
Autodesk®

 
Nucleus in Autodesk Maya



1.0 Introduction
1.1 What is Autodesk Maya Nucleus
Maya has several nodes (such as the Nucleus, 
Maya nCloth and Maya nParticle nodes) that help 
act as interfaces to the Nucleus solver, setting up 
relationships and translating data to and from Nucleus. 
This not only helps allow better interaction between 
different entities, but also takes advantage of stable 
solve and collision capabilities inherent in Nucleus.  

This document discusses the internal solver architecture, 
and how the components of the solver are controlled 
through the Maya nodes and attributes. This is followed 
by a more detailed discussion on how to help achieve 
optimal results with Maya nCloth and nCloth caching, 
and some frequently used effects. 
 
Much of this document will deal with the cloth 
application of Nucleus; however, nParticles can be 
considered a subset of nCloth in terms of Nucleus. 
Particles may be considered like cloth objects that 
have no bend or stretch resistance and vertex 
collisions and constraints only. 

1.2 It’s not just clothing
While nCloth was initially developed to help model 
clothing, there are many natural phenomena that 
can be created with nCloth, and now nParticles. 

nCloth Effects
nCloth can be used for more than things like clothing 
and flags. It can also be used to help create rigid 
and semi-rigid objects that can break/tear, bend 
and deform. Additionally, there is a lift model for 
aerodynamic effects. Sample effects are: 

•Clothing (with tearing)
•Flags
•Airplanes
•Balloons (inflating/deflating)
•Bridges
•Slinkys

 
nParticle Effects
nParticles can be used for typical particle effects like 
smoke and fireworks as well as more complicated 
liquid behaviors. Sample effects are: 

•Smoke, fire
•Dissolving objects
•Pouring liquids
•Splashing
•Sticky fluids (mucus)

Nucleus constraints on nParticles
Nucleus constraints can be used with initial state 
nParticles to get the following effects: 

•Liquid droplets rolling along complex surfaces
•Simplified rigid body behavior 
•Suspended particles (tendrils)

1.3 Want help now? Read this first
If one is having problems with an nCloth setup and 
looking here for answers, first try the following: 

1. Set Space Scale on the nucleus node based on 
one’s unit settings. If one modeled in meters, 
set it to 1.0, but if one modeled in the default 
centimeters, set it 0.01. The main effect is to 
set gravity to the correct amount, as dynamics 
in Maya always interprets units as being meters 
regardless of the units setting. 

2. For non-stretchy cloth, increase Stretch Resistance 
or apply a preset. One can find presets in the 
attribute editor for the cloth node. 

3. Increase Substeps on the nucleus node to resolve 
collision problems or stretching in colliding regions. 

4. Lower Lift on the nCloth relative to one’s Space 
Scale setting. There is currently a problem where 
Lift has proportionately too great an effect 
at large scene scales. Thus, if one modeled in 
centimeters and set one’s Space Scale to 0.01, 
then multiply the nCloth Lift value by 0.01. 

2.0 Core Solver Design
2.1 Building block design
The nucleus solver has a multipurpose design where 
complex phenomena like cloth are handled by 
combining smaller sets of tasks. This building block 
approach helps allow the same solver to work for 
different types of simulations such as water, cloth 
or rigid bodies. The solve of these component parts 
is performed with implicit methods that help allow 
for stability for most setups. The general philosophy 
is to attempt to solve for large steps, rather than 
requiring small time steps. This helps allow the 
simulation to degrade relatively gracefully for 
faster low quality settings instead of locking up or 
becoming unstable. 

Nucleus in Autodesk Maya 

Introduction 

Nucleus was created to 
help address the need for a 
common Autodesk® Maya® 
software dynamics solver. 
By using a common solver, 
different dynamic effects 
can interact in complex 
ways that would likely 
not be possible with 
independent solvers. As 
well, the core solver is a 
separate component with 
no dependencies on the 
rest of Maya. 

1



2.2 Solving a multiply constrained system
A dynamic entity, such as cloth, typically requires 
that the solver compute many different effects and 
these effects may be in mutual conflict. For example, 
the vertices of a cloth draping over an object are 
affected by gravity, collisions with that object, stretch 
resistance of the cloth, and air friction. Gravity pulls 
the vertices down but the collisions, air friction, 
and stretch resistance all resist that downward 
motion. Each of these effects are a constraint on the 
vertices and must be iterated over time to solve the 
animation, although it may help to iterate more on 
some effects, such as the stretch resistance. Based 
on attribute settings the solver helps determine how 
many iterations to use for each effect in order to 
of simulation. The following tables show the way that 
the iterations for multiple effects are interleaved. The 
arrows represent the order of evaluation for both a 
sequential and an interleaved solve:

Internally, the solver works on simple entities 
such as stretch links between points. There is an 
initialization phase where the more complex items, 
such as constraint nodes and cloth, are broken 
down so the solver can more easily digest them. For 
example, when a cloth mesh is passed to the solver, 
a set of length constraints between point pairs 
is constructed. A constraint node may also build 
the same point pair lists. There are usually several 
lists built for effects such as collision and bend 
resistance. The numeric value of the corresponding 
attribute in Maya typically helps define the number 
of iterations of that effect over 1/24th of a second, 
which by default corresponds to a single frame. 
Note that if Scaling Relation is not set to Per Link, 
then the iteration count per frame is also scaled by 
the number of polygons in the mesh. Per Link is the 
default Scaling Relation value, but nCloth attribute 
presets generally use the Object Space setting. 

Interleaved (method used by Nucleus).

Non-Interleaved or Sequential Evaluation.

2

The application of stretch and gravity help pull cloth 
The application of stretch and gravity help pull cloth 
into penetration with an object. When the collision 
iteration is applied, it helps push out the colliding 
regions, which causes stretch in the faces that are in 
collision. Further iterations of the stretch resistance 
will fix this stretch problem but bring the cloth back 
into collision. The last iteration in a step is always a 
collision evaluation, so without sufficient interleaving 
collision iterations among the stretch iterations, 
the effect will be that the last collide step helps to 
significantly stretch the cloth, regardless of how 
high the Stretch Resistance is. Increasing Substeps 
or Max Collision Iterations should deal with this 
problem. Extreme motions or accelerations will require 
more total iterations to solve. 

The above image shows how sufficient interleaving of 
stretch and collision results in less stretching along 
colliding faces.

Collision evaluations are typically much more expensive 
to compute than stretch evaluations, so it is generally 
more efficient to have more stretch evaluations than 
collide ones, especially if the material is highly stretch 
resistant. However, if there are not enough collision 
evaluations interleaved with the stretch evaluations, 
one may see unacceptable stretching of cloth in 
regions of collision. 
 
 



2.3 Hierarchical structure of Nucleus objects
The solver understands how to relate elements 
based on a simple hierarchy of dimension:

 
points (zero dimensions)
edges (one dimension)
faces (two dimensions) 

(One can carry this further with volumetric objects 
like tetrahedra, although this is not currently used.)
 

Maya animation (i.e. keyframing and deformation 
of objects) is computed once per frame (or step) 
and the internal nucleus structures that the solver 
works on are updated from this animation. This step 
is further broken down by the Nucleus system into 
substeps, which are smaller divisions of time within 
the frame. Animation curves and deformers are not 
evaluated during these substeps, although their effect 
is interpolated in a linear fashion within the substeps. 

Even if there is only one substep, passive objects 
have a velocity per vertex that captures the change in 
shape across the frame which is used for the collisions 
(one may think of the surface extruded in time as a 4 
dimensional object). Note that in some cases, simple 
linear interpolation of animation across a step might 
not be sufficient. To help handle this, one can set the 
value for Evaluate every X frames, in the Cache Options, 
to make the base step size finer. 
 
Within a substep, there may be finer iterations of effects 
like stretch resistance and collisions, depending on 
the settings. These finer iterations are performed 
across the time step defined by the substep. For 
example, if there were 10 collision iterations within 
a substep, each of those iterations would perform 
the collision computation for the delta time of the 
substep, rather than stepping forward in time by 
smaller increments. Thus, the substep represents 
the smallest unit of time used by the solver. Within 
a substep, one can have more iterations, but each 
of these iterations attempts to solve across the 
time interval defined by the substep. Values like Stretch 
Resistance and Bend Resistance are defined relative 
to time, not substeps, although changing the substeps 
can affect the quality of the solution for these attributes, 
which changes the effect. However, the solver attempts 
to preserve the defined level of stretchiness, for 
example, in a manner independent of substeps. By 
default, if one sets Stretch Resistance to 10, there 
are 10 iterations of stretch resistance per frame. If 
Substeps is set to 2, each substep has 5 iterations 
of stretch resistance. If the Substeps is increased to 10, 
there is 1 iteration of stretch resistance for each substep. 
However, if the Substeps is increased to 20, there is now 
1 iteration of stretch resistance per substep, or 20 stretch 
resistance iterations per frame. The intensity of the 
stretch resistance evaluation is reduced per step in such 
a way that the total stretch resistance stays roughly the 
same, even though there are twice as many evaluations.  

