
Autodesk MapGuide® Enterprise 2011

Developer’s Guide

April 2010

© 2010 Autodesk, Inc. All Rights Reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be
reproduced in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission of the copyright holder.

Trademarks
The following are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries:
3DEC (design/logo), 3December, 3December.com, 3ds Max, Algor, Alias, Alias (swirl design/logo), AliasStudio, Alias|Wavefront (design/logo),
ATC, AUGI, AutoCAD, AutoCAD Learning Assistance, AutoCAD LT, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface,
Autodesk, Autodesk Envision, Autodesk Intent, Autodesk Inventor, Autodesk Map, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSnap,
AutoSketch, AutoTrack, Backburner, Backdraft, Built with ObjectARX (logo), Burn, Buzzsaw, CAiCE, Civil 3D, Cleaner, Cleaner Central, ClearScale,
Colour Warper, Combustion, Communication Specification, Constructware, Content Explorer, Dancing Baby (image), DesignCenter, Design
Doctor, Designer's Toolkit, DesignKids, DesignProf, DesignServer, DesignStudio, Design Web Format, Discreet, DWF, DWG, DWG (logo), DWG
Extreme, DWG TrueConvert, DWG TrueView, DXF, Ecotect, Exposure, Extending the Design Team, Face Robot, FBX, Fempro, Fire, Flame, Flare,
Flint, FMDesktop, Freewheel, GDX Driver, Green Building Studio, Heads-up Design, Heidi, HumanIK, IDEA Server, i-drop, ImageModeler, iMOUT,
Incinerator, Inferno, Inventor, Inventor LT, Kaydara, Kaydara (design/logo), Kynapse, Kynogon, LandXplorer, Lustre, MatchMover, Maya,
Mechanical Desktop, Moldflow, Moonbox, MotionBuilder, Movimento, MPA, MPA (design/logo), Moldflow Plastics Advisers, MPI, Moldflow
Plastics Insight, MPX, MPX (design/logo), Moldflow Plastics Xpert, Mudbox, Multi-Master Editing, Navisworks, ObjectARX, ObjectDBX, Open
Reality, Opticore, Opticore Opus, Pipeplus, PolarSnap, PortfolioWall, Powered with Autodesk Technology, Productstream, ProjectPoint, ProMaterials,
RasterDWG, RealDWG, Real-time Roto, Recognize, Render Queue, Retimer,Reveal, Revit, Showcase, ShowMotion, SketchBook, Smoke, Softimage,
Softimage|XSI (design/logo), Sparks, SteeringWheels, Stitcher, Stone, StudioTools, ToolClip, Topobase, Toxik, TrustedDWG, ViewCube, Visual,
Visual LISP, Volo, Vtour, Wire, Wiretap, WiretapCentral, XSI, and XSI (design/logo).

All other brand names, product names or trademarks belong to their respective holders.

Disclaimer
THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC. DISCLAIMS
ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.

Published by:
Autodesk, Inc.
111 McInnis Parkway
San Rafael, CA 94903, USA

Contents

Chapter 1 Introduction . 1
What This Guide Covers . 1
Essential Concepts . 1
Preparing to Run the Examples . 2
Resources and Repositories . 3

Library and Session . 3
M a p s . 4

Hello, Map – Displaying a Web Layout 5
Hello, Map 2 – Adding a Custom Command 7

Web Layouts and MapGuide Server Pages 7
MapGuide Page Flow . 8
Example Code . 9
How This Page Works . 11

Understanding Services . 12

Chapter 2 The MapGuide Viewer . 13
Introduction . 13
The AJAX Viewer . 13

Custom Commands . 15
Understanding Viewer Frames . 15
MapGuide Viewer API . 17

Calling the Viewer API with an Invoke Script Command 19
Calling the Viewer API from the Script Frame 19

iii

Calling the Viewer API from the Task Pane 20
Extending Map Initialization Functionality 21
The Hello Viewer Sample . 21

Embedding a Viewer in Your Own Page 23

Chapter 3 Interacting With Layers . 27
Overview of Layers . 27

Basic Layer Properties . 27
Layer Groups . 28

Base Layer Groups . 28
Layer Style . 29
Layer Visibility . 29

Example: Actual Visibility 30
Enumerating Map Layers . 30

Example . 30
Manipulating Layers . 31

Changing Basic Properties . 31
Example . 31

Changing Visibility . 32

Chapter 4 Working With Feature Data . 35
Overview of Features . 35
Querying Feature Data . 36

Feature Readers . 36
Selecting with the Web API . 37

Basic Filters . 37
Spatial Filters . 38

Example: Selection . 41
Active Selections . 43

Selecting with the Viewer . 43
Passing Viewer Information to the Web Server 43

Additional Parameters to an Invoke URL Command 44
Passing Parameters From an Invoke Script command 45
Passing Parameters From the Task Pane Frame 45

Working With the Active Selection 46
Example: Listing Selected Parcels 46

Setting the Active Selection With the Web API 49
Example: Setting the Active Selection 49

Chapter 5 Modifying Maps and Layers . 53
Introduction . 53
Adding An Existing Layer To A Map 53
Creating Layers By Modifying XML . 53
Another Way To Create Layers . 56

iv | Contents

Example - Creating A Layer That Uses Area Rules 60
Example - Using Line Rules . 61
Example - Using Point Rules . 62

Adding Layers To A Map . 64
Making Changes Permanent . 67

Chapter 6 Analyzing Features . 69
Introduction . 69
Representation of Geometry . 69

Geometry Objects . 70
Comparing Geometry Objects 71

Coordinate Systems . 72
Measuring Distance . 73
Temporary Feature Sources . 74

Inserting, Deleting, and Updating Features 77
Creating a Buffer . 78
Example . 80

Chapter 7 Digitizing and Redlining . 89
Introduction . 89
Digitizing . 89
Redlining . 90

Passing Coordinates . 90
Creating a Feature Source . 91
Creating A Layer . 93

Chapter 8 Custom Output . 95
Introduction . 95
Rendering Service . 97
Mapping Service . 97

Chapter 9 Flexible Web Layouts . 101
Introduction . 101
Creating Templates . 102

Application Definitions . 109
Creating Components . 110
The Map Component . 111
Working With Selections . 113
Fusion API . 118

Methods . 118
Events . 120
Units . 121

Contents | v

Chapter 10 Flexible Web Layouts Examples 123
Overview . 123

Installing the Examples . 123
Running the Examples . 124
Firefox and Firebug . 124

Hello World: A Simple Invoke Script 125
Example 1: Creating a Widget . 125
Example 2: Selections . 129
Example 3: Dialogs and Events . 131
Example 4: Updating the Site Repository 136
Example 5: Anonymous Login . 141

Chapter 11 Using MapGuide Logging . 143
Introduction . 143
Logs and Logging Detail . 143

Access Log . 143
Error Log . 144
Trace Log . 144
Configurable Log Detail . 145

Sample Cases . 147
Debugging and Tuning Feature Sources 147
Debugging Broken Layers . 150

Index . 153

vi | Contents

Introduction

What This Guide Covers
This guide describes how to use the Autodesk MapGuide Enterprise 2011 Web
API and Viewer API.

It assumes you have read the MapGuide Getting Started guide and are familiar
with using Autodesk® MapGuide Studio or MapGuide Open Source Web Studio.
Most examples also assume that you have installed the sample data and sample
applications supplied with Autodesk MapGuide.

This guide provides a high-level overview of the APIs. More detailed information
is provided in the on-line MapGuide Web API Reference and MapGuide Viewer API
Reference.

Most of the MapGuide Web API is designed to also work on AutoCAD® Map
3D with little or no modification. For details, see the Autodesk Geospatial Platform
Developer’s Guide distributed with AutoCAD Map 3D.

Essential Concepts
Refer to the MapGuide Getting Started guide for details about the MapGuide
architecture and components. It is important to understand the relationship
between a MapGuide Viewer, a MapGuide Web application, and the MapGuide
site. It is also important to understand resources and repositories.

Web applications reside on the Web Server. They are normally executed by
requests from a MapGuide Viewer. They can in turn communicate with the
MapGuide site and send data back to the Viewer.

When you define a web layout, using MapGuide Studio or some other method,
you also define toolbar and menu commands. These can be standard pre-defined

1

1

Viewer commands like pan, zoom, and refresh, or they can be custom
commands. Custom commands are a way of extending MapGuide to interact
with your mapping data. The custom commands are HTML pages, generated
on the server using PHP, ASP.NET, or Java (JSP). These languages can use the
Web API to retrieve, manipulate, and update mapping data.

The current version of MapGuide Open Source Web Studio does not create or
edit web layouts. It is possible, however, to create and edit web layouts using
the Mapagent HTML pages at
http://ServerAddress/mapguide/mapagent/index.html. Get an existing web
layout, such as the web layout supplied with the sample applications, using
the GetResourceContent and GetResourceHeader links. Edit the XML in a text
editor, then save to the site repository using the SetResource link.

Many custom commands run in the task area, a section of the Viewer that is
designed for user input/output. For more details about the task area and how
it integrates with the rest of the Viewer, see The MapGuide Viewer (page 13).

Preparing to Run the Examples
MapGuide includes a set of sample applications. Some of them correspond
directly to chapters in this Developer’s Guide. These samples are designed to
show one or two key concepts at a time.

Other sample applications are more full-featured. These are designed to show
some of the capabilities of MapGuide. They are not discussed in detail in this
guide, but they do build upon the basic concepts.

The sample applications are available on the installation CD. See the manual
Installing Sample Data and Viewer Sample Application for details.

Complete examples are available from http://mapguide.osgeo.org/download.
There are two required components: the source code and a package file for
creating the web layouts. The Sheboygan sample data must also be installed.

