shader color

attribute which is updated and used at the same time as attributes for the textured shader.

6.7 Porting Renderers

The MRenderOverride interface is the avenue for writing logic that will override the entire

render loop for drawing. It replaces the legacy VP1 interfaces MViewportRenderer and

MPx3dModelView.

The key elements which provide greater power and flexibility available for an MRenderOverride

are: custom and internal operations, and the ability to arbitrarily connect operations into a

dependent series of scene and quad operations via shaders.

Some of the key differences among the three interfaces are listed as follows:

 MPx3dModelView MViewportRenderer MRenderOverride

Renderer support VP1, 1 pass VP2 VP1 VP2

“Unit” of rendering A “pass” = 1 full
internal scene render

A user render function An operation

Render logic control Number of passes Single call Iterator provides list of
operations to perform

Formal access to
internally defined
“units”

None. Scene renders
are implicitly tied to a
pass number, and

None. Arbitrary number of
scene operations,
HUD, and

Page 114 of 138

internally invoked. presentation
operation can be
invoked.

Extensible
operations

None None Scene, HUD, User, 2d
quad blit.

Non 3d viewport
support

None Render view,
command line

Render view,
command line

Rendering Toggle
Exposure

None Listed as a viewport
renderer

Listed as a renderer
for viewport and batch
rendering

Output target
control

None. Linux only
MPxGLBuffer
deprecated.

None Explicit targets
possible

DAG type filters Yes Yes Yes

Camera override Yes No Yes

Shader override No No Yes

Lighting Override Yes No Yes

Resource
management

No No Yes

Dependent
operation
specification.

No No Connection via
shared targets and
shader parameters

Camera overrides Interactive Interactive and batch Interactive and batch

UI drawables No No Yes

Draw API OpenGL OpenGL OpenGL, DirectX

Pipeline Callbacks Via MUIMessage
interfaces (viewport
only)

Via MUIMessage
interfaces (viewport
only)

View MRenderer
pre/post-frame,
pre/post-scene

Note that callbacks that are invoked from within rendering are not necessarily part of the logic

but are included as they are important in scenarios such as image sequence capture. [See

“Capturing” Render Targets for more details].

6.7.1 Handling Multi-Pass MPx3dModelView Logic

The preferred approach to porting an MPx3dModelView is to map either single or multi-pass

logic to a series of scene operations, followed by HUD and presentation operations. Although

not recommended, MPx3dModelView can still be called while using VP2, with the caveat that

only one iteration (pass) should ever be executed, and no legacy drawing occurs within that

interface. This way, any non-rendering logic previously written using this class can be

preserved, while the actual rendering logic is replaced. The relevant MPx3dModelView

interfaces are as follows:

virtual void preMultipleDraw();
virtual void postMultipleDraw();
virtual void preMultipleDrawPass(unsigned int index);
virtual void postMultipleDrawPass(unsigned int index);
virtual bool okForMultipleDraw(const MDagPath &);
virtual unsigned int multipleDrawPassCount();

Capturing#_

Page 115 of 138

bool multipleDrawEnabled() const;
void setMultipleDrawEnable(bool enable);

If the number of passes is one, then this naturally becomes a single scene operation, followed

by a HUD and presentation operation. This is presented as a “simple” sample scenario in the

Simple Render Override section. A multi-pass example would be the stereo plug-in.

6.7.2 Handling MViewportRenderer Logic

The porting of an MViewportRenderer plug-in to an MRenderOverride should be straight-

forward, as MRenderOverride supports a superset of MViewportRenderer’s functionality and

both are “renderer” based interfaces.

The recommended approach is to encapsulate the MViewportRenderer::render() method logic

as a single user operation (MUserRenderOperation) from within a custom MRenderOverride.

There is no explicit concept of a UI (non-beauty) draw pass in MViewportRenderer. The

MViewportRenderer::kOverrideThenUI option can be supported by adding a scene operation

that only draws UI after the user operation.

The MViewportRenderer::kOverrideThenStandard option can be supported by a user operation

followed by a scene operation. The MRenderOverride logic is flexible, and the ordering of user

and scene operations can be tailored to best support the depth compositing workflow.

6.7.3 Override Operations

A set of operations are available for use as atomic units to build rendering logic.

• MUserRenderOperation: User defined rendering operation.

• MHUDRender : HUD render operation

• MPresentTarget : Presentation of rendered result to an on-screen target

• MClearOperation : Background clear

• MSceneRender : 3d scene render

• MQuadRender : 2d quad blit with a shader

A “clear background” operation is not something that can be run standalone, and as such is

attached as an option to scene and quad operations. Customization is possible by deriving from

the existing classes. HUD and presentation operations generally don’t require any overrides

while quad and user operations won’t perform anything useful unless they are overridden.

Scene operations have a variety of formal overrides which can be set as part of customization.

For non-VP2 interfaces, overrides change the actual state of a viewport and care must be taken

to restore state afterwards. Overrides specified on scene operations only persist while the

operation is being executed. Take, for example, this possible operation sequence:

- The global viewport filter state allows drawing of all objects

- Scene operation 1 filters out NURBS curves

- Scene operation 2 filters out NURBS shapes

Page 116 of 138

When operation 2 is executed, it does not filter out both NURBS curves and shapes, but instead

only filters NURBS shapes.

6.7.4 Simple Render Override

The simplest possible override is one that mimics what is done internally for a single scene

render. The operations required would be: a scene, a HUD and a presentation operation, in that

order. The viewOverrideSimple sample plug-in will be used as reference.

6.7.4.1 Registration

Registration is handled by calling MRenderer::registerOverride() during plug-in initialization,

and MRenderer::deregisterOverride() during plug-in uninitialization. The basic code shown

below creates an instance of a class derived from MRenderOverride and uses that instance to

register the plug-in. The name of the plug-in is used to find the override for deregistration later

on.

// Registration in plug-in initialization
MHWRender::MRenderer* renderer = MHWRender::MRenderer::theRenderer();
viewOverrideSimple *overridePtr = new viewOverrideSimple("viewOverrideSimple");
renderer->registerOverride(overridePtr);

…

// Deregistration in plug-in uninitialization
const MHWRender::MRenderOverride* overridePtr = renderer-
>findRenderOverride("viewOverrideSimple");
if (overridePtr)
{
 renderer->deregisterOverride(overridePtr);
 delete overridePtr;
}

6.7.4.2 Creation of Operations

MRenderOverride::setup(), and MRenderOverride::cleanup() are logical places in which to

create and cleanup operation instances that are used to build rendering logic. As setup() and

cleanup() are called for every frame update, operation parameter updates can be performed at

this time.

For this viewOverrideSimple example, three operations are created as needed during setup().

The example derives from MSceneRender to create the scene operation that sets the

background “clear” color.