3

The solver knows how to collide between these 
elements and will consider thickness, if set. Internally, 
full surface collisions (face to face) are handled by 
combining subsets of the simpler collisions: point 
to face and edge to edge. The collision computation 
may be thought of as computing the space-time 
intersection of the thickened components.  

Also, each element can be constrained, or related 
to other elements. For example, one can constrain 
points to points, points to edges, and edges to faces.  
 
2.4 Solver initialization and stepping
At the start frame, the solver helps construct a variety 
of structures, such as bounding trees, to help allow 
for efficient computation. Also, the initial state of 
the input object at the start frame is cached, which 
helps allow the solver (along with other effects) to 
keep interpenetrations from exploding the mesh 
apart. At the start of the simulation, the constraint 
one defines is broken down into lists of links and low 
level relationships that can be solved more quickly. For 
Slide on Surface constraints, the initialization involves 
computing nearest point on surface along a normal, 
which is a relatively expensive computation. Note that 
with constraints, if one keyframes the Enable attribute 
on the dynamicConstraint node, the constraint will be 
reinitialized on frames where the enable turns on. This 
is useful for having a hand grab a dynamic object. 

Note that, in addition to effects such as stretch 
resistance, bend resistance, and rigidity, collide and 
self collide iterations are also defined relative to time. 
Thus, if the collide iterations (Max Collision Iterations) 
were set to 10 and the Substeps to 2, there are 5 collide 
iterations per substep. In some cases, increasing 
substeps can actually help make the simulation 
solve faster. This is because the number of total 
collision iterations might stay the same but each 
iteration occurs over a smaller timestep, which is 
more easily computed due to less collision pairs per 
step. (Collision pairs is the list of elements which 
have overlapping boundaries in space-time. For self 
collisions, this list gets large when the thickness 
is greater than the face size, especially with full 
surface self collision, which increases computation 
time.) Substeps carry the computation price of 
recomputing the internal bounding tree of all objects, 
which is expensive. This results in the situation where 
it helps to have collide iterations somewhat higher 
than Substeps for maximum efficiency.  

Another useful rule of thumb relates the collision 
iterations and stretch. In general (assuming that 
the object’s Scaling Relation is at the default setting 
of Link), the collision iterations should be at least 
1/10th of the Stretch Resistance value, so that 
at least one collision evaluation occurs every 10 
stretch resistance evaluations. 
 
When simulating nParticles with minimal constraints, 
meaning just collision with objects and no self 
collisions, a Substep value of 1.0 and Max Collision 
Iterations of 1 may be sufficient. The default Substeps 
value is 3, so, for simple particle simulations, it often 
helps to lower the Max Collision Iterations and 
Substeps. Higher iterations are generally required 
when one has constraints that need to propagate 
across a network, for example multiple elements in 
simultaneous collision like stacked balls or the set of 
interconnected links that handle stretch resistance on 
a mesh. In general, the iteration requirement goes up 
exponentially with the complexity of such networks. 
 



3.1.1 Nucleus solver node

4

Currently, there is only one flavor of solver, and its 
node type is nucleus. The nucleus node connects 
to the entities involved in the solve, such as nCloth 
and nParticle objects, and contains attributes that 
affect of the evaluation of its connected entities. 
The nucleus node can be thought of as a contained 
world or universe. Objects can only interact if 
they are connected to the same nucleus node. The 
nucleus node also contains global values, such as 
wind and gravity, which affect the objects that are 
connected to it. 
 
Wind and Gravity can be ignored on an individual 
object, and similar to Maya Fields, they can be applied 
to individual Nucleus objects. However, the wind 
model in the Nucleus solver knows about surface 
orientation, which Maya wind fields do not. This helps 
allow cloth to have more air drag when facing the wind 
than edge on, which is important for realistic cloth and 
wind interaction. Also, Nucleus Wind and Gravity are 
computed within substeps, while external fields are 
computed only once per frame. Thus, the Nucleus Wind 
may better integrate with effects like stretch than a 
wind field would. (This situation may change in future 
with customization and extension fields for nucleus.) 
The Nucleus node is the one that helps invoke the 
solver for each new step when the time is changed. 
 

Nucleus objects are the entities that are operated 
on by Nucleus. Currently, there are nParticle 
(nParticleShape), nCloth (nClothShape), and nRigid 
(nRigidShape) nodes. The nRigid node currently 
helps define passively colliding objects only, but 
may at some point have an active toggle if rigid 
body simulations are added to Nucleus. The nCloth, 
nRigid, and nParticle nodes inherit attributes and 
behaviors from a shared base class, which in turn 
inherits from Maya classic particles. This helps 
allow Maya to share existing functionality where 
appropriate, such as classic particle emitters, 
expressions, events, rendering for nParticles, and 
Maya fields for nCloth and nParticles. Currently, this 
structure does result in nodes having some inherited 
attributes that are not used. These attributes are 
suppressed in the Maya user interface (UI), such as 
the Attribute Editor, but they may still be visible in 
other places such as the Channel Box. Some inherited 
functionality, such as particle expressions on nCloth, 
is not yet fully supported.  

3.0 Maya Dependency Graph Structure of 
Nucleus Objects 
3.1 Node types and inheritance
There are basically four classes of nucleus nodes in 
Maya: the Nucleus solver node, object node, dynamic 
constraint node, and the Nucleus component node. 

3.1.2 Nucleus object nodes  



3.1.3 Constraint nodes 

Constraint nodes help define relationships between 
Nucleus objects, or between the components of 
Nucleus objects. Currently, the manner of constraining 
is handled through a single, multipurpose node called 
dynamicConstraint. At the simulation start frame, 
this node helps build low level connections and 
relationships used by Nucleus during its solve. The 
constraint node also builds connections on frames 
where its enable flag (Enable attribute) is keyframed 
on. Keyframing the Enable attribute helps allow one to 
handle effects like animated grabs. For example, one 
can parent a Transform constraint for some nCloth 
vertices to a hand. As the hand grabs the cloth, the 
constraint can be enabled, which helps establish the 
rest position. As the hand continues to move, it pulls 
the cloth with it. Note that for some constraints, such 
as Slide on Surface constraints, the construction of the 
links may be time consuming, which could result in 
a slow rewind to the start frame or file load. 

The constraint has input nComponent nodes and it 
helps define how to relate these nComponents. The 
Component Relation attribute helps define how 
to relate the connected components: All to All, All 
to First, and Chain (Chain is a daisy chain based on 
the order the components are connected into the 
constraint.). For example, if one had several nCloth 
meshes that one wished to constrain to a body mesh, 
it would be possible to constrain them with a single 
constraint where body component was the first one 
connected to the constraint (connected to constraint.
componentIds[0]), and the Component Relation was 
set to All to First. If one wanted to form a chain of 
connections between a set of objects, one could use 
Chain as the Component Relation, although note that 
this relies on the order in which nComponents are 
connected to the constraint componentId array. Note 
that it is also possible to have multiple nComponents 
for the same nCloth (useful for specific lists of self links), 
although this cannot be setup through the UI currently. 

The toggle, Connect Within Component, helps 
define if links are made within nComponents, not 
just between nComponents. For example, if one 
wished to stiffen a shirt collar, one could have a single 
nComponent that specified the collar vertices, and on 
the constraint, select Connect Within Component so 
that the vertices will interconnect. 
 
The nComponents may have different types, and 
the constraint attempts to make the most logical 
connection based on the type being connected. For 
example, a point being constrained to an object will 
connect to the nearest point on the object, and the 
link will have stiffness relative to the orientation of 
the surface, not just the point on surface. Likewise, 
links to faces are affected by rotation of the face, 
while point to point links are not affected by 
surface orientation (if there even is a surface). A link 
between two faces will be stiff, while a link between 
two edges is freer to rotate like a hinge. Also, links 
between edges connect to the nearest point on 
each edge. Thus, if one connects the border edges 
of two planes that are just touching, the planes will 
stay attached along that border as they animate. If 
one instead connected the border vertices and the 
vertices did not exactly lineup, the planes could 
separate a bit. 

5

The dynamicConstraint node is most typically 
used for spring style links between components; 
however, it can also do things like collide between the 
components, apply a motion drag effect, apply a force, 
or disable collisions between components. The links 
between entities can also be dynamically broken by 
using the Glue Strength attribute. 

The nConstraint menu, which is used for creating 
constraints, has different items that are basically 
presets for common constraint setups (for example, 
Transform, and Point to Surface). However, there 
is a much larger set of effects that are possible 
by editing attributes on the dynamicConstraint 
and nComponent nodes. There are also some 
setups that may be useful which require custom 
node connections. It is currently not possible in 
the UI to create two nComponents nodes for the 
same nObject that feed into the same constraint. 
However, this is a useful setup if one wants to create 
lists of explicitly linked vertices, and by scripting 
node setups it is possible. 

Note that constraints on nParticles currently 
work only with initial state particles, because 
the constraint builds the links at the start frame. 
However, one can still use the older style springs 
for emitted particles.  