NOTE The Web API supports .NET, Java, and PHP. For simplicity, the examples in
this guide use PHP. However, many of the sample applications are available in all
development languages.

To run the examples on a Linux installation, change any Windows-specific
file paths to corresponding Linux paths.

This guide includes many code snippets. In most cases, the snippets are
incomplete, lacking initialization and error-checking. For more complete
versions, refer to the sample applications.

2 | Chapter 1 Introduction

http://mapguide.osgeo.org/download

The sample applications also include links to the MapGuide documentation,
but the links only work if the documentation files are visible to the web server.
By default, the installation program installs the documentation in the
...\WebServerExtensions\Help folder. If you copy or move the Help folder to
...\WebServerExtensions\www\Help the documentation will be available directly
from the main page of the sample applications.

Resources and Repositories
A MapGuide repository is a database that stores and manages the data for the
site. The repository stores all data except data that is stored in external
databases. Data stored in a repository is a resource.

Types of data stored in the repository:

■ Feature data from SHP and SDF files

■ Map symbols

■ Layer definitions

■ Map definitions

■ Web layouts

■ Connections to feature sources, including database credentials

Library and Session
Persistent data that is available to all users is stored in the Library repository.

In addition, each session has its own repository, which stores the run-time
map state. It can also be used to store other data, like temporary layers that
apply only to an individual session. For example, a temporary layer might be
used to overlay map symbols indicating places of interest.

Data in a session repository is destroyed when the session ends.

A resource identifier for a resource in the Library will always begin with
Library://. For example:

Library://Samples/Layouts/SamplesPhp.WebLayout

A resource identifier for a session resource will always begin with Session:,
followed by the session id. For example:

Resources and Repositories | 3

Session:70ea89fe-0000-1000-8000-005056c00008_en//layer.LayerDefinition

Maps
A map (MgMap object) is created from a map definition resource. The map
definition contains basic information about the map, including things like

■ the coordinate system used in the map

■ the initial map extents

■ references to the layer definitions for layers in the map

When the MgMap object is created, it is initialized with data from the map
definition. As a user interacts with the map, the MgMap may change, but the
map definition does not.

The map is saved in the session repository so it is available to all pages in the
same session. You cannot save a map in the library repository.

Map creation is handled by the Viewers. When a Viewer first loads, it creates
a map in the session repository. The map name is taken from the map
definition name. For example, if a web layout references a map definition
named Sheboygan.MapDefinition, then the Viewer will create a map named
Sheboygan.Map.

If your application does not use a Viewer, you can create the map and store
it in the repository yourself. To do this, your page must

■ Create an MgMap object.

■ Initialize the MgMap object from a map definition.

■ Assign a name to the MgMap object.

■ Save the map in the session repository.

For example, the following section of code creates an MgMap object named
Sheboygan.Map, based on Sheboygan.MapDefinition.

4 | Chapter 1 Introduction

$mapDefId = new MgResourceIdentifier(

 "Library://Samples/Sheboygan/Maps/Sheboygan.MapDefinition");

$map = new MgMap();

$mapName = $mapDefId->GetName();

$map->Create($resourceService, $mapDefId, $mapName);

$mapId = new MgResourceIdentifier(

"Session:$sessionId//$mapName." . MgResourceType::Map);

$map->Save($resourceService, $mapId);

Hello, Map – Displaying a Web Layout
A web layout describes how the map looks when it is displayed in a web
browser. Using MapGuide Studio or some other method to edit the web layout
resource, you can create and customize the layout, changing how it looks in
a browser and what features are enabled.

Displaying the web layout requires a compatible web browser and the
MapGuide AJAX Viewer. The Viewer does not require installing any additional
software. It runs using most browsers, including Internet Explorer, Mozilla
Firefox, and Safari.

The simplest way to display a web layout is to pass its resource identifier as a
GET parameter to the Viewer URL. For example, the following will display a
web layout using the Viewer running on localhost:

http://localhost/mapguide/mapviewerajax/?

WEBLAYOUT=Library%3a%2f%2fSamples%2fLayouts%2fSample.WebLayout

Authentication

All MapGuide sites require authentication with user id and password. If
authentication succeeds, MapGuide creates a session, identified by a unique
session id. This keeps the state consistent between the viewer and the server
across multiple HTTP requests. Subsequent access to the site requires the
session id instead of the user id. By default, the Viewer handles authentication
itself, and it prompts for user id and password when it first loads. There are
situations, though, where it is better to authenticate before loading the Viewer
page.

One common example is a site offering read-only access to visitors. For this
situation, the default MapGuide installation includes a user “Anonymous”
with an empty password.

Hello, Map – Displaying a Web Layout | 5

To perform authentication before the Viewer loads, embed the Viewer in
another page using a <frame> or <iframe> element. The outer page can do
any necessary authentication, create a session, then pass the web layout and
session id to the Viewer frame.

The following example displays a web layout using the AJAX Viewer. It
performs some basic initialization and creates a session, then displays a Viewer
page using the session identifier and the web layout.

<?php

$installDir =

'C:\Program Files\Autodesk\MapGuideEnterprise2011\\';

$extensionsDir = $installDir . 'WebServerExtensions\www\\';

$viewerDir = $installDir . 'mapviewerphp\\';

include $viewerDir . 'constants.php';

MgInitializeWebTier($extensionsDir . 'webconfig.ini');

$site = new MgSite();

$site->Open(new MgUserInformation("Anonymous", ""));

$sessionId = $site->CreateSession();

$webLayout =

"Library://Samples/Layouts/SamplesPhp.WebLayout";

?>

<html>

<head>

<title>Simple Sample Application</title>

</head>

<body marginheight="0" marginwidth="0">

<iframe id="viewerFrame" width="100%" height="100%" frameborder=0

scrolling="no"

src="/mapguide/mapviewerajax/?SESSION=<?= $sessionId ?>&

WEBLAYOUT=<?= $webLayout ?>"></iframe>

</body>

</html>

6 | Chapter 1 Introduction

Hello, Map 2 – Adding a Custom Command
Web layouts can include custom commands added to the toolbar, context
menu, task list, or task pane area of the Viewer. These custom commands
make up the MapGuide application.

This next sample MapGuide page displays some basic information about a
map. It does not do any complicated processing. Its purpose is to illustrate
the steps required to create a MapGuide page and have it connect to a Viewer
on one side and the MapGuide site on the other.

Web Layouts and MapGuide Server Pages
A MapGuide Server Page is any PHP, ASP.NET, or JSP page that makes use of the
MapGuide Web API. These pages are typically invoked by the MapGuide
Viewer or browser and when processed result in HTML pages that are loaded
into a MapGuide Viewer or browser frame. This is the form that will be used
for most examples in this guide. It is possible, however, to create pages that
do not return HTML or interact with the Viewer at all. These can be used for
creating web services as a back-end to another mapping client or for batch
processing of your data.

Creating a MapGuide page requires initial setup, to make the proper
connections between the Viewer, the page, and the MapGuide site. Much of
this can be done using MapGuide Studio. Refer to the MapGuide Studio Help
for details.

One part of the initial setup is creating a web layout, which defines the
appearance and available functions for the Viewer. When you define a web
layout, you assign it a resource name that describes its location in the
repository. The full resource name looks something like this:

Library://Samples/Layouts/SamplesPhp.WebLayout

When you open the web layout using a browser with the AJAX Viewer, the
resource name is passed as part of the Viewer URL. Special characters in the
resource name are URL-encoded, so the full URL would look something like
this, (with line breaks removed):

http://localhost/mapguide/mapviewerajax/

?WEBLAYOUT=Library%3a%2f%2fSamples%2fSheboygan%2fLayouts%2f

SheboyganPhp.WebLayout

Part of the web layout defines commands and the toolbars and menus that
contain the commands. These commands can be built-in commands, or they

Hello, Map 2 – Adding a Custom Command | 7

can be URLs to custom pages. The web layout also includes a URL to a home
task that displays in the task pane. The home task can open other pages.

To create a new page and make it available as a command from the task list,
do the following:

■ Edit the web layout using MapGuide Studio.

■ Add a command to the web layout.

■ Set the command type to Invoke URL.

■ Set the URL of the command to the URL of your page.

■ Add the command to the Task Bar Menu.

NOTE Custom pages are loaded by the Viewer page, so a relative URL for a custom
page must start at the Viewer directory, then go up one level to reach the mapguide
directory. For example, a custom page located at
www/mapguide/samplesphp/index.php would use the following relative URL in
the web layout

../samplesphp/index.php

It is also possible to add custom commands to the toolbar and the context
menu using the same technique.

For most of the examples in this guide, however, the pages will be links from
a home page loaded in the task pane frame.

NOTE Installing the package that comes with the Developer’s Guide samples
creates a web layout automatically. The home task page of this layout contains
links to examples that correspond to chapters in the Developer’s Guide.

MapGuide Page Flow
Most MapGuide pages follow a similar processing flow. First, they create a
connection with the site server using an existing session id. Then they open
connections to any needed site services. The exact services required depend
on the page function. For example, a page that deals with map feature data
requires a feature service connection.

Once the site connection and any other service connections are open, the
page can use MapGuide Web API calls to retrieve and process data. Output

8 | Chapter 1 Introduction

goes to the task pane or back to the Viewer. See The MapGuide Viewer (page
13) for details about sending data to the Viewer.

NOTE MapGuide pages written in PHP require one additional step because PHP
does not support enumerations compiled into extensions. To deal with this
limitation, PHP Web Extension pages must include constants.php, which is in
the mapviewerphp folder. This is not required for ASP.NET or JSP pages.