//
// Inside class definition
//
class viewOverrideSimple : public MHWRender::MRenderOverride
{
public:
 …

Page 117 of 138

 // Basic setup and cleanup
 virtual MStatus setup(const MString & destination);
 virtual MStatus cleanup();

protected:
 …
 // Operations and operation names
 MHWRender::MRenderOperation* mOperations[3];
 MString mOperationNames[3];
};

// Operations and operation names defined as part of the viewOverrideSimple
class simpleViewRenderSceneRender : public MHWRender::MSceneRender
{
public:
 simpleViewRenderSceneRender(const MString &name);
 virtual MHWRender::MClearOperation & clearOperation();
};

//
// Inside class definition
// Operations in setup() which creates the operations once
//
MStatus viewOverrideSimple::setup(const MString & destination)
{
 MHWRender::MRenderer *theRenderer = MHWRender::MRenderer::theRenderer();
 // Create a new set of operations as required
 if (!mOperations[0])
 {
 mOperations[0] = (MHWRender::MRenderOperation *) new
 simpleViewRenderSceneRender(mOperationNames[0]);
 mOperations[1] = (MHWRender::MRenderOperation *) new
 MHWRender::MHUDRender();
 mOperations[2] = (MHWRender::MRenderOperation *) new
 MHWRender::MPresentTarget(mOperationNames[2]);
 }
 if (!mOperations[0] ||
 !mOperations[1] ||
 !mOperations[2])
 {
 return MStatus::kFailure;
 }
 return MStatus::kSuccess;
}

6.7.4.3 “Building” Render Loop Logic

Building the sample plug-in is straightforward. It will simply return an ordered list of operations;

in this case: scene, HUD and presentation.

As the iteration interfaces are called after setup(), per-frame modification of the render loop logic

can be executed. This external ordering reflects what is done for internal rendering for render

logic updates.

Page 118 of 138

Overrides should be implemented for the following key “iterator” methods on an

MRenderOverride:

• virtual bool startOperationIterator();

• virtual MHWRender::MRenderOperation * renderOperation();

• virtual bool nextRenderOperation();

startOperationIterator()allows the override to start iterating, renderOperation() returns the

current operation, and nextRenderOperation() iterates to the next operation.

The code from viewOverrideSimple is as follows:

// Basic iterator methods which returns a list of operations in order.
// The operations are not executed at this time only queued for execution
//
// - startOperationIterator() : to start iterating
// - renderOperation() : will be called to return the current operation
// - nextRenderOperation() : when this returns false we've returned all operations
//
bool viewOverrideSimple::startOperationIterator()
{
 mCurrentOperation = 0;
 return true;
}

MHWRender::MRenderOperation*
viewOverrideSimple::renderOperation()
{
 if (mCurrentOperation >= 0 && mCurrentOperation < 3)
 if (mOperations[mCurrentOperation])
 // Return an operation
 return mOperations[mCurrentOperation];
 return NULL;
}

bool
viewOverrideSimple::nextRenderOperation()
{
 mCurrentOperation++;
 if (mCurrentOperation < 3)
 return true;
 // Return false to indicate no more operations
 return false;
}

The operations are not executed immediately, but are instead queued for execution once the

list of operations has been interpreted. Once interpreted, operations are “executed” in the same

order as they were specified.

Any hardware resources returned via overridden methods only need to persist during the

execution of the operation. Any resources that are shared between operations should be stored

Page 119 of 138

at the override level. This often means resources such as render targets, shaders and state

objects.

There is very little additional cost involved with the code that returns a different set of or different

ordering of operations per frame. If there is a higher cost on the plug-in side, then it is up to the

plug-in to cache the ordering as appropriate.

It is not advisable, however, to rebuild resources every frame unless required. For example, if

additional output render targets / textures, shaders, or state objects are required, an attempt to

avoid rebuilding every frame is advised. As a simple example, if offscreen render targets are

being used to render the scene, generally they only need to updated when the output size is

changed, and not between frames.

Maya resources do not need to be cached across the entire set of operations, and can be

evaluated at operation execution time on demand. For example, a Maya object list filter can be

computed when required.

As there are an uncountable number of render loop variations, the next sections will cover some

of the “common” use cases. Additional examples not discussed in this document can be found

in the Maya Developer Kit.

6.7.5 Sample Override Options

One very simple example implementation of an override that performs drawing is found in the

derived class simpleViewRenderSceneRender(). Here, the “clear” operation has an override

implemented to track the colors used for the internal renderer. It is possible to use M3dView

accessor methods for colors, but they may give incorrect results for command line / render view

rendering.

// Background color override. We get the current colors from the
// renderer and use them
// MHWRender::MClearOperation &
simpleViewRenderSceneRender::clearOperation()
{
 MHWRender::MRenderer* renderer = MHWRender::MRenderer::theRenderer();
 bool gradient = renderer->useGradient();
 MColor color1 = renderer->clearColor();
 MColor color2 = renderer->clearColor2();

 float c1[4] = { color1[0], color1[1], color1[2], 1.0f };
 float c2[4] = { color2[0], color2[1], color2[2], 1.0f };

 mClearOperation.setClearColor(c1);
 mClearOperation.setClearColor2(c2);
 mClearOperation.setClearGradient(gradient);
 return mClearOperation;
}

For more examples, see the viewMRenderOverride developer kit example. More of the base

classes have been overridden to allow for the writing of more custom override methods.

Page 120 of 138

6.7.5.1 Selection Filter

It is possible that only a subset of objects is to be rendered. In this case, a scene operation can

override the objectSetOverride() to return a selection list (MSelectionList). The code in the

viewMrenderOverride example demonstrates how a set name can be used to populate a

selection list for an MSceneRender override called MSceneRenderTester.

virtual const MSelectionList* MSceneRenderTester::objectSetOverride()
{
 MSelectionList list;
 list.add(mSetName);

 MObject obj;
 list.getDependNode(0, obj);

 MFnSet set(obj);
 set.getMembers(mFilterSet, true);

 if (mFilterSet.length())
 {
 return &mFilterSet;
 }
 return NULL;
}

.

6.7.5.2 UI Drawables

Each operation, except for the presentation operation, can have additional transient UI drawn

per frame render.

To do this, use the interface MUIDrawManager, similar to how per object UI drawing is added.

For scene operations, both pre and post UI drawing is supported, and different interfaces are

available. Otherwise, the hasUIDrawables() method on the appropriate operation will be called

to check for additional drawing and addUIDrawables() will be called back.