3.1.4 nComponents 
The nComponent node helps define the list of 
elements that a nObject passes to a constraint. This 
list may include vertices, edges, triangles, or the 
full object, and it is automatically constructed when 
one creates a constraint through the Maya UI. One 
may specify elements through an explicit list (array) 
on the nComponent, or the set of elements may 
also be implicitly defined as all elements or only 
elements of a particular type that lie along a border. 
Implicitly defined components have the advantage 
of continuing to work even when one changes the 
topology of the mesh. For example, one can define 
a constraint between two cloth planes such that 
boundary edges that are near to each other will be 
linked. One can then change the resolution of one of 
the cloth meshes, and the constraint will continue to 
work. If the connections were explicitly defined using 
edge indices, the connections might be between the 
wrong edges after a change of topology. 

Note that the nComponent must be all of a particular 
type:points, edges, faces or object, although, 
different nComponents for the same constraint may 
have different types. Also note that for nParticles, 
the only valid nComponent type is points. 

In addition to defining parts of an nObject to constrain, 
the nComponent has attributes for controlling the 
relative weighting of the component for the constraint. 
If one sets the weight of an nComponent to 0, it 
is affected by other components but does not affect 
other components: it is effectively a 1-way constraint. 
By default, all constraints set the component weights 
to 1.0, and thus are two way constraints, although 
it should be noted that all links to nRigid nodes (i.e. 
passive colliders) are effectively 1-way, because the 
nRigid cannot be moved by the simulation. 

nComponents can connect to Maya sets instead of 
using the explicit array on the nComponent. This 
is set up when one creates a constraint with the 
Use Sets option turned on. However, it adds a lot of 
nodes and connections, and does not really provide 
much in the way of making the constraint adapt to 
changes in nObject topology. Thus, you should avoid 
using sets with Nucleus constraints unless you are 
aware of this situation and are prepared to deal with it. 

3.2 Dependency graph connections
Nucleus entities connect to the nucleus node 
with two connections: one that supplies start 
frame data and one that supplies current frame 
data. When the nucleus node detects that time 
has changed to the start frame, it pulls on its input 
start state connections, causing each of those 
nodes to compute and set the start data on its 
internal nucleus structure. A runtime Id is passed 
through these connections instead of the actual 
Nucleus data. The connections serve two purposes: 

6

they help define the structural connections for the 
internal nucleus solver and they help trigger the 
setting of internal solver data from the dependency 
nodes. In the case of nCloth and nParticles nodes, 
there is also a connection from the nucleus node 
back to them, for purposes of updating nCloth and 
nParticle output data from the internal solved data. 

Above is a simplified view of dependency graph 
connections for a cloth plane with a transform 
constraint along with a colliding sphere (nRigid). 
 
The different nObject nodes (nClothShape1, 
dynamicConstraintShape1, and nRigidShape1) connect 
to the nucleus node. The nCloth is the only node that 
requires a return connection from the nucleus node 
because it needs the output of the solver in order to 
set its output position. The outputCloth1 node is the 
final output of the entire simulation. 

The general flow of data through the dependency 
graph is as follows: 

1. The output value of an nObject is requested (for 
example an nCloth output mesh, or an nParticle draw). 

2. The nObject helps evaluate its connection to the 
nucleus node outputObjects array. 

3. The nucleus node helps check to see if its current 
state is up to date. If not, it helps evaluate all its 
inputs needed for the current solve: either the start 
inputs if at the start frame, or the current inputs 
if at an advanced frame. This will trigger current or 
start frame evaluations on its input nodes. Once the 
inputs have been evaluated, it triggers the internal 
nucleus solver for that frame and returns the 
requested value back to the nObject. This tells the 
nObject that the internal solver state is now up-to-
date, and the nObject then sets its output from the 
internal solver state. 
 

When nObjects gets a pull on their output start 
state connections, they do the initialization of the 
internal nucleus objects. For nCloth, this means 
building a triangulated mesh for collisions and 
also defining arrays of links that handle stretch and 
bend resistance. When nObjects get a current frame 
evaluation, they generally only set internal attributes 
values from the nodes, meaning data structures that 
may change over time: the input attract mesh and 
evaluate Maya fields. 

Dynamic Constraints nodes have input connections 
from nComponents. There is generally one 
nComponent for each nObject that participates in 
the nConstraint (although potentially one could setup 
multiple nComponents for the same nObject). 

Simplified view of dependency graph connections for 
a cloth plane with a transform constraint along with a 
colliding sphere (nRigid). 



4.0 Nucleus Quality Settings
The primary quality setting in Nucleus is the 
Substeps attribute on the nucleus node. The more 
substeps one has, the more accurate the simulation. 
However, increasing the Substeps is relatively 
compute intensive and may not solve certain 
problematic cases, such as when a simulation starts 
out in a bad state. For these cases, Nucleus also has 
other less general purpose quality attributes such as 
Pushout and Trapped Check.  

4.1 Substeps
The default Substep setting of 3 is generally not 
high enough for detailed real world cloth models. 
Therefore, the first thing to try when encountering 
collision failure or excessive stretching is to 
increase the Substeps. Nucleus helps achieve better 
performance by a sparse interleaving of iterations 
of various computations like stretch and collision. 
Each computation performs at least one iteration 
per Substep. As one increases the Substeps, the 
interleaving will become less sparse and effects 
will better interleave with each other. For example, 
if the Max Collision Iterations is 4 and the Stretch 
Resistance is 20, there will be one collision iteration 
for every 5 stretch iterations as long as the Substeps 
is 4 or less. If the Substeps were raised to 10, there 
would now be 10 collide iterations for the frame, 
and thus 1 for every 2 stretch iterations. If Substeps 
were raised to 30, there would be 30 stretch and 
collide iterations per frame, and thus a 1 to 1 ratio. 
In general, stretching is not too bad when there 
is at least 1 collide iteration for every 10 stretch 
iterations. So, for a Stretch Resistance value of 500, 
one might want the Substeps at 50.  

Substeps also breaks up time into smaller chunks, 
which is especially helpful when objects are moving 
quickly, or when there are many close inter-colliding 
elements. There are even cases where increasing 
Substeps can speed up the solve, although in general, 
it will slow things down because some values may 
have more iterations per frame and the bounding 
structures are recomputed for each substep. 

4.2 Max Collision Iterations
Max Collision Iterations help determine the number of 
base iterations for collision within a step (or frame). It 
is perhaps poorly named, because the total collision 
iterations for a frame will be higher if the Substep value 
is greater than the Max Collision Iteration setting. One 
may think of the collision iterations as being at least as 
high as the Substeps. Making collision iterations lower 
than Substeps has no effect. In general, it can be useful 
to have Max Collision Iterations somewhat higher than 
the Substep value, because it is generally faster to 
compute a collide iteration than a full Substep. A Max 
Collision Iterations value around 1.5 times the Substep 
value can work well, although one is encouraged 
to experiment to find a value that works well for 
their setup.  

Note that internally, Nucleus may also compute 
5 sub-collision steps. These sub-collisions only 
kick in when a given collision iteration still has 
elements in collision after a given iteration. One 
cannot currently set these internal sub-collisions. 

4.3 Collision Flag and internal tessellation
The Collision Flag attribute helps determine if 
vertices, edges or faces of a mesh will collide. The 
radius of collision about these objects is determined 
by the Thickness attribute, or the Radius attribute in 
the case of nParticles. Note that for face collisions 
(Collision Flag set to Face), the solver will internally 
triangulate faces with more than 3 vertices. For 
quads, this amounts to a left “quad flip”, and the 
quad flip of the output nCloth mesh is automatically 
set to left so it will help match the internal 
tessellation used by Nucleus. For most nCloth, using 
the Face Collision Flag is generally the most useful 
and it is relatively fast. Note that larger Thickness 
attribute values can help allow for lower Substeps 
and Max Collision Iterations settings, although 
care needs to be taken if one also has self collisions 
(See Self Collision quality settings). 

4.4 Pushout and Trapped Check
Both Trapped Check and Pushout make use of 
triangle normals to define inside from outside of an 
object, and then they help push vertices outside an 
object. Trapped Check is the more efficient version 
of this process, and is only applied to vertices that 
are currently interpenetrating. Trapped Check only 
works with collisions enabled (the Collide attribute 
turned on), while Pushout can be applied even if 
collisions are off. 

Note that Self Trapped Check does not help push 
along normals. Rather, it simply helps disable 
self collision for vertices that belong to self 
interpenetrating triangles.  

Pushout always has an effect, even if Trapped 
Check and Collide are turned off. (One can actually 
use Pushout instead of collisions.). If a mesh has 
Pushout on it, then vertices of other nObjects will 
be helped pushed along the normal, if they are 
within the Pushout Radius. Pushout tends to get 
slower for large Pushout Radius values. Pushout 
works along the normal, so it should be avoided if 
one wants to collide both sides of a surface. When 
the Pushout is set to 1.0, it tries, in one step, to 
move the vertex out of interpenetration (including 
thickness values). However, in this single step, 
other effects like stretch may tend to pull the 
vertex back into collision (Increasing Substeps will 
help avoid this.). Note that Pushout values greater 
than 1.0 might result in an effect like an egg on 
a frying pan, where vertices are pushed up off a 
surface then continually fall back into the surface 
instead of being pushed up just to the point of collision 

7

The Pushout Radius should not be confused 
with notions of collision envelopes or thickness. 
Nucleus has a well defined notion of thickness for 
collisions that is separate from the pushout. The 
pushout may be thought of more as an applied 
force that goes out to the distance of the Pushout 
Radius from the surface (on the side opposite the 
normal). Pushout helps make most sense for closed 
objects that have an interior. Points on the inside of 
the interior are repelled to the outside of the object. 
When the Pushout is 1.0, then for a given iteration, it 
pushes points outward just to the point where the 
surfaces  just touch. Note that the pushout is always 
points being pushed out of the mesh, not triangles, 
so there may still be interpenetration along triangle 
edges after pushout. 