Example Code
The following sample illustrates basic page structure. It is designed to be called
as a task from a Viewer. It connects to a MapGuide server and displays the
map name and spatial reference system for the map currently being displayed
in the Viewer.

TIP This sample is very similar to the Hello Map sample in the Developer’s Guide
samples.

Example Code | 9

<html>

 <head><title>Hello, map</title></head>

 <body>

 <p>

 <?php

 // Define some common locations

 $installDir =

 'C:\Program Files\Autodesk\MapGuideEnterprise2011\\';

 $extensionsDir = $installDir . 'WebServerExtensions\www\\';

 $viewerDir = $extensionsDir . 'mapviewerphp\\';

 // constants.php is required to set some enumerations

 // for PHP. The same step is not required for .NET

 // or Java applications.

 include $viewerDir . 'constants.php';

 try

 {

 // Get the session information passed from the viewer.

 $args = ($_SERVER['REQUEST_METHOD'] == "POST")

 ? $_POST : $_GET;

 $mgSessionId = $args['SESSION']

 $mgMapName = $args['MAPNAME']

 // Basic initialization needs to be done every time.

 MgInitializeWebTier("$extensionsDir\webconfig.ini");

 // Get the user information using the session id,

 // and set up a connection to the site server.

 $userInfo = new MgUserInformation($mgSessionId);

 $siteConnection = new MgSiteConnection();

 $siteConnection->Open($userInfo);

 // Get an instance of the required service(s).

 $resourceService = $siteConnection->

 CreateService(MgServiceType::ResourceService);

 // Display the spatial reference system used for the map.

 $map = new MgMap();

 $map->Open($resourceService, $mgMapName);

 $srs = $map->GetMapSRS();

10 | Chapter 1 Introduction

echo 'Map ' . $map->GetName() .

' uses this reference system:
' . $srs;

}

catch (MgException $e)

{

echo "ERROR: " . $e->GetMessage() . "
";

echo $e->GetStackTrace() . "
";

}

?>

</p>

</body>

</html>

How This Page Works
This example page performs the following operations:

1 Get session information.

When you first go to the URL containing the web layout, the Viewer
initiates a new session. It prompts for a user id and password, and uses
these to validate with the site server. If the user id and password are valid,
the site server creates a session and sends the session id back to the viewer.

The Viewer passes the session information every time it sends a request
to a MapGuide page. The pages use this information to re-establish a
session.

2 Perform basic initialization.

The webconfig.ini file contains parameters required to connect to the site
server, including the IP address and port numbers to use for
communication. MgInitializeWebTier() reads the file and gets the
necessary values to find the site server and create a connection.

3 Get user information.

The site server saves the user credentials along with other session
information. These credentials must be supplied when the user first
connects to the site. At that time, the Viewer authenticates the user and
creates a new session using the credentials. Using the session ID, other
pages can get an encrypted copy of the user credentials that can be used
for authentication.

4 Create a site connection.

How This Page Works | 11

Any MapGuide pages require a connection to a site server, which manages
the repository and site services.

5 Create a connection to a resource service.

Access to resources is handled by a resource service. In this case, the page
needs a resource service in order to retrieve information about the map
resource.

You may need to create connections to other services, depending on the
needs of your application.

6 Retrieve map details.

The map name is also passed by the viewer to the MapGuide page. Use
this name to open a particular map resource with the resource service.
Once the map is open you can get other information. This example
displays the spatial reference system used by the map, but you can also
get more complex information about the layers that make up the map.

Understanding Services
The MapGuide site performs many different functions. These can be all done
by a single server, or you may balance the load across multiple servers. Some
essential functions must execute on the site server, while other functions may
execute on support servers.

A service performs a particular set of related functions. For example, a resource
service manages data in the repository, a feature service provides access to
feature data sources, and a mapping service provides visualization and plotting
functions.

Before a page can use a service, it must open a site connection and create an
instance of the necessary service type. The following example creates a resource
service and a feature service:

$userInfo = new MgUserInformation($mgSessionId);

$siteConnection = new MgSiteConnection();

$siteConnection->Open($userInfo);

$resourceService = $siteConnection->

CreateService(MgServiceType::ResourceService);

$featureService = $siteConnection->

CreateService(MgServiceType::FeatureService);

12 | Chapter 1 Introduction

The MapGuide Viewer

Introduction
MapGuide supports two ways to display maps: basic web layouts and flexible
web layouts. Flexible web layouts work in all major browsers on Windows,
Macintosh, and Linux. They use JavaScript and so require no browser plugins
or proprietary technologies. Since they provide more flexibilty, Autodesk
recommends using flexible web layouts for new development. Customizing
flexible web layouts is described in Flexible Web Layouts (page 101). This chapter
describes the MapGuide AJAX Viewer, which is used to display basic web layouts.

The AJAX Viewer
TIP The Hello Viewer sample, in the Developer’s Guide samples, demonstrates
concepts from this chapter.

The MapGuide AJAX Viewer is a browser-based method for displaying map data
in a MapGuide application. It is a complete application, with support for
standard mapping functionality like zooming, theming, and selecting features.
It runs within Internet Explorer, Mozilla Firefox, and Safari, without requiring
a browser plug-in.

Most MapGuide applications display a map, though it is possible to create
applications that perform data analysis or manipulation but do not display
anything. For example, a MapGuide application can be used as a back-end to
another mapping application.

2

13

The Viewer displays a map along with the following optional components
surrounding the map:

■ Tool bar

■ Layers pane

■ Properties pane

■ Status bar

■ Task bar

■ Task list (normally hidden, but available as a drop-down from the task bar)

■ Task pane

■ Context (right-click) menu

■ Zoom slider

MapGuide Viewer

The tool bar, task list, task pane, and context menu can contain a combination
of pre-defined and custom MapGuide commands.

A web layout defines how the Viewer looks and operates for a map. One
function of a web layout is to define which optional components display with
the map. All of the optional components can be disabled, leaving just the
map itself.

14 | Chapter 2 The MapGuide Viewer

The web layout also defines any custom functionality added to the web page
through custom commands.

Custom Commands
Custom commands can be of two types:

■ JavaScript commands

■ Web Server Extensions pages, written in PHP, ASP.NET, or JSP

JavaScript commands are defined in the web layout as commands of type
Invoke Script. They are used primarily to interact with the Viewer, and can
use the Viewer API.

Web Server Extensions pages can be added to the web layout in two different
ways. In one method, the web layout includes a home page. This home page
is loaded in the task pane when the map first displays, and can be re-loaded
by clicking the Home icon in the task bar. The home page can load other
pages as needed.

In addition, other task pages can be defined in the web layout as commands
of type Invoke URL. These commands can be added to the tool bar, task list,
or context menu. When a user selects one of these commands the
corresponding URL is often loaded into the task pane, though it can also be
loaded into a hidden frame so it is not visible.

Because Web Server Extensions pages are created at the web tier before being
passed to the Viewer, they can use both the Web Server Extensions API and
the Viewer API.

Understanding Viewer Frames
The MapGuide Viewers use HTML frames to divide the viewer area. Refer to
the diagram below for the locations of the following frames and frame sets:

DescriptionName

Unnamed. Contains all the Viewer frames. This can be wrapped
by an outer frame so you can embed the Viewer in your own
site.

Frame set containing the tool bar, map frame, form frame, and
script frame.

maparea

Custom Commands | 15

DescriptionName

Frame containing the tool bar. Add new commands to the tool
bar by modifying the web layout.

tbFrame

Frame containing the map data. This includes the map display
and the layers and properties palettes.

mapFrame

Hidden frame that can be used to generate HTTP POST requests
for sending data to the server.

formFrame

Hidden frame that can be used to load and execute pages
without them being visible to the user. This is often used for ex-
ecuting client-side JavaScript.

scriptFrame

Frame set containing the task bar and the task frame.taskArea

Frame containing the task bar.taskBar

Frame used to hold the task list frame and the task pane frame.taskFrame

Frame used for displaying the task list. This is normally hidden,
and is shown when a user clicks the task list button in the task

taskListFrame

bar. Add new commands to the task list by modifying the web
layout.

Frame used for displaying and executing MapGuide pages. A
web layout has a default home page that displays in the task

taskPaneFrame

pane when the layout loads. Custom commands of type Invoke
URL also load in the task pane.

Frame containing the status bar.sbFrame

16 | Chapter 2 The MapGuide Viewer

(Your frameset) (optional)
(Your banner) (optional)

(2-row frameset)
(2-column frameset)

(hidden frame)
(hidden frame)

(status bar)

(tool bar) (task bar)
mapArea
tbFrame

mapFrame taskFrame

taskListFrame

taskPaneFrame

taskBar
taskArea

formFrame
scriptFrame

sbFrame

/mapguide/mapviewerajax/?
SESSION=sessionid&WEBLAYOUT=weblayout

Viewer Frames

MapGuide Viewer API
The MapGuide Viewer API is a set of JavaScript functions used to interact with
the Viewer. Many of the Viewer frames contain embedded JavaScript functions
that can be called from other locations. For full details about the available
functions, refer to the online MapGuide Viewer API Reference.

MapGuide Viewer API | 17

To execute any of the Viewer API functions, call them from JavaScript
embedded in a page. There are three common techniques for this:

■ Define an Invoke Script command in the web layout. Use this technique
when you want to call the Viewer API directly from the tool bar, task list,
or context menu.

■ Load a page into the hidden script frame and execute the script when the
page loads. Use this technique when you want the Viewer to change as a
result of an action in the MapGuide page, without reloading the page.

■ Execute the JavaScript call from a page loaded in the task pane frame. The
JavaScript can execute when the page first loads or as a result of user
interaction.