See the following example for code that draws simple UI, specified for a custom user operation

called MUserRenderOperationTester. All positions specified are in world or screen coordinates

as appropriate.

virtual void MUserRenderOperationTester::addUIDrawables(MHWRender::MUIDrawManager&
drawManager, const MHWRender::MFrameContext& frameContext)
{
 drawManager.beginDrawable();

 drawManager.setColor(MColor(0.95f, 0.5f, 0.1f));
 drawManager.setFontSize(MHWRender::MUIDrawManager::kSmallFontSize);
 drawManager.text(MPoint(0, 2, 0), MString("UI draw test in user operation"));
 drawManager.line(MPoint(0, 0, 0), MPoint(0, 2, 0));
 drawManager.setColor(MColor(1.0f, 1.0f, 1.0f));
 drawManager.sphere(MPoint(0, 2, 0), 0.8, false);
 drawManager.setColor(MColor(0.95f, 0.5f, 0.1f, 0.4f));
 drawManager.sphere(MPoint(0, 2, 0), 0.8, true);

 drawManager.endDrawable();

Page 121 of 138

}

6.7.6 Compositing Externally Rendered Results

Often, it is useful to have a custom external renderer that fills in the pixels for the “beauty”

(color) pass, and just have Maya render the remaining items, which includes the UI. There are

two approaches to accomplish this. One is to write raw draw code. The recommended way is to

use instead a 2d quad blit which does not exist as a construct outside of VP2.

See the viewImageBlitOverride. As the name suggests, it blits images for the color pass.

Renderer

G
enerate

G
en

er
at

e

MTexture

MTexture

MQuadRender

MShaderInstance

MSceneRender

-RenderNonShadedItems

MSceneFilterOption

-clear = None

MClearOperation

MDepthStencilState

MTexture

-type = color target

Color MRenderTarget

-type = depth target

MRenderTarget

Figure 15: This figure demonstrates how an external renderer (“Renderer”) would generate a color and depth image.
The override would load the images as textures (MTexture), use these as input to a 2d Quad blit (MQuadRender).
This is followed by a scene render operation which composites additional “UI” on top to produce the final image
shown at bottom.

Page 122 of 138

6.7.6.1 Custom Quad Rendering

The custom operation that derives from MQuadRender is called SceneBlit. For proper depth

compositing, it allows both a color and a depth texture (MTexture) as input. In the sample plug-

in, these textures are read from disk, but for a “live” render they can also be updated

dynamically.

class SceneBlit : public MHWRender::MQuadRender
{
public:
 virtual const MHWRender::MShaderInstance * shader();
 virtual const MHWRender::MDepthStencilState *depthStencilStateOverride();
protected:

 // Shader used for the quad render. Owned by operation.
 MHWRender::MShaderInstance *mShaderInstance;
 // Texture(s) used for the quad render. Not owned by operation.
 MHWRender::MTextureAssignment mColorTexture;
 MHWRender::MTextureAssignment mDepthTexture;

 // Depth stencil state used for the blit
 const MHWRender::MDepthStencilState *mDepthStencilState;

The class definition shows a shader instance (mShaderInstance) used for drawing, as well as

the color and depth textures (mColorTexture, mDepthTexture), and the depth-stencil state used

as input parameters to the shader and quad operation respectively.

The shader() override will return the shader stored, and the depthStencilStateOverride() will

return the stored depth state.

The shader() method will create the appropriate shader as needed. In this case, it will use a file

based effect shader (mayaBlitColorDepth10.fx), which is provided in the \bin\HLSL folder of the

Maya installation directory.

const MHWRender::MShaderInstance * SceneBlit::shader()
{
 if (!mShaderInstance)
 {
 MHWRender::MRenderer* renderer = MHWRender::MRenderer::theRenderer();
 const MHWRender::MShaderManager* shaderMgr = renderer->getShaderManager();
 if (shaderMgr)
 {
 // Create the shader if not already created
 //
 // The default shader technique will blit color and depth textures
 // to the output color and depth buffers respectively. The values in
 // the depth texture are expected to be normalized.
 //
 bool showDepthAsColor = false;
 mShaderInstance = shaderMgr->getEffectsFileShader(
 "mayaBlitColorDepth", "");
 }
 }

 …

Page 123 of 138

}

It is important to remember to override the depthStencilStateOverride() method when trying to

blit depth, as the default behaviour is to disable depth writes. The override enables the

appropriate depth state. A new depth stencil state object is created once for reuse using the

method: MStateManager::acquireDepthStencilState()

// We want to have this state override set to override the default
// depth stencil state which disables depth writes.
//
const MHWRender::MDepthStencilState *SceneBlit::depthStencilStateOverride()
{
 if (!mDepthStencilState)
 {
 MHWRender::MDepthStencilStateDesc desc;
 desc.depthEnable = true;
 desc.depthWriteEnable = true;
 desc.depthFunc = MHWRender::MStateManager::kCompareAlways;
 mDepthStencilState =
 MHWRender::MStateManager::acquireDepthStencilState(desc);
 }
 return mDepthStencilState;
}

For the shader to be useful, the color and depth textures need to be set up and bound.

The following data members are declared in the override class to keep track of the textures and

corresponding texture descriptions:

// Texture(s) used for the quad render
MHWRender::MTextureDescription mColorTextureDesc;
MHWRender::MTextureDescription mDepthTextureDesc;
MHWRender::MTextureAssignment mColorTexture;
MHWRender::MTextureAssignment mDepthTexture;

The color texture in this example is loaded from disk, but can also be filled in from memory. In

the example, the MImage class is used to load an image of size targetWidth by targetHeight

from a Maya iff file. textureManager is the render’s texture manager (MTextureManager). The

color format for this example is RGBA 8 bits per channel fixed, although any RGBA color format

could have been used.

// Read the image from disk using MImage and get the raw data
MImage image;
image.readFromFile(colorImageFileName);
image.getSize(targetWidth, targetHeight);
unsigned char* textureData = image.pixels();

// Set up the texture description
mColorTextureDesc.fWidth = targetWidth;
mColorTextureDesc.fHeight = targetHeight;
mColorTextureDesc.fDepth = 1;
mColorTextureDesc.fBytesPerRow = 4*targetWidth;
mColorTextureDesc.fBytesPerSlice = mColorTextureDesc.fBytesPerRow*targetHeight;

Page 124 of 138

// Acquire a new texture using the description and the raw data
mColorTexture.texture = textureManager->acquireTexture("", mColorTextureDesc,
 textureData);

// Mark texture has changed
mColorTextureChanged = true;

The depth texture in this example is also loaded from disk, but can also be filled in from

memory. Note that additional normalization can be performed using an

MDepthNormalizationDescription instance at texture creation time. In this example, nothing

extra is required, since the depth image was generated by Maya itself.