Trapped Check is like Pushout, but it only works 
when collisions are on (the Collide attribute turned 
on), and just for triangles that are in collision. So, 
if at the start frame, one has two objects that are 
intersecting, Trapped Check helps push out the 
vertices of intersecting faces. This is more efficient 
than using Pushout, if one already has collisions 
on, but it will not push out triangles that are not 
interpenetrating. For example, one could put a cloth 
sphere fully inside a cube and use Pushout on the 
cube to help push the sphere out of the interior of 
the cube. Trapped Check cannot do this. Trapped 
Check is turned on by default for passive collision 
objects (which are assumed to be closed surfaces 
like a body), while it is turned off by default for 
nCloth objects, which tend to be two sided sheets. 

Note that there was a bug in versions prior to 
Maya 2008 where Trapped Check was computed 
even when collisions were turned off. 

4.5 Self Collision quality settings
After Substeps, the Self Collision Flag and Thickness 
are the most critical attributes for good self collision 
quality. Max Self Collision Iterations may be useful, 
although one can usually manage just by increasing 
Substeps. Also, Self Trapped Check can help with 
stuck vertices. Self Crossover Push is generally less 
useful, and should only be used as a last resort. In 
general, Nucleus currently does not have the best 
techniques for resolving meshes that are initially 
modeled in self collision, thus it is important that 
the model be initially free of self collision. Collision 
between different objects at the start frame can be 
resolved using Pushout and Trapped Check, while 
Self Trapped Check and Self Crossover Push do not 
work nearly as well (This is because self collisions 
cannot be disambiguated by simply looking at a 
normal.). Note that the relative thickness between 
colliding components is adjusted to be never greater 
than their separation at the start frame. This helps  
keep the mesh from blowing up when the self 
collision thickness is larger than the triangle size,  



8

 
and additionally, it helps keep objects from blowing 
up where they are in collision or self collision at the 
start frame. 

4.5.1 Self Collision Flag and Self Collide Width Scale
For self collisions, it is important to understand 
the relationship between collision thickness and 
the method used for self collision. Thick self collisions 
can be slow to compute, especially when the Self 
Collision Flag is set to Full Surface. 

The Self Collision Flag initially defaults to VertexFace 
for a simple mesh and to Vertex for a complex 
mesh. The nCloth creation attempts to initialize the 
thickness and self collision thickness to good values 
based on the average triangle size. For a dense mesh 
with the vertex self collision, the Self Collide Width 
scale is set to 3 so that the thickened vertices roughly 
touch. (One can see this by setting the Solver Display 
to Self Collision Thickness.). If one changes the scale 
or resolution of an nCloth object after creating it, 
these default settings may no longer work well. 

Self collision performance is largely determined 
by how many collision pairs are generated. For 
thicker collisions, one will get more pairs. This is 
significant because processing collision pairs is one 
of the most computationally intensive tasks. A flat 
mesh may have no self collision pairs if it is thin, 
but as one increases the thickness, vertices may 
begin to collide with edges on opposing triangle 
neighbors, thus performance at a certain thickness 
could become dramatically slower. This is why 
thickness is more of a performance issue with self 
collisions than for collisions between objects. If 
one wants thick collisions between objects and 
needs full surface self collision, then lower the Self 
Collide Width Scale to help keep the solve from 
getting too slow.  

Vertex-to-vertex collisions are much faster to compute 
than other types, so, for a dense mesh with uniform 
sized triangles, it often makes sense to use vertex 
self collisions only. In these cases, it is frequently 
useful to increase the Self Collide Width Scale to the 
point where vertices just overlap with no holes to 
fall through. This case often may solve much faster 
than thinner full surface collisions. Also, due to the 
thickness of the self collision, one may get away in 
some cases with lower Substeps or Max Self Collide 
Iterations values. Another advantage of vertex 
collisions is that the self collision thickness helps 
provide a type of natural bend stiffness that can 
work better than using the Bend Resistance attribute. 
However, if Substeps and/or Stretch Resistance 
iterations are low, holes may open up where surface 
stretching allows vertices to push through into self 
collision. Thus, having a baseline for Substeps and  
Stretch Resistance iterations values may be important 
for vertex style self collisions. 

One may still need to use the Full Surface collision 
flag (Self Collision Flag set to Full Surface), 
particularly when there are large faces in the mesh 
or when one needs self collisions that are thinner 
than the triangle size. For closed objects, such as 
a cloth sphere, Vertex Face collisions will be faster 
than Full Surface, and they should be just as good. 
However, in cases where edges can self collide 
such as in the region where a shirt buttons at the 
front, Vertex Face may have problems, and Full 
Surface would be required. 

4.5.2 Max Self Collide Iterations
Max Self Collide Iterations helps determine the 
base iterating per step for self collisions. In general, 
one can set this attribute to the same value as 
Max Collision Iterations (on the nucleus node), or 
even ignore it and rely on Substeps because Max 
Self Collide Iterations will never be less than the 
Substeps value. For efficiency, one could key it to 
a higher value just for specific problem area or for 
fast moving frames. 

4.5.3 Self Trapped Check
Unlike Trapped Check, Self Trapped Check does 
not look at normals and do a push. Rather, it 
simply helps disable self collisions for vertices that 
belong to self interpenetrating triangles. This can 
be useful in areas where pinching occurs, such as 
when a character’s elbow interpenetrates with its 
belly, causing self collision failure. Self Trapped 
Check can help keep vertices from getting stuck 
in such regions. However, there is a little added 
computational overhead to using Self Trapped 
Check. In some cases, it can cause self collision 
failure to get worse. One way of using Self Trapped 
Check might be to key it on just for problem frames, 
and preferably, only when the cloth is pulling apart. 

4.5.4 Self Crossover Push
Self Crossover Push can, in some cases, help untangle 
places where, either self collisions have failed, or 
the surface was in self collision at the start frame. It 
does not use the surface normal in the same manner 
as Pushout, but rather it helps push along a tangent 
direction for overlapping faces. It can be slow, and 
in some cases, may make self collisions worse. It 
is best to try Self Crossover Push only when other 
methods fail.

5.0 Matching Real World Conditions
Many of the attributes in Nucleus: Friction, Stretch 
Resistance, and Stickiness, do not correspond 
directly to physical coefficients, and thus must be 
set by testing and matching observed behaviors (if 
one has a real world reference to match). However, 
there are some basic elements one can set based 
on real world units.  

5.1 Adjusting Gravity
Gravity is the most important basic attribute, and 
it strongly affects overall speed and sense of scale. 
In Maya, Dynamics and nDynamics do not adjust 
to the current unit settings in the preferences, 
and the default gravity treats a unit as being a 
meter. If one models at the default units setting of 
centimeters, the gravity will be off by a factor of 
100, and objects will fall as if they are enormous or 
in slow motion. Note how scale and time are related 
here—slow down a guy in a lizard suit and one has 
Godzilla. If one’s units are centimeters, then set 
the Space Scale on the nucleus node to 0.01. The 
primary effect of this adjustment is to make gravity 
100 times stronger. Also note that, if gravity is 100 
times stronger, the simulation needs to iterate 100 
times more per frame to help achieve the same 
quality, in terms of stretch resistance and other 
similar effects. (This assumes that gravity is the sole 
driver of motion in the scene).  
 
Another way of looking at this scenario is that the 
simulation now moves 100 times as fast, and to help 
accurately model this change, one needs proportionately 
more simulation steps. In general, one needs to increase 
many attributes to preserve the same behavior when 
increasing gravity, in particular Stretch Resistance, Bend 
Resistance, Compression Resistance, and Substeps.  

Note, however, that gravity is usually not the sole driver 
of motion. If one has cloth on a moving character, the 
quality generally needs to be high enough to handle the 
maximum acceleration of the body. For something like 
a kick boxer, the accelerations can be much greater than 
the effect of gravity. 

5.2 Mass
Mass is important for two properties: interaction 
of objects with each other and interaction of objects 
with air. When objects collide with each other, they 
transfer momentum based on the relative mass. 
Note that Mass does not affect the acceleration 
from gravity, although it does affect drag from 
air. The drag may be thought of as collision of the 
object with air molecules, and the relative mass of 
the air is part of the Air Density attribute on the 
nucleus node. In terms of the physics, the mass 
does not need to be in real world units for proper 
collisions as long as the relative values are the same 
(For example,  if object B is twice as heavy per unit 
volume as object A, that makes the mass of B twice 
that of A).  