It is important to know the relationships between the frames. JavaScript
executes in the context of a single frame, but it can call functions from other
frames by locating them in the frame hierarchy. The following frames are
children of the main Viewer frame:

■ tbFrame

■ mapFrame

■ formFrame

■ scriptFrame

■ taskFrame

The taskPaneFrame is a child of the taskFrame.

Custom JavaScript code can execute in the context of the main frame, the
script frame, or the task pane frame.

JavaScript defined as an Invoke Script command executes in the context of
the main frame. To execute functions in one of the other frames, identify the
function with the frame name and function name. For example, the following
calls the ZoomToView() function of the mapFrame from the main frame:

mapFrame.ZoomToView(xLoc, yLoc, newScale, true);

JavaScript loaded into the scriptFrame must go up 1 level in the hierarchy
using parent. For example:

parent.mapFrame.ZoomToView(xLoc, yLoc, newScale, true);

18 | Chapter 2 The MapGuide Viewer

JavaScript loaded into the taskPaneFrame must go up 2 levels in the hierarchy
using parent.parent. For example:

parent.parent.mapFrame.ZoomToView(xLoc, yLoc, newScale, true);

Many Viewer API calls will generate requests to the site server, either to refresh
data in the Viewer or to notify the site server of a change in Viewer state.
These requests are generated automatically.

Calling the Viewer API with an Invoke Script Command
Use this technique when you want to call the API directly from the tool bar,
task list, or context menu.

For example, you may want to create a tool bar button that zooms and
positions the map to show a particular location. In the web layout, create a
command of type Invoke Script. Enter the API call as the script to invoke:

ZoomToView(-87.7116768, 43.7766789973, 5000, true);

Add the button to the tool bar. When a user clicks the button, the map view
repositions to the location.

Commands of type Invoke Script always execute in the context of the main
frame. This means that all main frame functions are available. To execute a
function in another frame, use the frame name as part of the function name.
For example, formFrame.Submit().

Calling the Viewer API from the Script Frame
Use this technique when you want the Viewer API calls to be made as a result
of an action in the calling page, but you do not want to reload the page. For
example, you may have a page that generates a list of locations and you would
like the user to be able to jump directly to any location, while leaving the list
still available in the task pane.

In this case, your page can load another page in the hidden script frame, using
target="scriptFrame" as part of the <a> tag. This requires creating a separate
page to load in the script frame and passing the necessary parameters when
the page loads.

The Hello Viewer sample application contains a file named gotopoint.php
that is designed to run in the script frame. The <body> element is empty, so
the page does not produce any output. Instead, it emits a JavaScript function

Calling the Viewer API with an Invoke Script Command | 19

to execute when the page loads. This function calls the ZoomToView() function
in the Viewer API. The essential parts of gotopoint.php are:

<script language="javascript">

function OnPageLoad()

{

parent.ZoomToView(<?= $_GET['X'] ?>,

<?= $_GET['Y'] ?>,

<?= $_GET['Scale'] ?>, true);

}

</script>

<body onLoad="OnPageLoad()">

</body>

To execute gotopoint.php from the task frame, insert code similar to the
following:

$xLocation = -87.7116768; // Or calculate values

$yLocation = 43.7766789973;

$mapScale = 2000;

echo "<p><a href=\"gotopoint.php?" .

"X=$xLocation&Y=$yLocation&Scale=$mapScale\"" .

"target=\"scriptFrame\">Click to position map</p>";

NOTE This technique is also appropriate for calling the Web API without reloading
the task pane. See the Modifying Maps and Layers sample for an example.

Calling the Viewer API from the Task Pane
Use this technique when you want the Viewer API calls to be made when the
page loads or as a result of an onclick event. For example, if you have a task
in the task list that zooms the map to a pre-defined location, then you do not
need any user input. The Viewer should zoom as soon as the page loads.

The map frame contains a JavaScript function to center the map to a given
coordinate at a given map scale. To call this function from a page loading in
the task pane, create a function that will be executed when the onLoad event
occurs. The following is a simple example. If you add this to the task list and
select the task, the displayed map will reposition to the given location.

20 | Chapter 2 The MapGuide Viewer

<html>

<head>

<title>Viewer Sample Application - Zoom</title>

</head>

<script language="javascript">

function OnPageLoad()

{

parent.parent.ZoomToView(-87.7116768,

43.7766789973, 5000, true);

}

</script>

<body onLoad="OnPageLoad()">

<h1>Zooming...</h1>

</body>

</html>

Use a similar technique to call custom JavaScript based on an action in the
task pane, like clicking a link.

Extending Map Initialization Functionality
At times, it may be necessary to perform some initialization functions when
the map first loads. To accomplish this, a page loaded into the task pane can
hook into the standard map initialization process.

For example, when a browser first connects to a MapGuide site, it specifies a
web layout. The site uses this layout to determine which Viewer components
to enable and which map to display in the map area. At the time that the task
pane first loads, the map name is not yet known. It may be required for some
operations, though.

The Hello Viewer Sample
The Hello Viewer sample, installed with the Developer’s Guide samples, shows
simple examples of using the Viewer API from different parts of a web layout.

The tool bar for the sample contains a custom Invoke Script command that
calls the ZoomToView() function of the mapFrame. This is executed in the context
of the main frame, so the function is available using

mapFrame.ZoomToView()

Extending Map Initialization Functionality | 21

The task pane loads a page that shows two other ways of calling ZoomToView().
One way loads a custom page into the hidden scriptFrame. The page reads
GET parameters and passes them to the JavaScript function call. This is executed
in the context of the scriptFrame, so ZoomToView() is available using

parent.mapFrame.ZoomToView()

Another way calls ZoomToView() directly when a link is clicked, using the
JavaScript onclick event. This is executed in the context of the taskPaneFrame,
so ZoomToView() is available using

parent.parent.mapFrame.ZoomToView()

The Developer’s Guide samples also demonstrate a more advanced method
for using JavaScript in a Viewer. The file index.php includes an external
JavaScript file that solves 2 problems:

■ When a map is first loading, the task pane displays before the map has
been fully initialized. This can cause problems if users click any links in
the task pane that depend on the map being available.

■ The first time the Viewer loads a page into the task pane, it passes SESSION
and WEBLAYOUT as GET parameters. The map name is not known until after
the web layout has loaded. When a user clicks the Home button, the Viewer
reloads the home page in the task pane, but passes SESSION and MAPNAME
as GET parameters instead. In some cases, it may be useful for the home
page to have the map name when it first loads.

To deal with these problems, the Hello Viewer sample loads
pageLoadFunctions.js, which attaches a function to the window.onload event
of the page in the task pane. This function does the following:

■ Replaces the OnMapLoaded() function of the main frame. This function is
called after the map has been fully initialized. The new version performs
some initialization (see below), then calls the original OnMapLoaded().

■ Saves the contents of the task pane page and replaces it with the text
“Loading...”.

■ After the map is fully initialized, it calls the new version of OnMapLoaded().
At this point, the map name is known, and is available from the
mapFrame.GetMapName() function. The new version of OnMapLoaded()
restores the contents of the task pane page, then it searches all <a> elements,
replacing “MAPNAME=unknown” with the correct map name in the href
attributes.

22 | Chapter 2 The MapGuide Viewer

See the Hello Viewer sample for links to view index.php and pageLoadFuctions.js.

Embedding a Viewer in Your Own Page
The simplest way to incorporate a Viewer into your own site is to create a
frame set that contains a frame for your own page layout and a frame for the
Viewer. The Developer’s Guide samples use this technique. The main page for
the samples, main.php, creates a frame set where the top frame in the set
contains a site-specific page header, and the bottom frame in the set contains
the embedded Viewer. The following code contains the important parts of
main.php.

Embedding a Viewer in Your Own Page | 23

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

"http://www.w3.org/TR/html4/frameset.dtd">

<?php

require_once('common/common.php');

try

{

 // Initialize the web extensions,

 MgInitializeWebTier ($webconfigFilePath);

 // Connect to the site server and create a session

 $userInfo = new MgUserInformation("Author", "author");

 $site = new MgSite();

 $site->Open($userInfo);

}

catch (MgException $e)

{

 echo "Could not connect to the MapGuide site server.";

 die();

}

try

{

 $sessionId = $site->CreateSession();

 // Define some constants

 $webLayout = "Library://Samples/Layouts/SamplesPHP.WebLayout";

 $title = "Samples";

}

catch (MgException $e)

{

 echo "ERROR: " . $e->GetMessage("eng") . "\n";

 echo $e->GetStackTrace("eng") . "\n";

}

?>

<html>

 <head>

 <title><?= $title ?></title>

 </head>

 <frameset rows="110,*">

 <frame src="common/Title.php?TitleText=<?= $title ?>"

24 | Chapter 2 The MapGuide Viewer

name="TitleFrame" scrolling="NO" noresize />

<frame

src="/mapguide/mapviewerajax/?

SESSION=<?= $sessionId ?>&

WEBLAYOUT=<?= $webLayout ?>" name="ViewerFrame" />

</frameset>

</html>

Embedding a Viewer in Your Own Page | 25

26

Interacting With Layers

Overview of Layers
TIP The Interacting With Layers sample, in the Developer’s Guide samples,
demonstrates concepts from this chapter.

Layers represent vector data, raster data, and drawing data in a map. Each type
of layer has unique characteristics.

NOTE The word layer has different meanings in different contexts. A layer can refer
to the layer definition in the resource repository, and it can also refer to the map
layer. For the purposes of the Web Tier, a layer refers to a map layer, and a layer
definition refers to the layer definition in the resource repository.