// Read the image from disk using MImage and get the raw data
MImage image;
image.create(targetWidth, targetHeight, 4, MImage::kByte);
image.readDepthMap(depthImageFileName);
image.getDepthMapSize(targetWidth, targetHeight);

// Set up the texture description
mDepthTextureDesc.fWidth = targetWidth;
mDepthTextureDesc.fHeight = targetHeight;
mDepthTextureDesc.fDepth = 1;
mDepthTextureDesc.fBytesPerRow = targetWidth;
mDepthTextureDesc.fBytesPerSlice = mDepthTextureDesc.fBytesPerRow*targetHeight;

// Acquire a new texture using the description and the raw data
MHWRender::MDepthNormalizationDescription normalizationDesc;
mDepthTexture.texture = textureManager->acquireDepthTexture("",
 image, false, &normalizationDesc);

// Mark texture has changed
mDepthTextureChanged = true;

Textures can now be bound to the shader. . Assuming that the textures can change every

frame, the sample code updates the shader parameters when the shader is requested in

SceneBlit::shader(). The following occurs after the shader is acquired (as shown in the previous

code snippet).

// If texture changed then bind new textures to the shader
// based on the mColorTextureChanged / mDepthTextureChanged flags
//
status = MStatus::kSuccess;
if (mColorTextureChanged)
{
 status = mShaderInstance->setParameter("gColorTex", mColorTexture);
 mColorTextureChanged = false;
}

if (status == MStatus::kSuccess && mDepthTextureChanged)
{
 status = mShaderInstance->setParameter("gDepthTex", mDepthTexture);
 mDepthTextureChanged = false;
}

Page 125 of 138

The shader has a parameter named “gColorTex” for the color texture and a parameter called

“gDepthTex” for the depth texture.

6.7.6.2 Filtered Scene UI Operation

The second part to this example is a second operation that renders the scene UI on top of the

existing contents of the render target. Since depth has been specified, appropriate depth testing

will occur for the UI elements.

Depending on the types of objects drawn by the external scene render, different filters can be

set. In this example, overrides are implemented for the following methods for a custom scene

render:

• MSceneRender::renderFilterOverride() : To provide render item filtering to indicate

that only non-shaded items should be drawn.

(MSceneRender::kRenderNonShadeditems) . The assumption being that the previous

quad blit has placed an image of all shaded items into the render targets.

• MSceneRender::objectTypeExclusion() : To exclude drawing the grid and image

planes.

• MSceneRender::clearOperation() : To clear any previous color or depth target

contents by set an empty clear mask (MClearOperation::kClearNone).

The following is a code snippet for the UIDraw class that is derived from MSceneRender:

MHWRender::MSceneRender::MSceneFilterOption
UIDraw::renderFilterOverride()
{
 // Draw only non-shaded items
 return MHWRender::MSceneRender::kRenderNonShadedItems;
}

MHWRender::MSceneRender::MObjectTypeExclusions
UIDraw::objectTypeExclusions()
{
 // Exclude drawing the grid and image planes
 Return(MHWRender::MSceneRender::MObjectTypeExclusions)
 (MHWRender::MSceneRender::kExcludeGrid |
 MHWRender::MSceneRender::kExcludeImagePlane);
}

MHWRender::MClearOperation &
UIDraw::clearOperation()
{
 // Disable clear since we don't want to clobber the scene colour blit.
 mClearOperation.setMask((unsigned int)MHWRender::MClearOperation::kClearNone);
 return mClearOperation;
}

Page 126 of 138

6.7.7 Multi-Pass Scene Rendering

An example of multi-pass scene rendering, with logic similar to that provided by

MPx3dModelView, can be found in the viewObjectSetOverride plug-in.

The example shows how two scene renders can be specified to run one after the other with

each scene render using a different object set as a filter.

+clearOperation() : MClearOperation

+objectSetOverride() : MSelectionList

MSceneRender

MPresentTarget

+clearOperation() : MClearOperation

+objectSetOverride() : MSelectionList

MSceneRender

-Color Target

-Depth Target

Internal Targets

The key here, as with the previous external render composite, is not to clear the color and depth

context for the second scene render. The custom scene operator is as follows. It accepts, at

creation time, a set name for the object set filter (that returns the list of objects that should be

drawn), and the clear mask that should be used.

class ObjectSetSceneRender : public MSceneRender
{
public:
 ObjectSetSceneRender(const MString& name, const MString setName, unsigned int
clearMask)
 : MSceneRender(name)
 , mSetName(setName)
 , mClearMask(clearMask)
 {}

 // Return filtered list of items to draw
 virtual const MSelectionList* objectSetOverride()
 {
 MSelectionList list;
 list.add(mSetName);

 MObject obj;
 list.getDependNode(0, obj);

 MFnSet set(obj);
 set.getMembers(mFilterSet, true);

 return &mFilterSet;
 }

Page 127 of 138

 // Return clear operation to perform
 virtual MHWRender::MClearOperation & clearOperation()
 {
 mClearOperation.setMask(mClearMask);
 return mClearOperation;
 }

protected:
 MSelectionList mFilterSet;
 MString mSetName;
 unsigned int mClearMask;

};

When operations are created, the appropriate arguments values are passed in. In this example,

the two sets to be drawn are, consecutively “set1” and “set”, and the corresponding clear masks

are MClearOperation::kClearAll and MClearOperation::kClearNone.

// Clear when rendering set 1
mRenderSet1 = new ObjectSetSceneRender(render1Name, set1Name,
 (unsigned int)MHWRender::MClearOperation::kClearAll);

// But don't clear when rendering set 2
mRenderSet2 = new ObjectSetSceneRender(render2Name, set2Name,
 (unsigned int)MHWRender::MClearOperation::kClearNone);

6.7.8 “Dependent” Operation Rendering

An operation with a data dependency that determines the ordering of operations is referred to

as “dependent”. To add these kinds of dependency to the rendering logic, shaders and

resources (such as render targets or texture) can be used.

The dependency between two operations A followed by B is defined implicitly by B having a

shader parameter that requires data computed by operation A.

If the input data is a render target, and the shader outputs to the same render target (for

example, to perform an operation directly on the target), then a “circular dependency” is

created on the same resource. Although it is best to avoid these situations, the renderer can still

handle this case by making a copy of the source targets to break its circular nature.

6.7.9 Stereo Rendering (Scene -> Quad Render Shader Dependency)

An example which is not in the developer’s kit is the plug-in which is used for stereo panel

rendering. It will multi-pass using two scene renders. Each render will render into a two separate

color render targets and two separate cameras as specified by the scene operators.

These two targets are then used by a third quad render operation to composite the two images

together. This forms an operation dependency between the scene renders and quad operation.

The complete operation layout is shown below with the dependency show using red arrows.

Page 128 of 138

MSceneRender

-type = depth target

MRenderTarget

Render -type = color target

MRenderTarget

Render

MSceneRender

Render

-type = color target

MRenderTarget

Render

MQuadRender
-Shader = "Anaglyph"

-Target 1 Parameter

-Target 2 Parameter

MShaderInstance

-type = color target

MRenderTarget

-Camera = "Left Eye Camera"

MCameraOverride

-Camera = "Right Eye Camera"

MCameraOverride

Figure 16: Two scene renders which are used to render a stereo paint(left and right cameras) is shown on the left
side of the diagram. The final result is a composite of the pair of color render results. There is no need to composite
depth, and the depth target simply acts as a reusable resource.