However, there are two factors that help make 
Mass determination more complex: air resistance 
and point density. The collision interaction is 
handled using a point mass, where the surface area 
of a cloth or the radius of an nParticle is ignored. If, 
for example, a very dense cloth mesh collides with 
a very sparse mesh (i.e. large triangle size), it will 



seem proportionately more massive. In a similar 
fashion, if one makes particle water with many 
small particles then collides it with another system 
that has fewer large particles, the smaller or 
denser water will seem to be heavier, even though 
both systems have the same Mass value. Therefore, 
one may want to adjust the Mass to reflect the 
size of particle or the general area of coverage of 
a cloth vertex.  

5.3 Drag and Lift
Currently Drag needs to be factored in based on 
observation. Even if one knew the physical air density 
(air mass/ volume) and the point mass/volume, 
computing a drag coefficient would not be strictly 
accurate. This is because, currently, drag in Nucleus 
has a linear relationship with velocity, while in the 
real world, drag effects are relative to the square of 
the velocity. Part of the reason for this relationship 
is that the Drag currently assumes a fixed area (Or 
rather, the drag coefficient can be thought of as this 
area.). As a result, if one scales up a scene, the drag 
effects would seem proportionately much greater if 
it was non-linear because the assumed area is fixed 
instead of increasing as the square of the scale. 
 
Further complicating this is a problem where the 
Lift attribute is using the square of the velocity, 
and thus becomes too high for large scenes. For 
example, if the scene is 100 times the scale, then 
the Lift value should be multiplied by 0.01 to 
compensate. However, one of the reasons Lift 
helps provide nice results is its non-linearity: when 
objects have more lift effect the faster they move. 
Unfortunately, this is also not accurate as the drag 
effects, being linear, do not balance the lift at high 
velocities, which can cause instability. Thus, Lift 
should be used sparingly and with care. Hopefully 
this situation will be remedied in a future release.
 
Note that the effect of Lift and Drag is directly 
proportional to the Mass and Air Density, with 
more massive objects having less drag. Thus, if 
one adjusts the Mass of an object, and wishes the 
drag to stay the same, multiply the Drag and Lift 
values by the same factor. For underwater effects, 
one can increase the Air Density. Note that this 
is equivalent to either lowering the Mass, or Drag 
and/or Lift on objects. 
 
5.4 Tangential Drag
Tangential Drag corresponds essentially to how 
rough or sticky a surface is with regards to the 
air. When Tangential Drag is set to 0, cloth has no 
drag when it is slicing through the air like a knife. 
Most objects in the real world would have some 
resistance, just as the sides of a knife may stick to 
the material it is cutting through. When set to 0, 
the material is slippery, while at 1, the amount of 
drag is uniform in all directions in a similar fashion 
to a sphere. It is difficult to relate this attribute 
directly to a real world physical unit, but for general 

cloth in air, it should be a low but non-zero value. 
Adjusting Tangential Drag also helps provide a 
sense of terminal velocity for a plane falling edge 
on. Otherwise, the plane will continue to accelerate 
indefinitely as it falls. 
 
5.5 Friction
The friction coefficient (Friction attribute) in Nucleus 
is designed in a 0 to 1 range, where 0 is no friction 
and 1 is total friction. For collisions, the friction used 
is the average of the Friction values for each surface. 
Thus, if the Friction values for the two objects were 
0.0 and 1.0, the friction for the collision would be 0.5. 
If instead the values were 0.0 and 2.0, the resulting 
friction would be 1.0 (or full friction). Note that 
one can use coefficients greater than one as well as 
negative coefficients, although the resulting average 
will be clipped if it is greater than 1.0. However, it is 
not clipped (currently) if less than zero, and negative 
Friction values actually help add energy and increases 
motion, which can lead to instability, although it is 
useful on occasion. It is important to realize that the 
Friction will not always stop sliding when it is at a 
value of 1, although as Substeps increases, Friction 
is more likely to stop the sliding. In some cases, the 
Stickiness attribute can be used to help stop sliding 
without requiring higher Substeps. For strong friction, 
it can also help if Max Collision Iterations is set no 
greater than the Substeps. 
 
5.6 Stretch Resistance and Bend Resistance
Stretch Resistance and Bend Resistance are designed 
in a zero to infinity range, and by default are defined 
relative to each link in the cloth. Also, they vary 
in a linear fashion unlike real objects, which have 
complex non-linear stretch characteristics. Thus it 
would be futile to try and relate real world stretch 
measurement values to Stretch Resistance and Bend 
Resistance settings. In general, for certain things 
like cloth, one wants little or no stretching, so it is 
generally a matter of finding the lowest acceptable 
value for Stretch Resistance and Substeps.  

5.6.1 Real world simulation example
Let’s say one wishes to match a real world flapping 
flag. First, the Space Scale attribute on the nucleus 
node should match the units of the flag model (0.01 
for cm). Next, the Wind Speed value should match 
the speed of the wind in units/sec. It may help 
to create a simple, one polygon cloth plane with 
Tangential Drag set to  1 and Drag set to  1 (or a large 
value), then watch how fast the plane moves in the 
wind. Then, adjust the Wind Speed on the nucleus 
node to help match the motion of a bit of cotton 
fluff in the reference. The mesh for the cloth flag will 
need to be modeled with enough polygons to match 
the desired level of detail in the folds of the real flag, 
and initially be constrained in a manner similar to 
the real flag. At this point, the rest of the simulation 
is a bit less like physics and more like cooking. The 
required Stretch Resistance and Substeps will depend 
on the density of the flag mesh as well as the scene’s 

scale and wind speed  (Very large flags can actually 
simulate with lower Substeps because they move 
more slowly). Some Stretch Damp will generally be 
required to keep the flag from being too bouncy. 
The Bend Resistance would generally be low or zero, 
especially for a large flag made of fine silk. For smaller 
flags, or ones made of thicker less flexible materials, 
one may need more Bend Resistance. With Stretch 
Resistance and Bend Resistance set, one can now 
adjust the Drag to help match the reference. Start 
with Lift set to 0, and the Tangential Drag at a small 
but non-zero value. One can then increase the Drag 
(or lower the Mass) until the flag is lifted and flaps 
in a manner similar to the reference. To make the 
flapping more dynamic, one can use some Lift, but be 
careful not to make it too high. Lift currently is non-
linear with regards to velocity, so large scale scenes 
need to use less. If the Space Scale is 0.01, the Lift 
generally should not be much more than 1/100th the 
value of the Drag value. If the Space Scale was 10.0 
(i.e. a unit represents 10 meters), the Lift value should 
generally not be more than 10 times the Drag value. 

6.0 Scene Scale and Units
In Maya, there are a variety of problems that can 
happen when one sets the units to something other 
than centimeters. In general, the more effects oriented 
features in Maya tend to fair worse in terms of using 
non-default units.  

Maya Dynamics, such as Maya Fields do not adjust 
based on the unit settings. For example, the Maya 
Gravity field assumes that the size of a unit is a 
meter (default value of 9.8), regardless of the unit 
setting in the preferences. Nucleus was developed 
using the same scaling setup as Maya Dynamics to 
make sure both dynamics systems were similar.
 
Nucleus helps provide a Space Scale attribute to help 
allow one to compensate for different interpretation 
of units. If one considers a unit to be a centimeter, 
regardless of the actual units setting, make the 
Space Scale 0.01. The main effect of this is to make 
the nucleus gravity 100 times stronger. Note that 
the Space Scale on Nucleus does not adjust the 
strength of external fields, meaning that one needs 
to adjust field settings individually to compensate 
for scale. If one is using a Gravity Field node and one 
is treating units as centimeters, set the Magnitude 
to 980.0. With real world gravity and detailed cloth, 
one typically needs to increase the Substeps and Max 
Collision Iterations. The Stretch Resistance, Bend 
Resistance, and Compression Resistance values may 
also need to be increased. 

An interesting observation is that if one has a giant 
character or flag, it is easier to simulate than a small 
one. The acceleration of gravity is proportionately 
slower at large scales, which is roughly equivalent 
to slowing down time (This is why effects artists 
used slow-motion for the guy in the Godzilla suit). 

9



10

Note also that lowered gravity helps make air drag 
more noticeable. A factor that tends to even things 
up, however, is that fabric would be proportionately 
thicker at very small scales (like clothing on a mouse), 
and its motion is much more damped and stiff. The 
solver scale does not compensate for this effect and 
assumes that the smaller scale cloth would be made 
out of thinner threads. However, the effect of gravity 
is still very strong at the scale of a mouse. Many 
productions with characters at this scale slow down 
the overall motion and effect of gravity to make them 
seem more human. 

7.0 Slow or Fast Motion
One can retime an nCloth cache simply by making 
it a Trax Editor clip and re-scaling it. This works 
well if one is re-timing all the related animation as 
well. However, one may want to speed up or slow 
down the simulation relative to the animation 
of passive objects in the scene. The attribute that 
controls the overall speed on the nucleus node is Time 
Scale. One can also adjust the frames per second (time 
units in preferences). 

With nParticles, if one retimes a cached system, 
it currently does not interpolate between cached 
frames. Thus, it may look jerky if one slows down a 
particle cache too much. Note that nCloth, however, 
does interpolate cached frames, so one can slow 
down nCloth caches and still have smooth motion. 
 