Basic Layer Properties
A map contains one or more layers (MgLayer objects) that are rendered to create
a composite image. Each layer has properties that determine how it displays in
the map and map legend. Some of the properties are:

■ Layer name: A unique identifier

■ Legend label: The label for the layer as it appears in the map legend.

■ Visibility: whether the layer should be displayed in the map. Note that actual
visibility is dependent on more than just the visibility setting for a layer.
See Layer Visibility (page 29) for further details.

■ Selectable: Whether features in the layer are selectable. This only applies to
layers containing feature data.

3

27

The MgMap::GetLayers() method returns an MgLayerCollection object that
contains all the layers in the map. The MgLayerCollection::GetItem() method
returns an individual MgLayer object, by either index number in the collection
or layer name.

Layers in the collection are sorted by drawing order, with the top layers at the
beginning of the collection. For example, using PHP syntax, if $layers is a
collection containing the layers in a map, then $layers->GetItem(0) returns
the top-most layer.

Layer Groups
Layers can be optionally grouped into layer groups. Layers in the same group
are displayed together in the legend.

The visibility for all layers in a group can be set at the group level. If the group
visibility is turned off then none of the layers in the group will be visible,
regardless of their individual visibility settings. If the group visibility is turned
on, then individual layers within the group can be made visible or not visible
separately.

Layer groups can be nested so a group can contain other groups. This provides
a finer level of control for handling layer visibility or legend groups.

The MgMap::GetLayerGroups() method returns an MgLayerGroupCollection
object that contains all the layer groups in the map.

Each layer group in a map must have a unique name, even if it is nested within
another group.

Base Layer Groups
The AJAX viewer can use base layer groups to optimize image rendering times.
Layers in a base layer group are rendered together to generate a single raster
image that can be sent to the viewer. The image is divided into tiles so only
the required tiles need to be rendered and sent, instead of the entire image.
Tiles are cached on the server; if a tile already exists in the cache it does not
need to be rendered before being sent.

Each base layer group has a series of pre-defined scales that are used for
rendering. When a request is made to view a portion of the map at a given
scale, the AJAX viewer renders the tiles at the pre-defined scale that is closest
to the requested map view scale.

28 | Chapter 3 Interacting With Layers

Layers within a base layer group are rendered together. Visibility settings for
individual layers are ignored and the visibility setting for the group is used
instead.

Layers above the base layers will generally be vector layers with transparent
backgrounds. This makes the images small and relatively quick to load in the
viewer.

You may have more than one base layer group. Lower layers will be hidden
by higher layers unless the higher layers have transparent areas or have their
visibility turned off.

NOTE A layer can only belong to one group at a time. It cannot be part of both
a base layer group and a regular group.

Layer Style
The data source information and style information for a layer control how
the layer looks when it displayed on a map. This is stored in the layer definition
in the repository. To change any of the data source or style information,
modify the layer definition.

Layer definitions can be modified using MapGuide Studio. They can also be
created and modified dynamically using the Web Extensions API. See
Modifying Maps and Layers (page 53) for details.

Layer Visibility
Whether a layer is visible in a given map depends on three criteria:

■ The visibility setting for the layer

■ The visibility settings for any groups that contain the layer

■ The map view scale and the layer definition for that view scale

In order for a layer to be visible, its layer visibility must be on, the visibility
for any group containing the layer must be on, and the layer must have a style
setting defined for the current map view scale.

Layer Style | 29

Example: Actual Visibility
For example, assume that there is a layer named Roads that is part of the layer
group Transportation. The layer has view style defined for the scale ranges
0–10000 and 10000–24000.

The following table shows some possible settings of the various visibility and
view scale settings, and their effect on the actual layer visibility.

Actual VisibilityView ScaleGroup VisibilityLayer Visibility

On10000OnOn

Off25000OnOn

Off10000OffOn

Off10000OnOff

Enumerating Map Layers
Map layers are contained within an MgMap object. To list the layers in a map,
use the MgMap::GetLayers() method. This returns an MgLayerCollection
object.

To retrieve a single layer, use the MgLayerCollection::GetItem method with
either an integer index or a layer name. The layer name is the name as defined
in the map, not the name of the layer definition in the repository.

For example:

$layer = $layers->GetItem('Roads');

Example
The following example lists the layers in a map, along with an indicator of
the layer visibility setting.

30 | Chapter 3 Interacting With Layers

$layers = $map->GetLayers(); // Get layer collection

echo "<p>Layers:
";

$count = $layers->GetCount();

for ($i = 0; $i < $count; $i++)

{

$layer = $layers->GetItem($i);

echo $layer->GetName() . ' (' .

($layer->GetVisible() ? 'on' : 'off') . ')
';

}

echo '</p>';

Manipulating Layers
Modifying basic layer properties and changing layer visibility settings can be
done directly using API calls. More complex manipulation requires modifying
layer resources in the repository. For details, see Modifying Maps and Layers
(page 53).

Changing Basic Properties
To query or change any of the basic layer properties like name, label, or group,
use the MgLayer::GetProperty() and MgLayer::SetProperty() methods,
where Property is one of the layer properties. You must save and refresh the
map for the changes to take effect.

Example
The following example toggles the label of the Roads layer between Roads and
Streets.

Manipulating Layers | 31

MgInitializeWebTier ($webconfigFilePath);

$userInfo = new MgUserInformation($mgSessionId);

$siteConnection = new MgSiteConnection();

$siteConnection->Open($userInfo);

$resourceService =

 $siteConnection->CreateService(MgServiceType::ResourceService);

$map = new MgMap();

$map->Open($resourceService, $mgMapName);

$layers = $map->GetLayers();

$roadLayer = $layers->GetItem('Roads');

$roadLabel = $roadLayer->GetLegendLabel();

if ($roadLabel == 'Roads')

$newLabel = 'Streets';

else

$newLabel = 'Roads';

$roadLayer->SetLegendLabel($newLabel);

// You must save the updated map or the

// changes will not be applied

// Also be sure to refresh the map on page load.

$map->Save($resourceService);

Changing Visibility
To query the actual layer visibility, use the MgLayer::IsVisible() method.
There is no method to set actual visibility because it depends on other visibility
settings.

To query the visibility setting for a layer, use the MgLayer::GetVisible()
method. To change the visibility setting for a layer, use the
MgLayer::SetVisible() method.

To query the visibility setting for a layer group, use the MgGroup::GetVisible()
method. To change the visibility setting for a layer group, use the
MgGroup::SetVisible() method.

32 | Chapter 3 Interacting With Layers

To change the layer visibility for a given view scale, modify the layer resource
and save it back to the repository. See Modifying Maps and Layers (page 53)
for details.

The following example turns on the visibility for the Roads layer.

$layers = $map->GetLayers();

$roadsLayer = $layers->GetItem('Roads');

$roadsLayer->SetVisible(True);

NOTE Changing the visibility will have no effect until the map is saved and
refreshed.

Changing Visibility | 33

34

Working With Feature Data

Overview of Features
TIP The Working With Feature Data sample, in the Developer’s Guide samples,
demonstrates concepts from this chapter.

Understanding features is fundamental to being able to use the Autodesk
MapGuide Web API. Nearly every application will need to interact with feature
data in one form or another.

Features are map objects representing items like roads (polylines), lakes
(polygons), or locations (points).

A feature source is a resource that contains a set of related features, stored in a
file or database. Some common feature source types are SDF files, SHP files, or
data in a spatial database.

For example, you may have a feature source that contains data for roads. Feature
sources can be stored in the library repository or in a session repository. A feature
source identifier describes a complete path in the repository. For example,

Library://Samples/Sheboygan/Data/RoadCenterLines.FeatureSource

Within a single feature source there may be one or more feature classes. A feature
class describes a subset of the features in the feature source. In many cases, there
is one feature class for each feature source. For example, there may be a Roads
feature class in the RoadCenterLines feature source.

A feature class contains one or more features. Each feature has a geometry that
defines the spatial representation of the feature. Features will also generally
have one or more properties that provide additional information. For example,
a feature class containing road data may have properties for the road name and
the number of lanes. Feature properties can be of different types, like strings,

4

35

integers, and floating point numbers. Possible types are defined in the class
MgPropertyType.

In some cases, a feature property will be another feature. For example, a Roads
feature might have a Sidewalk feature as one of its properties.

A map layer may contain the features from a feature class. The features are
rendered using the feature geometry.

The Web API Feature Service provides functions for querying and updating
feature data.

Querying Feature Data
In order to work with feature data, you must first select the features you are
interested in. This can be done with the Viewer or through Web API calls.

Feature Readers
A feature reader, represented by an MgFeatureReader object, is used to iterate
through a list of features. Typically, the feature reader is created by selecting
features from a feature source.

To create a feature reader, use the MgFeatureService::SelectFeatures()
method. See Selecting with the Web API (page 37) for details about selection.

To process the features in a feature reader, use the
MgFeatureReader::ReadNext() method. You must call this method before
being able to read the first feature. Continue calling the method to process
the rest of the features.

The MgFeatureReader::GetPropertyCount() method returns the number of
properties available for the current feature. When you know the name and
type of the feature property, call one of the
MgFeatureReader::GetPropertyType() methods (where PropertyType
represents one of the available types) to retrieve the value. Otherwise, call
MgFeatureReader::GetPropertyName() and
MgFeatureReader::GetPropertyType() before retrieving the value.

36 | Chapter 4 Working With Feature Data

Selecting with the Web API
Selections can be created programatically with the Web API. This is done by
querying data in a feature source, creating a feature reader that contains the
features, then converting the feature reader to a selection (MgSelection object).

To create a feature reader, apply a selection filter to a feature class in the feature
source. A selection filter can be a basic filter, a spatial filter, or a combination
of the two. The filter is stored in an MgFeatureQueryOptions object.