The camera override is specified by overriding MSceneRender::cameraOverride(). The code

finds the appropriate camera in the “rig” and returns an MCameraOverride. The camera path

property (mCameraPath) of the MCameraOverride is used specify the camera override.

virtual const MHWRender::MCameraOverride * cameraOverride()
{
 // Use a different camera depending on what to render
 if (mDisplayMode==”center”)
 mCameraOverride.mCameraPath = <center camera path>;
 else if (mDisplayMode==”left camera”)
 mCameraOverride.mCameraPath <left camera path>;
 else
 mCameraOverride.mCameraPath = <right camera path>;
 return &mCameraOverride;
}

The actual targets to render to are specified per operation. The

MSceneRender::targetOverrideList() will return a pointer to a target list. For stereo rendering,

we use one color and one depth target per camera.

// Return target overrides
virtual MHWRender::MRenderTarget* const* targetOverrideList(unsigned int &listSize)
{
 listSize = 2;
 return &mTargets[0];

Page 129 of 138

}
…

// Definition of the target overrides as part of the scene render class definition:
protected:
 MHWRender::MRenderTarget* mTargets[2];

These targets are maintained at the override level, and are simply cached on the operation to

be returned when requested via the targetOverrideList() methods. The targets are specified as

follows:

mTargetOverrideNames[kColorTarget] = MString("_stereoLeftTarget_");
mTargetOverrideNames[kColorTarget2] = MString("_stereoRightTarget_");
mTargetOverrideNames[kDepthTarget] = MString("_stereoDepthTarget");

MHWRender::MRasterFormat colorFormat = MHWRender::kR8G8B8A8_UNORM;
MHWRender::MRasterFormat depthFormat = MHWRender::kD24S8;
unsigned int sampleCount = 1; // no multi-sampling
mTargetDescriptions[kColorTarget] =
 new MHWRender::MRenderTargetDescription(mTargetOverrideNames[0], 256, 256,
 sampleCount, colorFormat, 0, false);
mTargetDescriptions[kColorTarget2] =
 new MHWRender::MRenderTargetDescription(mTargetOverrideNames[1], 256, 256,
 sampleCount, colorFormat, 0, false);
mTargetDescriptions[kDepthTarget] =
 new MHWRender::MRenderTargetDescription(mTargetOverrideNames[2], 256, 256,
 sampleCount, depthFormat, 0, false);

A unique name is used for each target resource. Two unique color targets are required, since

they both need to persist during the execution of the operations. Only a single depth target is

required, as the depth contents are not required after each scene render.

The targets are set to an initial size, and resized as required based on changes to the output

width and height, as specified by the MRenderer::outputTargetSize() method. To avoid

complicated resize management, MRenderTarget::updateDescription() allows for an update

of the target characteristics based on a target description (which includes size). As size changes

are assumed to only occur per frame, the MRenderOverride::setup() method is the appropriate

place to update these resources.

// Get the current target width and height
MHWRender::MRenderer *theRenderer = MHWRender::MRenderer::theRenderer();
unsigned int targetWidth = 0;
unsigned int targetHeight = 0;
if(theRenderer)
{
 theRenderer->outputTargetSize(targetWidth, targetHeight);
}

// Update the cached target descriptions width and height parameters
for (unsigned int i=0; i<kTargetCount; i++)
{
 mTargetDescriptions[i]->setWidth(targetWidth);
 mTargetDescriptions[i]->setHeight(targetHeight);

Page 130 of 138

}

// Acquire new targets if never acquired before, OR resize the current targets
// using the updateDescription()method for each target.
const MHWRender::MRenderTargetManager *targetManager =
 theRenderer->getRenderTargetManager(;
if (targetManager)
{
 for (unsigned int i=0; i<kTargetCount; i++)
 {
 if (!mTargets[i])
 {
 mTargets[i] = targetManager->acquireRenderTarget(*(
 mTargetDescriptions[i]));
 }
 else
 {
 mTargets[i]->updateDescription(*(mTargetDescriptions[i]));
 }
 }
}

As shown in the renderer compositing example, the quad render compositing operation requires

that the two color targets be bound to the input parameters of the shader used for the quad

operation. In the example, the input target parameters are gSourceTex and gSourceTex2, and

the two color targets are mTargets[0] and mTargets[1].

// Assign color target 0 as the first input
MHWRender::MRenderTargetAssignment assignment;
assignment.target = mTargets[0];
MStatus status = shaderInstance->setParameter("gSourceTex", assignment);
if (status != MStatus::kSuccess)
{
 return NULL;
}
// Assign color target 0 as the first input
MHWRender::MRenderTargetAssignment assignment2;
assignment2.target = mTargets[1];
status = shaderInstance->setParameter("gSourceTex2", assignment2);
if (status != MStatus::kSuccess)
{
 return NULL;
}

6.7.9.1 Color and Depth Targets

The viewRenderOverrideTargets plug-in example demonstrates how to render out color and

depth to two intermediate targets and then blit that to a third. This is similar to the operation

connections used for stereo pair rendering for side by side viewing.

6.7.10 Glow (Quad to Quad Render Dependency)

The example with the most “complex” dependent operation graph is the viewRenderOverride

plug-in example. In this case, the algorithm requires a scene operation to a target that is used

Page 131 of 138

by subsequent 2d color operations to achieve a “glow”. The steps are fairly rudimentary, but

help to show the scene operation to quad operation dependency as well as quad operation to

quad operation dependencies.

An “intensity threshold” shader exists in the first quad operation. This is followed by a 2-pass

blur (using 2 quad operations for horizontal and vertical blur), followed by a blend back to the

original scene rendered color target.

Figure 17: Glow render override example shows dependencies between the various operations used. Note
that all dependencies are between targets / textures on “source” operations and shader inputs on
“destination” operations.

Within the code example, there is one subclassed quad render called viewRenderQuadRender,

which is derived from MQuadRender. Different shaders are used depending on member

options, and hence different input render targets are set as input parameters.