8.0 Maps and Per Vertex Cloth Properties
Cloth per vertex attributes and textures are applied 
as a scale factor on the relative base attribute. So, for 
example, values for rigidity per vertex (when Rigidity 
Map Type is set to Per-vertex) need to also have the 
base rigidity (Rigidity attribute) set to some non-zero 
value in order to have an effect (because zero times 
any value is always zero). Also, it is important to 
realize that per vertex values should generally be kept 
in the range 0.0 to 1.0. Otherwise, the simulation 
may become unstable since the base iterations used 
for an effect is determined by the base attributes. 
Thus, painting a Bend of zero everywhere except for 
a few points will not speed up the solve, because the 
base iteration is still defined on the Bend Resistance 
attribute value. Also, using values beyond 1.0 
might push the solve into an unstable region 
(Although, one could experiment with this, and 
in some cases, values greater than 1.0 might still 
be stable yet allow for lower base attributes values 
and thus fewer iterations). 

One exception to cloth maps being between 0 and1 
is wrinkle maps, which may have numerous values, 
including negative ones. In fact, negative value wrinkle 
map values are frequently useful. For file or procedural 
textures, one can use a negative alpha offset to help 
allow for wrinkles that push in, not just out. 

9.0 Presets and Scaling Relation 
If one used an nCloth preset (e.g. burlap), the Scaling 

Relation attribute is set to Local Space. (nCloth presets 
currently use this setting.) Local Space essentially helps 
normalize attributes, such as Stretch Resistance and 
Bend Resistance, so that the material behaves the same 
for different resolution meshes. The default setting 
of Scaling Relation is Link, which instead helps define 
these attributes relative to each link so that a high 
resolution mesh appears to have more stretch than a 
low resolution mesh. Note that with Scaling Relation 
set to Local Space, the performance difference between 
low and high resolution meshes will also be greater, 
because there are more iterations required to preserve 
the behavior as the resolution increases. One thing 
to be aware of is that when Scaling Relation is set to Link, 
the values for Stretch Resistance and Bend Resistance 
indicate the number of internal iterations per step.
 
The different elements of the cloth solve iterate 
at different rates and the solver interleaves these 
iterations. For example, if the Max Collision Iterations 
is set to 4 and the Stretch Resistance is set to 20 
(with Scaling Relation set to Link), then there will 
be one collision computed every 5 stretch iterations. 
Collide iterations are generally more expensive than 
stretch iterations, but one generally needs one for 
at least every 8 stretch iterations. The substeps help 
provide a minimum level of iteration as well as help 
allow the solver to take smaller steps. In general, the 
quality of the simulation will improve with increasing 
Substeps, and usually will take longer to compute. 
Each substep Nucleus recomputes bounds, and 
iteration below the substeps will now be done at the 
substep level. For example, if the Bend Resistance 
is 1 and the Substeps is 10, Nucleus computes 10 
iterations of bend per step (The intensity of bend 
resistance per iteration is proportionately less, so the 
overall effect is roughly the same.). 
 
When the Substeps are low, the collisions are more 
likely to fail and low Max Collision Iterations can also 
result in stretching where the mesh is in collision, even 
if the Stretch Resistance is set to a very high value. As 
a general rule of thumb, set the Substeps to values that 
are at least 1/10th of the Stretch Resistance value, and set 
the Max Collide Iterations to a value around 1.5 times the 
Substep value (note that internally the collide iterations 
are at least the Substep value even if the Max Collide 
Iteration attribute value is set lower than Substeps). 
 
The current presets are generally on the low quality 
side to keep performance optimal. In many cases, one 
may want to increase Stretch Resistance. The true 
stretch resistance of materials like silk is so great that it 
would take a very long time to simulate. It is generally 
sufficient to simply not see noticeable stretching for 
computer graphics. Also, one can use Stretch Damp, 
which is preferable to the global Damp in many cases 
(The nCloth Presets were made before Stretch Damp 
was added to Maya.). Also the presets do not set 
the Substeps attribute, which often needs to be 
higher than the default settings. 
 

10.0 General nCloth character setup
Setup one’s character so the cloth will respond 
correctly to poses and translation of the character: 
first do a bind skin (Skin > Bind Skin) on one’s cloth 
to one’s skeleton before making it nCloth. The 
nCloth will help deform and translate with one’s 
character when one sets its start position. Note 
that, by default, the rest shape of the nCloth is set 
to the start shape of the nCloth. If one has posed 
the character, then the start nCloth shape may be 
stretched heavily in places, and thus would not be 
a good rest shape. One can set the rest shape to 
be the non-deformed cloth as follows:  

1. In the Hypergraph, list Input and Output 
connections and find the mesh node for the cloth 
that is just upstream of the bind skin deformation. 
This will have Intermediate Object set to on.  

2. Turn Intermediate Object off, and one can see the 
rest cloth shape in addition to the posed cloth.  

3. Select the nCloth shape node in addition to this 
mesh, and then select nMesh > Rest Shape > 
Connect Selected Mesh to Rest Shape. If one sets 
the start pose to something really stretched, the 
cloth will pull back when one simulates. One can 
then do relax initial state (nSolver > Initial State 
> Relax Initial State) to get a natural looking start 
position. Note that the location of the rest shape 
is not important, only the shape. Also, one can 
turn Intermediate Object back on when one is 
done to hide the rest shape. 

If one doesn’t need to pose the character, but simply 
translate the position, then one could simply parent 
the cloth input mesh to the base character position. 
Note that one needs to parent the mesh, not the 
nCloth node. Also, if one used World Space Output 
when one created the nCloth, one needs to take care 
to parent the input and not the output mesh. At any 
rate, if one used the bind skin approach above, there 
should be no parenting required. 

Also see the tutorial at the following location:
http://area.autodesk.com/index.php/blogs_duncan/
blog_detail/basic_cloth_on_character_setup. 

11.0 Effects
11.1 Shattering Glass 
To help create shattering glass, one can simply make 
the object nCloth, and then create a Tearable Surface 
constraint, selecting either the full object or just the 
edges one wishes to be breakable. (If one has a polygon 
cube, increase its subdivisions to have lots of breakable 
bits, as the Tearable Surface constraint breaks along the 
polygon edges.) If desired, one can select edges before 
creating the Tearable Surface constraint, and the object 
will only be breakable along those edges. 
 



However, the one of the best ways to do this is to 
first split up one’s geometry the way one wishes 
it to break. This is a matter of detaching edges, but 
also keeping everything part of the same mesh (the 
breakable parts should show up as boundary edges). 
Then, make the object nCloth. At first, the object falls 
apart, but one can create a constraint and adjust Glue 
Strength to hold the pieces together. A very fast way 
to do this is to select the mesh, create a Component to 
Component constraint, and then set the following:  

•Constraint Method to Weld
•Connection Method to Within Max Distance
•Max Distance to 0.

This will help constrain between the overlapping 
boundary points. However, there will not be bend 
resistance across the joint. For resistance, one 
needs to create a Weld Adjacent Borders constraint. 
One can then use the Bend Strength setting on 
the constraint (Be aware that bend constraints are 
currently VERY slow to compute for a large number 
of edges.). To help make the surface look continuous 
until it breaks, do Edit Mesh > Merge and Normals > 
Soften Edge. (This is the same setup that is created 
by the Tearable Surface constraint menu.) 

For glass, one will need very high Stretch Resistance, 
Compression Resistance, and Bend Resistance 
values. Also, the Substeps should be increased. 
Be mindful of the self collision method and self 
collision thickness, as thick self collisions can slow 
down the simulation. 

To get the thickness of the glass simply extrude 
after either creating the Tearable Surface constraint 
or manually making the tearable setup with Edit 
Mesh > Merge. With the extrude downstream of the 
polyMergeVert node when the mesh breaks up, one 
gets cracks in the glass.  

For very stiff objects like glass, an alternative 
constraint might be a Transform constraint with the 
Glue Strength set such that each piece would stay 
in place until knocked by an object. However, if one 
does this, one can have chunks of the window break 
off yet hold together, which could look unnatural. 

11.2 Tight clothing and shrink wrap
One can shrink nCloth by lowering the Rest Length 
Scale attribute. For a lot of shrink, one might want 
to animate the attribute setting, gradually reducing 
its value from 1.0 to avoid a violent snap. If the 
garment is stretchy and tight fitting like nylon 
stockings, one can also lower the Stretch Resistance 
while adjusting Rest Length Scale. Otherwise, the 
stretch may fight too hard against collisions. 

For shrink wrap, one can lower the Rest Length 
Scale, and at the same time, make the nCloth 
pressure negative, simulating vacuum packing.

11.3 Attaching buttons to shirt
To make the task of adding buttons to an nCloth shirt 
easier, one can use a parent-to-surface script. One 
can access the parentToSurface.mel script file from 
Duncan’s Corner at the AREA at the following location:  

http://area.autodesk.com/index.php/blogs_
duncan/blog_detail/parent_to_surface_script.
 
Look under Related Materials for the parentToSurface.
mel script file. 

This script sets up hair follicle nodes on the mesh to 
attach objects. Hair follicles are good for deriving 
a full transform with good rotation from a point 
on a mesh. 