Basic filters are used to select features based on the values of feature properties.
For example, you could use a basic filter to select all roads that have four or
more lanes.

Spatial filters are used to select features based on their geometry. For example,
you could use a spatial filter to select all roads that intersect a certain area.

Basic Filters
Basic filters perform logical tests of feature properties. You can construct
complex queries by combining expressions. Expressions use the comparison
operators below:

MeaningOperator

Equality=

Not equal<>

Less than<

Less than or equal to<=

Greater than>

Greater than or equal to>=

Used for string comparisons. The “%” wildcard represents
any sequence of 0 or more characters. The “_” wildcard

LIKE

represents any single character. For example, “LIKE
SCHMITT%” will search for any names beginning with
“SCHMITT”.

Selecting with the Web API | 37

The comparison operators can be used with numeric or string properties,
except for the LIKE operator, which can only be used with string properties.

Combine or modify expressions with the standard boolean operators AND, OR,
and NOT.

Examples
These examples assume that the feature class you are querying has an integer
property named year and a string property named owner. To select all features
newer than 2001, create a filter like this:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter('year > 2001');

To select all features built between 2001 and 2004, create a filter like this:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter('year >= 2001 and year <= 2004');

To select all features owned by Davis or Davies, create a filter like this:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("owner LIKE 'Davi%s'");

Spatial Filters
With spatial filters, you can do comparisons using geometric properties. For
example, you can select all features that are inside an area on the map, or that
intersect an area.

NOTE For more information about geometry, see Representation of Geometry
(page 69).

There are two ways of using spatial filters:

■ Create a separate spatial filter to apply to the feature source, using the
MgFeatureQueryOptions::SetSpatialFilter() method.

■ Include spatial properties in a basic filter created with the
MgFeatureQueryOptions::SetFilter() method.

The MgFeatureQueryOptions::SetSpatialFilter() method requires an
MgGeometry object to define the geometry and a spatial operation to compare

38 | Chapter 4 Working With Feature Data

the feature property and the geometry. The spatial operations are defined in
class MgFeatureSpatialOperations.

To include spatial properties in a basic filter, define the geometry using WKT
format. Use the GEOMFROMTEXT() function in the basic filter, along with one
of the following spatial operations:

■ CONTAINS

■ COVEREDBY

■ CROSSES

■ DISJOINT

■ EQUALS

■ INTERSECTS

■ OVERLAPS

■ TOUCHES

■ WITHIN

■ INSIDE

NOTE Not all spatial operations can be used on all features. It depends on the
capabilities of the FDO provider that supplies the data. This restriction applies to
separate spatial filters and spatial properties that are used in a basic filter.

Creating Geometry Objects From Features
You may want to use an existing feature as part of a spatial query. To retrieve
the feature’s geometry and convert it into an appropriate format for a query,
perform the following steps:

■ Create a query that will select the feature.

■ Query the feature class containing the feature using the
MgFeatureService::SelectFeatures() method.

■ Obtain the feature from the query using the MgFeatureReader::ReadNext()
method.

Selecting with the Web API | 39

■ Get the geometry data from the feature using the
MgFeatureReader::GetGeometry() method. This data is in AGF binary
format.

■ Convert the AGF data to an MgGeometry object using the
MgAgfReaderWriter::Read() method.

For example, the following sequence creates an MgGeometry object representing
the boundaries of District 1 in the Sheboygan sample data.

$districtQuery = new MgFeatureQueryOptions();

$districtQuery->SetFilter("Autogenerated_SDF_ID = 1");

$layer = $map->GetLayers()->GetItem('Districts');

$featureReader = $layer->SelectFeatures($districtQuery);

$featureReader->ReadNext();

$districtGeometryData = $featureReader->GetGeometry('Data');

$agfReaderWriter = new MgAgfReaderWriter();

$districtGeometry = $agfReaderWriter->Read($districtGeometryData);

To convert an MgGeometry object into its WKT representation, use the
MgWktReaderWriter::Write() method, as in the following example:

$wktReaderWriter = new MgWktReaderWriter();

$districtWkt = $wktReaderWriter->Write($districtGeometry);

Examples
The following examples assume that $testArea is an MgGeometry object
defining a polygon, and $testAreaWkt is a WKT description of the polygon.

To create a filter to find all properties owned by SCHMITT in the area, use
either of the following sequences:

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'SCHMITT%'");

$queryOptions->SetSpatialFilter('SHPGEOM', $testArea,

MgFeatureSpatialOperations::Inside);

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'SCHMITT%'

AND SHPGEOM inside GEOMFROMTEXT('$testAreaWkt')";

40 | Chapter 4 Working With Feature Data

Example: Selection
The following example creates a selection, then lists properties from the
selected features. See the Working With Feature Data sample, in the Developer’s
Guide samples, for the complete version.

It selects parcels within the boundaries of District 1 that are owned by
SCHMITT. This requires a spatial filter and a basic filter.

Example: Selection | 41

$map = new MgMap($siteConnection);

$map->Open($mapName);

// Get the geometry for the boundaries of District 1

$districtQuery = new MgFeatureQueryOptions();

$districtQuery->SetFilter("Autogenerated_SDF_ID = 1");

$layer = $map->GetLayers()->GetItem('Districts');

$featureReader = $layer->SelectFeatures($districtQuery);

$featureReader->ReadNext();

$districtGeometryData = $featureReader->

GetGeometry('Data');

// Convert the AGF binary data to MgGeometry.

$agfReaderWriter = new MgAgfReaderWriter();

$districtGeometry = $agfReaderWriter->

Read($districtGeometryData);

// Create a filter to select the desired features.

// Combine a basic filter and a spatial filter.

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'SCHMITT%'");

$queryOptions->SetSpatialFilter('SHPGEOM',

$districtGeometry,

MgFeatureSpatialOperations::Inside);

// Select the features.

$layer = $map->GetLayers()->GetItem('Parcels');

$featureReader = $layer->SelectFeatures($queryOptions);

// For each selected feature, display the address.

echo '<p>Properties owned by Schmitt ';

echo 'in District 1</p><p>';

while ($featureReader->ReadNext())

{

 $val = $featureReader->GetString('RPROPAD');

42 | Chapter 4 Working With Feature Data

echo $val . '
';

}

echo '</p>';

Active Selections
A map may have an active selection, which is a list of features on the map
that have been selected and highlighted in the Viewer. The active selection
is part of the run-time map state, and is not stored with the map resource in
the repository.

The most direct method for creating an active selection is to use the interactive
selection tools in the Viewer. Applications can also create selections using the
Web API and apply them to a user’s view of the map. Any changes to the
active selection require re-generation of the map image. Because of this, the
Web server keeps information about the selection.

Selecting with the Viewer
In order for a feature to be selectable using the Viewer, the following criteria
must be met:

■ The layer containing the feature must be visible at the current map view
scale.

■ The selectable property for the layer must be true. Change this property
in the web layout or with the MgLayer::SetSelectable() method.

There are different selection tools available in the Viewer. They can be enabled
or disabled as part of the web layout. Each tool allows a user to select one or
more features on the map.

Passing Viewer Information to the Web Server
The Viewer manages many details about the state of the active map. These
details are not always directly available to the Web Server. They are local to
the Viewer, and are available through JavaScript calls to the Viewer API.

Active Selections | 43

Because of this, when the Viewer makes a request to a MapGuide Server Page
on the Web Server, it must often pass information as part of the request. Some
common methods for passing this information are:

■ as an additional parameter to an Invoke URL command in a web layout

■ through an Invoke Script command that executes the Submit method of
the hidden formFrame

■ through an onClick or other event that executes the Submit method of
the hidden formFrame

The best method to use depends on the requirements of the application. If
you are invoking the request from a command defined in a web layout, you
can pass the information either as an additional parameter to an Invoke URL
command or through an Invoke Script command. Invoke URL is simpler, but
it offers a restricted set of parameters. Invoke Script has complete access to all
the JavaScript calls in the Viewer API.

If you are invoking the request from a page in the task pane, you can execute
JavaScript as part of an onClick event or a form action.

Additional Parameters to an Invoke URL Command
The current selection is the only variable that can be passed as part of an
Invoke URL command.

To pass the current selection, edit the web layout. Define a new Invoke URL
command. On the Additional Parameters tab, enter a key and value. The key
must be a valid HTTP POST key. For the value, enter $CurrentSelection. Add
the command to the toolbar, context menu, or task bar menu.

When the command is executed, the current selection is passed to the page,
along with the standard variables like SESSION and MAPNAME.

For example, if you define the key SEL to have the value $CurrentSelection,
then when the URL is invoked

$selection = $_POST['SEL'];

gets the current selection, in XML format.

See Working With the Active Selection (page 46) for details about using the
XML data.

44 | Chapter 4 Working With Feature Data

Passing Parameters From an Invoke Script command
An Invoke Script command in a web layout can be used to pass custom
parameters to a page. The parameters can be any values that are available via
the Viewer API.

To pass parameters, edit the web layout. Define a new Invoke Script command.
On the Additional Parameters tab, enter the JavaScript code to retrieve the
values to be passed. Add the command to the toolbar, context menu, or task
bar menu.

The JavaScript code can call Viewer API functions or other functions to retrieve
values. To pass the parameters to a page, call the Submit method of the
formFrame with the parameters, the page URL, and the name of the target
frame. Use taskPaneFrame or scriptFrame as the target frame, depending
whether the loaded page should be visible or not.

NOTE The parameters must include standard parameters like SESSION and
MAPNAME, if they are needed.

Passing Parameters From the Task Pane Frame
Passing parameters from the task pane frame is similar to passing them from
an Invoke Script command. Use the Viewer API to retrieve values and call the
Submit method of the formFrame to pass the values to another page.