As with previous examples, the appropriate shader is determined when required within

MQuadRender::setup(), and the parameters are updated then. Note that the following code

takes advantage of the ability to specify a technique name to retrieve different shader instances

(MShaderInstances) within the same “blur” effects file. How shaders are organized is up to the

plug-in. The acquired shader is stored in an mShaderInstance data member of the

viewRenderQuadRender instance.

const MHWRender::MShaderInstance *
viewRenderQuadRender::shader()
{
 // Create a new shader instance for this quad render instance
 //
 if (mShaderInstance == NULL)
 {
 MHWRender::MRenderer* renderer = MHWRender::MRenderer::theRenderer();

-type = color target

Color MRenderTarget

-type = depth target

MRenderTarget

Render

Render

MShaderInstance

+Threshold()

3. MQuadRender MRenderTarget

-- type = color target

Blur MRenderTarget

+Horizontal Blur()

4. MQuadRender MShaderInstance

Blur MRenderTarget

+Vertical Blur()

5. MQuadRender MShaderInstance

MShaderInstance

+Blend()

6. MQuadRender Color MRenderTarget

-Scene Filter = filled

only

2. MSceneRender

-Scene Filter = non-

filled only

7. MSceneRender

MShaderInstance

+Background Fill()

1. MQuadRender

Page 132 of 138

 if (renderer)
 {
 const MHWRender::MShaderManager* shaderMgr =
 renderer->getShaderManager();
 if (shaderMgr)
 {
 // The second argument here is the technique. If desired
 // an effect on disk can hold different techniques. For each
 // unique effect + technique a different shader instance is
 // created.
 switch (mShader)
 {
 case kScene_Threshold:
 mShaderInstance = shaderMgr->getEffectsFileShader(
 "Threshold", "");
 break;
 case kScene_BlurHoriz:
 mShaderInstance = shaderMgr->getEffectsFileShader(
 "Blur", "BlurHoriz");
 break;
 case kScene_BlurVert:
 mShaderInstance = shaderMgr->getEffectsFileShader(
 "Blur", "BlurVert");
 break;
 case kSceneBlur_Blend:
 mShaderInstance = shaderMgr->getEffectsFileShader(
 "Blend", "Add");
 break;
 default:
 break;
 }
 }
 }
 }

Continuing on within the setup() method, the parameter update logic branches based on shader

used. For example, the threshold shader requires one input target and also sets a threshold

value, while the blend shader simply sets two input targets. (In this sample code, the targets

being used are kept in an array of render targets called mTargets, which is indexed by an

enumeration that indicates the location of a given target, such as kMyColorTarget.)

 // Set parameters on the shader instance.
 //
 // This is where the input render targets can be specified by binding
 // a render target to the appropriate parameter on the shader instance.
 //
 if (mShaderInstance)
 {
 switch (mShader)
 {
 case kScene_Threshold:
 {
 // Set the input texture parameter 'gSourceTex' to use
 // a given color target
 MHWRender::MRenderTargetAssignment assignment;
 assignment.target = mTargets[kMyColorTarget];

Page 133 of 138

 mShaderInstance->setParameter("gSourceTex", assignment);
 mShaderInstance->setParameter("gBrightThreshold", 0.7f);
 }
 break;

 case kScene_BlurHoriz:
 {
 // Set the input texture parameter 'gSourceTex' to use
 // a given color target
 MHWRender::MRenderTargetAssignment assignment;
 assignment.target = mTargets[kMyBlurTarget];
 mShaderInstance->setParameter("gSourceTex", assignment);
 }
 break;

 case kScene_BlurVert:
 {
 // Set the input texture parameter 'gSourceTex' to use
 // a given color target
 MHWRender::MRenderTargetAssignment assignment;
 assignment.target = mTargets[kMyBlurTarget];
 mShaderInstance->setParameter("gSourceTex", assignment);
 }
 break;

 case kSceneBlur_Blend:
 {
 // Set the first input texture parameter 'gSourceTex' to use
 // one color target.
 MHWRender::MRenderTargetAssignment assignment;
 assignment.target = mTargets[kMyColorTarget];
 mShaderInstance->setParameter("gSourceTex", assignment);

 // Set the second input texture parameter 'gSourceTex2' to use
 // a second color target.
 MHWRender::MRenderTargetAssignment assignment2;
 assignment2.target = mTargets[kMyBlurTarget];
 status = mShaderInstance->setParameter("gSourceTex2", assignment2);

 }
 break;
 }
 return mShaderInstance;
}

6.7.11 “Capturing” Render Targets

viewRenderOverrideFrameCache demonstrates one way that a capture can be performed at

any given time to a cache. Once cached, the plug-in has additional code that performs

playback.

The frame capture is performed by setting a custom user operation as the last operation to be

performed. The operation then uses:

Page 134 of 138

• MDrawContext::copyCurrentColorRenderTargetToTexture() to retrieve an MTexture

for caching.

• MTextureManager::saveTexture() to optionally save the retrieved texture to disk.

In this plug-in, the override for the MUserOperation::execute() method has code similar to the

following, where the context is passed in using an MDrawContext.

// Retrieve the target as a texture
MHWRender::MRenderer* renderer = MHWRender::MRenderer::theRenderer();
MHWRender::MTextureManager* textureManager = renderer->getTextureManager();
MHWRender::MTexture* colorTexture = context.copyCurrentColorRenderTargetToTexture();

// Save the texture to disk to some desired name (e.g. foo.iff)
MString diskName = “foo.iff”;
if (colorTexture)
 textureManager->saveTexture(colorTexture, diskName);

Similar capture code can also be used without an MRenderOverride. This is demonstrated in

the blast2Cmd developer kit example using pipeline callbacks. In this case, only a “post frame”

callback is required. The key interfaces in MRenderer are:

• A callback function definition that allows for context, as well as user data, to be passed

in:

o typedef void (*NotificationCallback)(MDrawContext& context, void* clientData)

• The ability to add a named callback at a specific pipeline location. (There is also a

corresponding “remove”):

o MStatus addNotification(NotificationCallback notification, const MString& name,

const MString semanticLocation, void* clientData);

Optionally, the size of the rendered image (render target) can be controlled via

MRenderer::setOuputTargetOverrideSize(), while MRenderer::setPresentOnScreen()

controls whether to hide the on-screen presentation of results.

In the following code snippet, the semantic mPostRenderNotificationSemantic has been set to

MPassContext::kEndRenderSemantic, which indicates the end of a frame.

A series of refresh events are queued to capture images over a time sequence from mStart to

mEnd time. For each refresh, the callback function captureCallback is executed by the renderer.

// Set up notification of end of render. Send the blast command
// to allow accessing data members.
//
MString mPostRenderNotificationSemantic = MPassContext::kEndRenderSemantic;
MString mPostRenderNotificationName = “myCaptureCallback”;
renderer->addNotification(captureCallback, mPostRenderNotificationName,
 mPostRenderNotificationSemantic, (void *)this);

// Set override image size.
renderer->setOutputTargetOverrideSize(mWidth, mHeight);

// Temporarily turn off on-screen updates

Page 135 of 138

renderer->setPresentOnScreen(false);

// Change time and perform a refresh to allow the callbacks to invoked.
for (mCurrentTime = mStart; mCurrentTime <= mEnd; mCurrentTime++)
{
 MAnimControl::setCurrentTime(mCurrentTime);
 view.refresh(false /* all */, true /* force */);
}

// Remove notification of end of render
renderer->removeNotification(mPostRenderNotificationName,
 mPostRenderNotificationSemantic);

// Restore off on-screen updates
renderer->setPresentOnScreen(true);
// Disable target size override
renderer->unsetOutputTargetOverrideSize();

The capture code is very similar to the code shown above, as an MDrawContext will be passed

in for use by the callback.