For buttons that actually collide with the shirt and not 
just move with it, one can create a single quadrangle 
plane for each button (each should have different 
UVs). Make all the buttons a single nCloth object with 
high Stretch Resistance, Compression Resistance, and 
Bend Resistance values, but no Rigidity. The cloth 
thickness can be set to help match the buttons. Use a 
Component to Component constraint to help simulate 
the button thread connections, and then use the 
parent to surface script to parent the detailed buttons 
to the simple planes. 

11.4 Underwater Shirt
When a shirt is underwater, the drag acting on the 
shirt is much higher. To produce this effect, one can 
simply increase the Air Density on the nucleus node, 
or increase the Drag and Lift on the nClothShape 
node. The effect of passive objects on the water 
flow is important: On the passive (nRigid) objects, 
make the Air Push Distance about one or two 
times the size of the objects. The Air Push Vorticity 
(added in Maya 2008) can be used to simulate water 
flowing around the passive objects without needing 
a fluid simulation. Also, if the cloth has neutral 
buoyancy, set the Gravity to 0. 

One could also apply a fluid effect as a field on 
the cloth, although the fluid effect will tend to keep 
adding velocity like a force, rather than behaving like 
an air or drag field. However, as long as the nCloth 
Drag is relatively high, this approach should work. 
 
11.5 Simulating only pant leg bottoms
In some cases, one may want to use a Bind Skin 
animation for the upper part of pants while dynamically 
simulating just the bottom of each pant leg. This setup 
can run much faster than simulating the entire pant. 

One can also try painting Input Attract, making it 1.0 
everywhere except the pant bottoms. Unfortunately, 
this does not speed up the solve. 

An alternative workflow that may simulate faster is 
the following: 

11

1. Before creating nCloth do a bind skin (Skin > 
Bind Skin) on the pants (if one hasn’t already), 
and then do a Mesh Separate at the knees 
(with history) so there are now two meshes.  

2. Make the bottom part of the pants nCloth, and 
on the nCloth set Input Mesh Attract to 1.3 or 
so. On playback it should now simply follow 
the skeleton deformation.  

3. Paint the Input Mesh Attract (nMesh > Paint 
Vertex Properties > Input Attract) on the pant 
legs such that the very top is white, with black 
everywhere else. The pants now playback with 
nCloth dynamics.  

4. Rejoin the top and bottom pant legs by doing 
Mesh > Combine, Edit Mesh > Merge, and 
Normal > Soften Edge (all with history).  

5. Turn off Self Collisions on the nCloth if they are 
not needed.  

Another basic technique to speed the simulation 
up is to do a mesh smooth (Mesh > Smooth) 
downstream of the cloth, rather than simulating 
the detailed mesh. Or, one can simulate on low 
resolution cages that are then used as wrap deformers 
on one’s final mesh. 

11.6 Rebuilding constraints for mesh 
topology changes 
If one has explicitly defined a constraint to connect 
particular vertices, edges, or faces, the constraint 
may no longer work properly if one changes the 
topology of the nObject in some fashion, such as 
substituting a higher resolution mesh for a cloth 
object. This happens because the indices of the 
components may now be different due to the 
topology change. To fix this, one can reselect the 
components on the object that was modified as 
well as the constraint, then select nConstraint> 
Replace Members. (If there is only one constraint 
for the object, one need not select it.)
It is often possible, however, to define the 
nComponents in an implicit fashion so that it 
will still work, even though the topology of the 
constrained object has changed. If, when creating a 
constraint, the selection consists of either objects 
or components (vertices, edges or faces), then the 
resulting constraint will be topology independent. 
This translates into the Elements attribute on the 
nComponent node being set to either All or Borders. 
However, one may still not wish to connect to all 
elements of the nComponent. There are currently 
three primary methods one can use to implicitly 
define subsets of components to constrain: 

Method 1. The elements attributes may be set to 
Borders if only border components are desired.  



12

Method 2. Set the constraint Connection Method 
to Within Max Distance to filter out connections 
based on distance. One can then use Within Max 
Distance and set a Connection Density value to 
define the connections formed.  

Method 3. Either use nConstraint > Paint 
Properties by Texture Map> Strength or assign a 
2D texture to Strength Map on the nComponent. 
This will not remove constraint links, but it will help 
remove their effect wherever the texture is 0. Note 
that one needs to use a texture map, not paint per 
vertex values because per vertex values would be 
affected by topology changes to one’s mesh. 

Note that the Weld Adjacent Borders constraint 
uses both methods 1 and 2 above. It helps provide 
a resolution independent method of stitching 
seams between cloth objects. 

In rare cases, one may be able to get some 
topology independence of constraints by using 
sets (Use Sets), although this will only work with 
very specific construction history. Most changes 
to construction history will not be properly 
compensated for by sets. Also, sets add a great 
deal of complexity to the constraint setup so the 
Use Sets option for constraint creation should 
be left off unless one is very advanced. Also note 
that for nComponents, the sets used must be all 
of a particular component type. For example, one 
should not mix edges and vertices in the same set. 

12.0 Maya Caching of Nucleus Objects
Information about Maya nCaching workflows are 
already covered in the Maya documentation—one 
can create them, delete them, blend them, modify 
them in the Trax Editor. Basic cache file format is 
covered too—Cache files have an xml header, and 
one of more .iff files that contain the actual cached 
data. For the details of the actual cache formats, refer 
to the Python™ scripting examples that demonstrate 
reading a geometry cache—see the cacheFileExample.
py and cacheFileConverter.py scripts in the devkit/
pythonScripts area. 

In this section of the document, the following 
nCaching topics are discussed: 

•Similarities and differences between the different 
nCache files—when one can and can’t use them 
together
•Cache node connections, channel names, 
interpretations and troubleshooting a messed 
up cache
•Creating caches in batch
•Optimizing one’s playback from the cache (or not)
•Some known bugs in Maya 2009, and how to 
work around them. 

nCloth caching, nParticle caching,  geometry caching  
(and fluids caching) share the same cache format and 

cache nodes, and the data can be shared to a certain 
extent. However, there are some fundamental 
differences between the different caches that one 
needs to be aware of when using different caches in 
the same scene. 

12.1 Similarities and differences between file data
12.1.1 So what data streams get cached for 
which objects?
Geometry cache:  positions, local space only 

nCloth cache:  cached from the solver internal state 

• Positions  – local or world space
• Positions and Velocity – local or world space

nParticle cache: cached from the particle 
attribute state

nParticles caches have: particle Id and
AgePosition – local space 

• Position and Velocity – local space
• Dynamics and Rendering – the functionality above as 

well as mass, lifespanPP, radiusPP, opacityPP, rgbPP,   
and the sprite placement attributes if they exist.

• All – the functionality above as well as other 
dynamic PP attributes that have been created
 
Note that in future additional attributes may 
be added to the cache as needed. 

12.1.2 Cache layout
File per frame or single cache? File per-frame helps 
allow one create larger caches and avoid the 2G iff 
file limit, and it also helps allow one to replace cache 
frames. Single file is tidier, and makes it easier to 
package up a cache. 

nParticle caches require file-per-geometry, and the 
UI will turn it on internally, even if one didn’t specify 
it. So, if one caches nCloth and nParticle objects at 
the same time, one will still end up with file-per-
geometry. If one tries to force nCloth and nParticle 
objects into one file by using the cache command 
directly, one will be sorry. Geometry caches and 
nCloth caches can be saved either way, but there is 
currently a bug with position and velocity caching 
that may force one to fix some of the connections 
manually afterward. If one plans to create caches 
and then assign them to different objects later on, 
having multiple object data in a file will lead to 
confusion. If one plans to experiment with blending 
between caches, one should consider ahead of time 
whether or not one wishes to do this per-object 
before deciding on how to cache. (As for fluids, the 
UI doesn’t let one do geometry per cache, but the 
cache file command will allow one to do it.) 

Float or Double? Geometry caches help allow one 
to store points as either float or double. nCloth 
data does not give one the option and always 
stores as float, while nParticles don’t give one 

the option and always store as double. Why does 
it work this way? If the geometry cache positions 
are doubles, one is free to choose to save them as 
floats to optimize cache file size, if float precision 
is good enough for their purposes. For the nCloth 
cache, float was chosen because the internal solver 
state is float, and this avoids introducing errors by 
needless conversion back and forth between floats 
and doubles. For nParticles, total state is defined 
by the particle attributes since expression can be 
applied post-solve to get the final state, and these 
are applied to the attributes, which are doubles. 
But they are saved as float anyway by default, to 
keep the file size down. 

Fortunately, the cache command and cache node 
will swap back and forth between float and double, 
and the nCloth node will accept float or double data. 

12.1.3 Assigning caches between types
nCloth cache as geometry cache – works as long as 
the data is in the same space 

Geometry cache as nCloth cache – works as long 
as the data is in the same space  

nParticle cache to nCloth or geometry – works but one 
may have to remap the channel name from position to 
positions  - see section on connections below 

One can’t assign an nCloth or geometry cache to 
nParticles, because particles need Age and ID. One 
can’t exchange a fluids cache for any of the other 
caches in a meaningful way. 
 