For example, the following function passes the map view scale and the center
point as parameters to a page that opens in a new window.

function submitRequest(pageUrl)

{

xmlSel = parent.parent.mapFrame.GetSelectionXML();

mapScale = parent.parent.mapFrame.GetScale();

mapCenter = parent.parent.mapFrame.GetCenter();

params = new Array(

"SESSION", parent.parent.mapFrame.GetSessionId(),

"MAPNAME", parent.parent.mapFrame.GetMapName(),

"SELECTION", xmlSel,

"SCALE", mapScale,

"CENTERX", mapCenter.X,

"CENTERY", mapCenter.Y

);

parent.parent.formFrame.Submit(pageUrl, params, "_blank");

}

Passing Viewer Information to the Web Server | 45

To call the function, execute it as part of an onClick event or as the action in
a form. For example, clicking the following link would execute the function:

<a href="#"

onClick="submitRequest(

'/mapguide/devguide/custom_output/property_report.php');

return false;">

Click for report

Working With the Active Selection
Whenever a selection is changed by the Viewer, the selection information is
sent to the Web server so the map can be re-generated.

To retrieve and manipulate the active selection for a map:

1 Create an MgSelection object for the map. Initialize it to the active
selection.

2 Retrieve selected layers from the MgSelection object.

3 For each layer, retrieve selected feature classes. There will normally be
one feature class for the layer, so you can use the
MgSelection::GetClass() method instead of the
MgSelection::GetClasses() method.

4 Call MgSelection::GenerateFilter() to create a selection filter that
contains the selected features in the class.

5 Call MgFeatureService::SelectFeatures() to create an MgFeatureReader
object for the selected features.

6 Process the MgFeatureReader object, retrieving each selected feature.

Example: Listing Selected Parcels
One method to do this is to create a JavaScript function, then call this function
from the Viewer using an Invoke Script command or as a result of an onClick
event in the task pane. For example, the task pane of the Working With Feature
Data sample contains a JavaScript function executed by an onClick event.

46 | Chapter 4 Working With Feature Data

function listSelection()

{

 xmlSel = parent.parent.mapFrame.GetSelectionXML();

params = new Array("SESSION",

parent.parent.mapFrame.GetSessionId(),

"MAPNAME", parent.parent.mapFrame.GetMapName(),

"SELECTION", xmlSel);

pageUrl =

"/mapguide/samplesphp/working_with_feature_data/

listselection.php";

parent.parent.formFrame.Submit(pageUrl, params,

"taskPaneFrame");

}

This submits a request to listselection.php, which contains the following:

Working With the Active Selection | 47

$map = new MgMap();

$map->Open($resourceService, $mapName);

$selection = new MgSelection($map);

$selection->Open($resourceService, $mapName);

$layers = $selection->GetLayers();

if ($layers)

{

 $queryOptions = new MgFeatureQueryOptions();

 for ($i = 0; $i < $layers->GetCount(); $i++)

 {

 // Only check selected features in the Parcels layer.

 $layer = $layers->GetItem($i);

 if ($layer && $layer->GetName() == 'Parcels')

 {

 // Create a filter containing the IDs of the selected

 // features on this layer

 $layerClassName = $layer->GetFeatureClassName();

 $selectionString = $selection->GenerateFilter($layer,

 $layerClassName);

 // Get the feature resource for the selected layer

 $layerFeatureId = $layer->GetFeatureSourceId();

 $layerFeatureResource = new

 MgResourceIdentifier($layerFeatureId);

 // Apply the filter to the feature resource for the

 // selected layer. This returns

 // an MgFeatureReader of all the selected features.

 $queryOptions->SetFilter($selectionString);

 $featureReader =

 $featureService->SelectFeatures($layerFeatureResource,

 $layerClassName, $queryOptions);

 // Process each item in the MgFeatureReader,

 // displaying the owner name

48 | Chapter 4 Working With Feature Data

while ($featureReader->ReadNext())

{

$val = $featureReader->GetString('NAME') .

'
 ' .

$featureReader->GetString('RPROPAD');

echo $val . '
';

}

}

}

}

else

echo 'No selected layers';

echo '</p>';

Setting the Active Selection With the Web API
To set the run-time map selection using a query, perform the following steps:

■ Create a selection as described in Selecting with the Web API (page 37).
This creates a feature reader containing the selected features.

■ Create an MgSelection object to hold the features in the feature reader.

■ Send the selection to the Viewer, along with a call to the Viewer API
function SetSelectionXML().

Example: Setting the Active Selection
The following example combines the pieces needed to create a selection using
the Web API and pass it back to the Viewer where it becomes the active
selection for the map. It is an extension of the example shown in Example:
Selection (page 41).

The PHP code in this example creates the selection XML. Following that is a
JavaScript function that calls the SetSelectionXML() function with the
selection. This function is executed when the page loads.

Setting the Active Selection With the Web API | 49

<body class="AppFrame" onLoad="OnPageLoad()">

 <h1 class="AppHeading">Select features</h1>

 <?php

 include '../common/common.php';

 $args = ($_SERVER['REQUEST_METHOD'] == "POST")? $_POST : $_GET;

 $sessionId = $args['SESSION'];

 $mapName = $args['MAPNAME'];

 try

 {

 // Initialize the Web Extensions and connect to the Server

 // using the Web Extensions session identifier

 MgInitializeWebTier ($webconfigFilePath);

 $userInfo = new MgUserInformation($sessionId);

 $siteConnection = new MgSiteConnection();

 $siteConnection->Open($userInfo);

 $map = new MgMap($siteConnection);

 $map->Open($mapName);

 // Get the geometry for the boundaries of District 1

 $districtQuery = new MgFeatureQueryOptions();

 $districtQuery->SetFilter("Autogenerated_SDF_ID = 1");

 $layer = $map->GetLayers()->GetItem('Districts');

 $featureReader = $layer->SelectFeatures($districtQuery);

 $featureReader->ReadNext();

 $districtGeometryData = $featureReader->

 GetGeometry('Data');

 // Convert the AGF binary data to MgGeometry.

 $agfReaderWriter = new MgAgfReaderWriter();

 $districtGeometry =

 $agfReaderWriter->Read($districtGeometryData);

50 | Chapter 4 Working With Feature Data

// Create a filter to select the desired features. Combine

// a basic filter and a spatial filter.

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RNAME LIKE 'SCHMITT%'");

$queryOptions->SetSpatialFilter('SHPGEOM', $districtGeometry,

MgFeatureSpatialOperations::Inside);

// Get the features from the feature source,

// turn it into a selection, then save the selection as XML.

$layer = $map->GetLayers()->GetItem('Parcels');

$featureReader = $layer->SelectFeatures($queryOptions);

$layer = $map->GetLayers()->GetItem('Parcels');

$selection = new MgSelection($map);

$selection->AddFeatures($layer, $featureReader, 0);

$selectionXml = $selection->ToXml();

echo 'Selecting parcels owned by Schmitt in District 1';

}

catch (MgException $e)

{

echo $e->GetMessage();

echo $e->GetDetails();

}

?>

</body>

<script language="javascript">

// Emit this function and assocate it with the onLoad event

// for the page so that it gets executed when this page

// loads in the browser. The function calls the

// SetSelectionXML method on the Viewer Frame, which updates

// the current selection on the viewer and the server.

function OnPageLoad()

{

selectionXml = '<?php echo $selectionXml; ?>';

parent.parent.SetSelectionXML(selectionXml);

Example: Setting the Active Selection | 51

}

</script>

52 | Chapter 4 Working With Feature Data

Modifying Maps and Layers

Introduction
TIP The Modifying Maps and Layers sample, in the Developer’s Guide samples,
demonstrates concepts from this chapter.

This chapter describes how to modify maps and layers.

Adding An Existing Layer To A Map
If the layer already exists in the resource repository, add it to the map by getting
the map’s layer collection and then adding the layer to that collection.

$layerCollection = $map->GetLayers();

$layerCollection->Add($layer);

By default, newly added layers are added to the bottom of the drawing order,
so they may be obscured by other layers. If you want to specify where the layer
appears in the drawing order, use the $layerCollection->Insert() method.
For an example, see Adding Layers To A Map (page 64).

NOTE In the MapGuide API, getting a collection returns a reference to the collection.
So adding the layer to the layer collection immediately updates the map.

Creating Layers By Modifying XML
The easiest way to programmatically create new layers is to

5

53

1 Build a prototype layer through the MapGuide Studio UI. To make the
scripting simpler, this layer should have as many of the correct settings
as can be determined in advance.

2 Use MapGuide Studio’s Save as Xml command to save the layer as an
XML file.

3 Have the script load the XML file and then use the DOM (Document
Object Model) to change the necessary XML elements.

4 Add the modified layer to the map.

The XML schema for layer definitions is defined by the
LayerDefinition-version.xsd schema, which is documented in the MapGuide
Web API Reference. This schema closely parallels the UI in MapGuide Studio’s
Layer Editor, as described in the MapGuide Studio Help.

This example

■ loads a layer that has been created through MapGuide Studio

■ uses the DOM to change the filter and its associated legend label

You can use the DOM to modify any layers, including ones that already exist
in the map, not just new layers that you are adding to the map. You can also
use the DOM to modify other resources; the XML schemas are described in
the MapGuide Web API Reference.

54 | Chapter 5 Modifying Maps and Layers

// (initialization etc. not shown here)

// Open the map

 $map = new MgMap();

 $map->Open($resourceService, $mapName);

 // --//

 // Load a layer from XML, and use the DOM to change it

 // Load the prototype layer definition into

 // a PHP DOM object.