6.8 Drawing 2D Elements

There is no predetermined way to draw 2D non-scene elements. In general, they are overlays

on a per frame basis. This section will discuss a few possible options.

6.8.1 HUDS using a Locator

One way in which a post draw 2D HUD can be added is by creating a plug-in locator object in

the scene.

The MayaPluginForSpreticle developer kit example creates a single spReticleLoc locator node

solely for the purposes of drawing 2D UI for camera based information.

We use the same approach for porting 2d drawing as for 3d drawing. The VP1

MPxLocatorNode::draw() method logic is ported to use MUIDrawManager. There is no inherent

difference in the override that the UI drawing is being added from, and hence an

MPxDrawOverride was used.

Looking at how a 2d “mask” is drawn shows two differences between VP1 and VP2 approaches:

• State Management:

o For the VP1 code, a transformation from 3d space to 2d space must be manually

set and unset. For example, for OpenGL the GL_MODELVIEW and

GL_PROJECTION matrices would need to be set. In addition, if any

transparency is involved, the blend states need to be “pushed” and “popped”.

o For VP2, there is a 2D interface for drawing available on MUIDrawManager

which will handle the transformations as required, and will allow interleaved 3D

and 2D drawing without explicitly switching matrices to go between the two

spaces.

• Depth Location and Order:

Page 136 of 138

o To draw using the VP1 style immediate mode, often a “painters algorithm” is

used, resulting in depth testing being disabled and elements being drawn in

depth order. The Z location is in world coordinates, and hence must be computed

to be at the near clip plane to avoid being obscured by the scene.

o VP2 UI drawables are queued. The appropriate depth priority

(MUIDrawManager::setDepthPriority()) values can be used to control ordering.

Hence, the VP1 code appears as follows, with depth test disabled, and the use of –ncp

incorporated, which is the negative of the near-clip plane plus a “fudge” factor of 0.001 to move

it in front of the plane.

void spReticleLoc::drawMask(Geom g1, Geom g2, MColor color, bool sides, double ncp)
{
 double z = -ncp;

 // Turn off z-depth test
 glDisable(GL_DEPTH_TEST);
 glDepthMask(GL_FALSE);`

 glBegin(GL_QUADS);

 glColor4f(color.r, color.g, color.b, 1-color.a);

 // Bottom Mask
 glVertex3d(g1.x1, g1.y1, z);
 glVertex3d(g1.x2, g1.y1, z);

 glVertex3d(g2.x2, g2.y1, z);

 glVertex3d(g2.x1, g2.y1, z);

The VP2 code simply starts drawing and using the appropriate 2d interface. The Z coordinate in

this case is ignored and a default depth priority (which will place the drawing in front of the

camera) is used.

void spReticleLocDrawOverride::drawMask(Geom g1, Geom g2, MColor color, bool sides,
MHWRender::MUIDrawManager& drawManager)
{
 drawManager.beginDrawable();

 drawManager.setColor(MColor(color.r, color.g, color.b, 1 - color.a));

 MUintArray index;
 index.append(0);
 index.append(1);
 index.append(3);
 index.append(2);

 // Bottom Mask
 MPointArray bottomMask;
 bottomMask.append(MPoint(g1.x1, g1.y1, 0.0));
 bottomMask.append(MPoint(g1.x2, g1.y1, 0.0));
 bottomMask.append(MPoint(g2.x2, g2.y1, 0.0));
 bottomMask.append(MPoint(g2.x1, g2.y1, 0.0));
 drawManager.mesh2d(MHWRender::MUIDrawManager::kTriStrip,bottomMask,NULL,&index);

Page 137 of 138

The code for drawing stippled lines is similar, except that the stipple is not set as part of state

before immediate mode drawing, but is instead passed in as a line style using

MUIDrawManager::setLineStyle().

drawManager.beginDrawable();
drawManager.setColor(MColor(color.r,color.g,color.b,1-color.a));
if(stipple) {
 drawManager.setLineStyle(2,0x00FF);
}

drawManager.line2d(MPoint(x1,y1),MPoint(x2,y2));

drawManager.endDrawable();

The same VP1 stipple patterns for the most part can used for the VP2 interfaces

// VP1 OpenGL Stipple
if (stipple)
{
 glEnable (GL_LINE_STIPPLE);
 glLineStipple(2,0x00FF);
}

Overall usage of MUIDrawManager should reduce the dependence on draw API specific code,

thus reducing the overhead caching and restoring state.

For a full set of possible options available via MUIDrawManager, see the uiDrawManager

developer kit example for code that performs 2d drawing, including 2d and 3d geometric

primitives, text with various font options and icons.

6.8.2 Manipulators and In-View Editors

Another option that can be useful for tying attributes to 2D HUDs is to take advantage of in-view

editors. These are 2D HUDs that allow for interactive modifications of attribute values. They are

drawn within the 3d viewports, and are layered on top of any other UI drawn using

MUIDrawManager or internally.

See the footPrintManip plug-in in the developer kit for an example. . Within the

MPxManipContainer::connectToDependNode() method, a call to addPlugToInViewEditor()

is used to add attributes of interest. In this case, the scale attribute is added:

MStatus footPrintLocatorManip::connectToDependNode(const MObject &node)
{
 MFnDependencyNode nodeFn(node);
 MPlug sizePlug = nodeFn.findPlug("size", &stat);
 // Allow the user to tweak the size via the In-View Editor
 //
 addPlugToInViewEditor(sizePlug);
 …
}

Page 138 of 138

Figure 18: Snapshot shows the footprint manipulator. The “Stretch Me!” and “Stretch Me 2D!” UI are drawn using
MUIDrawManager for the manip. The in-view editor is drawn for the plug-in internally. Note that it is layered to be on
top of the footprint plug-in and spReticle UI, as well as the internal UI (polygon statistics shown here as an example).

6.8.3 Image Planes

No additional overrides are required for plug-in image planes, as this interface is only an image

provider. Plug-in image planes are automatically given the correct internal classification and will

hence use internal evaluators instead of explicitly requiring a plug-in override. The snapshot

below shows the customImagePlane plug-in example (showing an “Alpha Channel” image. As

all evaluation is done internally, the depth composition is consistent with internal logic.

Figure 19: Image planes using internal logic to determine depth relative to 3d scene elements and other 2D UI
elements. In this case, the default image plane depth places the image behind all other elements.