12.2 Connections and Channel names
12.2.1 Channel name conventions
For a single channel cache, whether there is one object 
or there are multiple objects, the channel is the object, 
while the interpretation is the attribute name. An 
example of the cache description file is as follows: 

<channel0 ChannelName=”nClothShape1” 
ChannelType=”FloatVectorArray” ChannelInte
rpretation=”positions” SamplingType=”Regular” 
SamplingRate=”250” StartTime=”250” 
EndTime=”6000”/> 

<channel1 ChannelName=”nClothShape2” 
ChannelType=”FloatVectorArray” ChannelInte
rpretation=”positions” SamplingType=”Regular” 
SamplingRate=”250” StartTime=”250” 
EndTime=”6000”/> 

For a multiple channel cache, the channel name 
is nodeName_attribute and interpretation is the 
attribute name. An example of the cache description 
is as follows: 



<channel1 ChannelName=”nClothShape2_positions” 
ChannelType=”FloatVectorArray” ChannelInte
rpretation=”positions” SamplingType=”Regular” 
SamplingRate=”250” StartTime=”250” 
EndTime=”6000”/> 

<channel2 ChannelName=”nClothShape2_velocities” 
ChannelType=”FloatVectorArray” ChannelInter
pretation=”velocities” SamplingType=”Regular” 
SamplingRate=”250” StartTime=”250” 
EndTime=”6000”/>

If one attempts to cache a multiple channel and 
single channel object together in the same cache, 
one may end up with both, and then have to fix the 
connections on the cache node manually.

12.2.2 Data connections – per channel or single 
connection?
The geometry, nCloth, and fluids caches have per-
channel connections, while the nParticle cache has 
one large connection which has all the data. Both have 
advantages. With a per-channel cache, one can select 
which piece of data one wants to read from the cache 
and connect to each attribute. This means one doesn’t 
need to read the data one doesn’t want. One cache 
node can be connected to multiple objects. Data can be 
blended per channel, as long as the caches contain the 
same data; it’s very convenient. However, one cannot 
attach a new file that has different data. If one wants to 
add a new type of data, one needs to add new attributes. 

Since nParticles could have anywhere between 
three and many cached attributes, it was preferable 
to be able to connect them with one connection. So, 
if one browses for a different particle cache that has 
a different set of cached attributes, one can leave 
the connection the same. Actually, one cheats and 
leaves the positions connection there as well, since 
much of the nCaching UI counted on the presence 
of that connection.  

On the cache node there are four attributes of 
interest for how data gets passed between the 
cache node and cached node: 
 
inRange –Is set if there is data on some channel 
in this cache at this time. Normally, if there is data 
for one channel at this time, then there should be 
data for all of the channels. However, if data was 
appended with different cache settings than the 
cache was originally created with, it may be possible 
for some channels to have a different range. If one 
suspects that something like this is happening, look 
at the XML header for the ranges of each of the channels. 
Of course, if the cache was created with an application 
other than Maya, it’s the one’s responsibility to make sure 
that the headers reflect the actual content of the files.
 

channel – If there is more than one channel in the cache, 
and the data is individually connected per channel, this 
attribute is used to select which data is going out on 
which connection. For example, if one has an nCloth 
cache with velocity: 

channel[0] is set to “nClothShape1_positions” 

channel[1] is set to “nClothShape1_velocities” 

outCacheData – Individual data channels are passed 
through elements of this attribute. – in the above 
example: 

nClothShape1Cache1.outCacheData[0] is 
connected to nClothShape1.positions 

nClothShape1Cache1.outCacheData[1] is 
connected to nClothShape1.velocities 
So, if one initially had a cache with only positions 
and one browsed to a cache that contained velocities 
too, one would need to manually set up the velocity 
channel. For example: 
 
setAttr -typ “string” nClothShape1Cache1.
channel[1] “velocities”; 

connectAttr nClothShape1Cache1.outCacheData[1] 
nClothShape1.velocities; 

For nParticle cache connections, a single large 
connection is used instead: 
 
outCacheArrayData  - this attribute connects to 
nParticleShape.cacheArrayData 

At the moment, there’s only support for one nParticle 
system’s data per cache. outCacheArrayData is a 
single attribute and not a multi, and the cache 
channels are collected in that attribute, using the 
interpretation as the key. If the interpretation does 
not match the name of a per-particle attribute, the 
data will not be read back into the nParticle node. 

The positions connection has been retained because 
much of the nCloth UI checks that connection. If 
there are problems when attaching an existing 
cache, one may need to check that the right channel 
(i.e. the position channel name from the xml header) 
is selected. 

12.3 Creating caches in batch
Command documents for the 
doCreateNClothCache command have not been 
created. Use the doCreateNclothCache command 
for both nCloth and nParticles. For example: 

doCreateNclothCache 4 { “2”, “1”, “12”,  
“OneFilePerFrame”, “1”, “”,”0”,””,”0”, “add”, “0”, “1”, 
“1”,”0”,”1” } ; 

One needs to select the objects to cache first, and 
one should ALWAYS do cache per geometry for 
nParticles. 

global proc string[] doCreateNclothCache( int 
$version, string $args[] ) 
 
Description:
Create cache files on disk for the select ncloth object(s) 
according to the specified flags described below. 

current version = 4 

$args[0] = time range mode:
             time range mode = 0 : use $args[1] and 
$args[2] as start-end
             time range mode = 1 : use render globals
             time range mode = 2 : use timeline
$args[1] = start frame (if time range mode == 0) 
$args[2] = end frame (if time range mode == 0) 

$args[3] = cache file distribution, either “OneFile” 
or “OneFilePerFrame” 

$args[4] = 0/1, whether to refresh during caching 
(not so interesting in batch) 

$args[5] = directory for cache files, if “”, then use 
project data dir 

$args[6] = 0/1, whether to create a cache per 
geometry 

$args[7] = name of cache file. An empty string can 
be used to specify that an auto-generated name 
is acceptable. 

$args[8] = 0/1, whether the specified cache name is 
to be used as a prefix 

$args[9] = action to perform: “add”, “replace”, 
“merge” or “mergeDelete” 

$args[10] = force save even if it overwrites existing files 

$args[11] = simulation rate, the rate at which the 
cloth simulation is forced to run 

$args[12] = sample multiplier, the rate at which 
samples are written, as a multiple of simulation rate. 

$args[13] = 0/1, whether modifications should be 
inherited from the cache about to be replaced. 

$args[14] = 0/1, whether to store doubles as floats 
(cloth is all floats anyway, if one does this for 
particles, one might lose precision) 
 

13



14

12.4 Optimizing playback from the cache (or not)
Before one creates one’s cache, one should think 
about how one will be playing it back. The big 
question is: Does one plan to append or resume 
simulation? Or, does one plan to just play back off 
the cache, or perhaps blend it with other caches?
 
When playing back off the cache, the solver state 
is updated at every frame, as it’s not actually 
known when the end of the cache will be reached. 
And, if only some of the objects attached to one’s 
solver are cached, their state has to be updated in 
order to be able to solve the rest correctly. If one 
knows one isn’t going to do either of the above, 
one can disable the active cached nObjects and 
the nucleus node in order to help get the best 
performance from the cache playback. 

On the other hand, if one wants simulation to resume 
off the end of the cache, there are a few other things to 
consider. One will need to make sure that one’s saving 
out enough data to the cache to resume simulation, 
and one will need to be aware of the problem areas for 
getting an exact match when playing back. Consider 
the following: 

nCloth - Make sure one caches position and velocity 
(Select Position and Velocity for the Cacheable 
Attributes attribute option.). If one only caches 
position, then the velocity will be the average velocity 
across the frame, which will not be correct for vertices 
which collided during the last cached frame. Note 
that there can be precision errors with a local space 
Nucleus object cache: use a world space nCloth if 
exact precision is needed. Note that if there is a 
self-collision failure during the last cached frame 
there may be visible differences when resuming 
simulation. So, make sure that the quality settings are 
high enough to prevent self collision failures if exact 
precision is needed. Several other factors may also 
cause differences when resuming simulation using: 
Rigidity, Wind Noise, Wind Self Shadow, and the 
constraint Connection Density Range. In these cases, 
the simulation quality may not be any worse but the 
results may be different. 

nParticles - Depending on one’s expressions 
and events, one may need to cache either 
Dynamics and Rendering or All. Select either 
Dynamics and Rendering, or All for the 
Cacheable Attributes attribute option to get 
the simulation to resume correctly. The cache 
is currently created with “save double as float” 
on by default. This should not cause significant 
differences for the dynamic state, since this 
is computed as float. However, expressions 
computed on double attributes may produce 
different results. If this is causing visible errors, one 
may also need to invoke the doCreateNClothCache 
command manually (see above) to force the 
attributes to be saved as double. This means that 
one’s cache will be twice as big – it’s one’s own 
decision. Note that the random emission seeds 
are not currently cached, so while the simulation 
will help match for particles in existence in the last 
frame of the cache, subsequent emission may be 
different.

Autodesk and Maya are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. Python is a registered trademark of Python 
Software Foundation. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product offerings and specifications at any time 
without notice, and is not responsible for typographical or graphical errors that may appear in this document. 

© 2009 Autodesk, Inc. All rights reserved.