Autodesk and Maya are registered trademarks or trademarks of Autodesk, Inc., and/or its

subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product

names, or trademarks belong to their respective holders. Autodesk reserves the right to alter

product and services offerings, and specifications and pricing at any time without notice, and is

not responsible for typographical or graphical errors that may appear in this document.

© 2017 Autodesk, Inc. All rights reserved.

	Revision History
	1. Table of Contents
	2. Introduction
	6. Porting Details
	6.1 Porting Manipulators
	6.2 Porting Contexts
	1.1 Porting “Simple” Single Objects
	6.3
	6.3.1 Porting Using a Geometry Override
	6.3.1.1 MPxGeometryOverride Registration
	6.3.1.2 MPxGeometryOverride Interfaces
	6.3.1.3 DG Update
	6.3.1.4 Render Item Update
	6.3.1.5 Render Item Shader Instances
	1.1.1.1
	6.3.1.6 Updating Data Streams and Index Streams
	1.1.1.1.1
	6.3.1.6.1 Data Stream Update
	1.1.1.1.1
	1.1.1.1.1
	1.1.1.1.1
	6.3.1.6.2 Index Stream Update

	6.3.1.7 Analysis
	6.3.1.7.1 Portability
	6.3.1.7.2 Scalability
	6.3.1.7.3 Compatibility/Flexibility

	6.3.2 Porting Using a Subscene Override
	6.3.2.1 MPxSubSceneOverride Registration
	6.3.2.2 MPxSubSceneOverride Interfaces
	6.3.2.3 Container Update
	6.3.2.3.1 Shaders
	6.3.2.3.2 Data and Index Streams
	6.3.2.3.3 Render Items
	6.3.2.3.4 Setting Data on Render Items
	6.3.2.3.5 Hardware Instancing

	6.3.2.4 Additional UI
	6.3.2.5 Analysis
	6.3.2.5.1 Portability
	6.3.2.5.2 Scalability
	6.3.2.5.3 Compatibility/Flexibility

	6.3.3 Porting Using UI Draw Manager
	6.3.3.1 MPxDrawOverride Registration
	1.1.1.1
	6.3.3.2 MUIDrawManager Usage
	1.1.1.1
	6.3.3.3 Analysis
	6.3.3.3.1 Portability
	6.3.3.3.2 Scalability
	6.3.3.3.3 Compatibility/Flexibility

	6.3.4 Porting Using a Draw Override
	6.3.4.1 MPxDrawOverride (Revisited)
	6.3.4.2 MPxDrawOverride Interfaces
	6.3.4.3 MPxDrawOverride Usage
	6.3.4.4 Analysis
	6.3.4.4.1 Portability
	6.3.4.4.2 Scalability
	6.3.4.4.3 Compatibility/Flexibility

	1.1
	6.4 Porting Surface Shapes using MPxGeometryOverride
	6.4.1 MPxGeometryOverride (Revisited)
	6.4.2 Render Items Assigned Shaders for MPxGeometryOverride
	6.4.3 Wireframe Render Item Example
	6.4.3.1 Depth Priority for “UI” Items
	6.4.3.2 Handling Display State for “UI”

	6.4.4 Populating Geometry for Wireframe and Shaded Render Items
	6.4.5 Component Handling (MPxGeometryOverride)
	6.4.5.1 Vertex Render Item Update

	1.1 Porting Surface Shapes using MPxSubSceneOverride
	6.5
	1.1.1
	6.5.1 Shaders
	6.5.2 Data and Index Streams
	6.5.2.1 Advanced: Client Side Buffers

	6.5.3 Render Items
	6.5.4 Setting Data on Render Items
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	6.5.5 Selection

	1.1
	1.1
	6.6 Porting Shaders
	6.6.1 Software Shading Node Attribute Matching
	6.6.2 Phong Fragment Description
	6.6.3 Software Shading Node Fragments
	6.6.4 Intermediate Nodes (Brick Texture Example)
	6.6.4.1 Fragment Definition
	6.6.4.2 Fragment Registration
	6.6.4.3 Attribute-Parameter Mappings (Part 1)
	6.6.4.3.1 Example in Use

	6.6.4.4 Attribute-Parameter Mappings (Part 2: fileTexture Example)
	6.6.4.5 Output Parameter Handling
	6.6.4.6 XML file example

	6.6.5 Surface Shader Node Example (Oren-Nayer)
	6.6.5.1 Registration
	6.6.5.2 Fragment Definition
	6.6.5.3 Fragment Graph Building

	6.6.6 Custom Effect Nodes (MPxShaderOverride)
	6.6.6.1 Basic Connections
	6.6.6.2 Starting Example
	6.6.6.3 Attribute Specification
	6.6.6.3.1 Override Registration
	6.6.6.3.2 Override “Phases”
	6.6.6.3.3 “Phase” Support in VP1
	6.6.6.3.4 Basic “Phase” Support: Initialization
	6.6.6.3.5 Base “Phase” Support: Update
	6.6.6.3.6 Base “Phase” Support: Draw
	6.6.6.3.7 Override Swatch Rendering

	6.6.6.4 Initialization: Shader Uniqueness and Rebuild Logic
	6.6.6.5 Initialization: Explicitly Specification of Varying Data
	6.6.6.6 Initialization: Custom Geometry Specification
	6.6.6.7 Initialization: Using Effect Annotations
	6.6.6.8 Uniform Data Handling: Initialization
	6.6.6.9 Uniform Data Handling: Drawing
	6.6.6.10 Draw: Explicit Lighting Handling
	6.6.6.11 Update: Explicit Transparency and State Handling
	6.6.6.12 Pass Semantic Handling
	6.6.6.13 Initialization: Non-textured Mode Shader

	6.7 Porting Renderers
	6.7.1 Handling Multi-Pass MPx3dModelView Logic
	6.7.2 Handling MViewportRenderer Logic
	6.7.3 Override Operations
	6.7.4 Simple Render Override
	6.7.4.1 Registration
	6.7.4.2 Creation of Operations
	6.7.4.3 “Building” Render Loop Logic

	6.7.5 Sample Override Options
	6.7.5.1 Selection Filter
	6.7.5.2 UI Drawables

	6.7.6 Compositing Externally Rendered Results
	6.7.6.1 Custom Quad Rendering
	6.7.6.2 Filtered Scene UI Operation

	6.7.7 Multi-Pass Scene Rendering
	6.7.8 “Dependent” Operation Rendering
	6.7.9 Stereo Rendering (Scene -> Quad Render Shader Dependency)
	6.7.9.1 Color and Depth Targets

	6.7.10 Glow (Quad to Quad Render Dependency)
	6.7.11 “Capturing” Render Targets

	6.8 Drawing 2D Elements
	6.8.1 HUDS using a Locator
	6.8.2 Manipulators and In-View Editors
	6.8.3 Image Planes