 $domDocument =

 DOMDocument::load('RecentlyBuilt.LayerDefinition');

 if ($domDocument == NULL)

 {

 echo "The layer definition

 'RecentlyBuilt.LayerDefinition' could not be

 found.
\n";

 return;

 }

 // Change the filter

 $xpath = new DOMXPath($domDocument);

 $query = '//AreaRule/Filter';

 // Get a list of all the <AreaRule><Filter> elements in

 // the XML.

 $nodes = $xpath->query($query);

 // Find the correct node and change it

 foreach ($nodes as $node)

 {

 if ($node->nodeValue == 'YRBUILT > 1950')

 {

 $node->nodeValue = 'YRBUILT > 1980';

 }

 }

 // Change the legend label

 $query = '//LegendLabel';

 // Get a list of all the <LegendLabel> elements in the

 // XML.

 $nodes = $xpath->query($query);

 // Find the correct node and change it

 foreach ($nodes as $node)

 {

 if ($node->nodeValue == 'Built after 1950')

 {

 $node->nodeValue = 'Built after 1980';

 }

Creating Layers By Modifying XML | 55

}

// ...

The page then goes on to save the XML to a resource and loads that resource
into the map, as described in Adding Layers To A Map (page 64).

If you wish to modify an existing layer that is visible in other users’ maps,
without affecting those maps:

1 Copy the layer to the user’s session repository.

2 Modify the layer and save it back to the session repository.

3 Change the user’s map to refer to the modified layer.

See Adding Layers To A Map (page 64).

Another Way To Create Layers
The method described in the previous section is easy to use, but requires a
layer definition be created first through the MapGuide Studio UI. An alternative
approach is to use the methods defined in

WebServerExtensions\www\mapviewerphp\layerdefinitionfactory.php.

This file contains several functions, which can be used to build up a layer
definition. The parameters of these functions enable you to set the most
commonly used settings. (If you need to change other settings, you will have
to either use the MapGuide Studio UI, or modify the XML of the layer
definition.)

The layerdefinitionfactory is only available for PHP. For development using
ASP.NET, a good alternative is to use the Visual Studio tool xsd.exe to generate
.NET classes for the LayerDefinition schema.

56 | Chapter 5 Modifying Maps and Layers

LayerDefinition

$featureClass
$resourceId

$geometry
$featureClassRange

AreaTypeStyle

$areaRules

LineTypeStyle

$lineRules

PointTypeStyle

$pointRule

AreaRule
$legendLabel
$filterText
$foreGroundColor

LineRule
$legendLabel
$filter
$color

PointRule
$legendLabel
$filter
$label
$pointSym

MarkSymbol

$height

$symbolName
$width

$resourceId

$color

TextSymbol

$foregroundColor
$fontHeight
$text

ScaleRange

$maxScale
$minScale

$typeStyle

DescriptionParameterFunction

The repository path of the feature source for
the layer. For example: Lib-

$resourceIdCreateLayerDefini-

tion()

rary://Samples/Sheboygan/Data/Par-

cels.FeatureSource. Equivalent to the
Data resource used in this layer field in Map-
Guide Studio’s layer editor.

Another Way To Create Layers | 57

DescriptionParameterFunction

The feature class to use. For example,
SHP_Schema:Parcels. Equivalent to the

$featureClass

Feature class field in MapGuide Studio’s layer
editor.

The geometry to use from the feature class.
For example, SHPGEOM. Equivalent to the

$geometry

Geometry field in MapGuide Studio’s layer
editor.

A scale range created by filling in a scale
range template (ScaleRange.templ).

$feature-

ClassRange

The minimum scale range to which this rule
applies. Equivalent to the From field in Map-
Guide Studio’s layer editor.

$minScaleCreateScaleRange()

The maximum scale range to which this rule
applies. Equivalent to the To field in Map-
Guide Studio’s layer editor.

$maxScale

A type style created by using Cre-
ateAreaTypeStyle(), CreateLineType-
Style() or CreatePointTypeStyle().

$typeStyle

One or more area rules, created by Cre-
ateAreaRule.

$areaRulesCreateAreaTypeStyle()

The text for the label shown beside this rule
in the legend. Equivalent to the Legend Label
field in MapGuide Studio’s layer editor.

$legendLabelCreateAreaRule()

The filter expression that determines which
features match this rule. For example, SQFT

$filterText

>= 1 AND SQFT < 800. Equivalent
to the Condition field in MapGuide Studio’s
layer editor.

The color to be applied to areas that match
this rule. Equivalent to the Foreground color
field in MapGuide Studio’s layer editor.

$foreGroundColor

58 | Chapter 5 Modifying Maps and Layers

DescriptionParameterFunction

The string for the text.$textCreateTextSymbol()

The height for the font.$fontHeight

The foreground color.$foregroundColor

One or more point rules, created by Create-
PointRule().

$pointRuleCreatePointTypeStyle()

The label shown beside this rule in the le-
gend. Equivalent to the Legend label field in
MapGuide Studio’s layer editor.

$legendLabelCreatePointRule()

The filter expression that determines which
features match this rule. Equivalent to the

$filter

Condition field in MapGuide Studio’s layer
editor.

The text symbol, created by CreateTextSym-
bol().

$label

A mark symbol created by CreateMarkSym-
bol().

$pointSym

The resource ID of the symbol used to mark
each point. For example, lib-

$resourceIdCreateMarkSymbol()

rary://Samples/Sheboygan/Sym-

bols/BasicSymbols.SymbolLibrary.
Equivalent to the Location field in the Select
a symbol from a Symbol Library dialog in
MapGuide Studio’s layer editor.

The name of the desired symbol in the sym-
bol library.

$symbolName

The width of the symbol (in points). Equival-
ent to the Width field in the Style Point dialog
in MapGuide Studio’s layer editor.

$width

Another Way To Create Layers | 59

DescriptionParameterFunction

The height of the symbol (in points). Equival-
ent to the Height field in the Style Point dia-
log in MapGuide Studio’s layer editor.

$height

The color for the symbol. Equivalent to the
Foreground color field in the Style Point dia-
log in MapGuide Studio’s layer editor.

$color

One or more line rules, created by Cre-
ateLineRule().

$lineRulesCreateLineTypeStyle()

The color to be applied to lines that match
this rule. Equivalent to the Color field in
MapGuide Studio’s layer editor.

$colorCreateLineRule()

The label shown beside this rule in the le-
gend. Equivalent to the Legend Label field in
MapGuide Studio’s layer editor.

$legendLabel

The filter expression that determines which
features match this rule. Equivalent to the

$filter

Condition field in MapGuide Studio’s layer
editor.

For more information on these settings, see the MapGuide Studio Help.

Example - Creating A Layer That Uses Area Rules
This example shows how to create a new layer using the factory. This layer
uses three area rules to theme parcels by their square footage.

60 | Chapter 5 Modifying Maps and Layers

// ...

 /---//

 $factory = new LayerDefinitionFactory();

 /// Create three area rules for three different

 // scale ranges.

 $areaRule1 = $factory->CreateAreaRule('1 to 800',

 'SQFT >= 1 AND SQFT < 800', 'FFFFFF00');

 $areaRule2 = $factory->CreateAreaRule('800 to 1600',

 'SQFT >= 800 AND SQFT < 1600', 'FFFFBF20');

$areaRule3 = $factory->CreateAreaRule('1600 to 2400',

'SQFT >= 1600 AND SQFT < 2400', 'FFFF8040');

// Create an area type style.

$areaTypeStyle = $factory->CreateAreaTypeStyle(

$areaRule1 . $areaRule2 . $areaRule3);

// Create a scale range.

$minScale = '0';

$maxScale = '1000000000000';

$areaScaleRange = $factory->CreateScaleRange(

$minScale, $maxScale, $areaTypeStyle);

// Create the layer definiton.

$featureClass = 'Library://Samples/Sheboygan/Data/'

. 'Parcels.FeatureSource';

$featureName = 'SHP_Schema:Parcels';

$geometry = 'SHPGEOM';

$layerDefinition = $factory->CreateLayerDefinition(

$featureClass, $featureName, $geometry,

$areaScaleRange);

//---//

// ...

The script then saves the XML to a resource and loads that resource into the
map. See Adding Layers To A Map (page 64).

Example - Using Line Rules
Creating line-based rules is very similar.

Example - Using Line Rules | 61

 // ...

 //---//

$factory = new LayerDefinitionFactory();

// Create a line rule.

$legendLabel = '';

$filter = '';

$color = 'FF0000FF';

$lineRule = $factory->CreateLineRule(

$legendLabel, $filter, $color);

// Create a line type style.

$lineTypeStyle = $factory->

CreateLineTypeStyle($lineRule);

// Create a scale range.

$minScale = '0';

$maxScale = '1000000000000';

$lineScaleRange = $factory->

CreateScaleRange($minScale, $maxScale,

$lineTypeStyle);

// Create the layer definiton.

$featureClass = 'Library://Samples/Sheboygan/Data/'

. 'HydrographicLines.FeatureSource';

$featureName = 'SHP_Schema:HydrographicLines';

$geometry = 'SHPGEOM';

$layerDefinition = $factory->

CreateLayerDefinition($featureClass, $featureName,

$geometry, $lineScaleRange);

//---//

// ...

Example - Using Point Rules
To create point-based rules, three methods are used.

62 | Chapter 5 Modifying Maps and Layers

 // ...

 //---//

 $factory = new LayerDefinitionFactory();

 // Create a mark symbol

 $resourceId =

'Library://Samples/Sheboygan/Symbols/BasicSymbols.SymbolLibrary';

 $symbolName = 'PushPin';

 $width = '24'; // points

 $height = '24'; // points

 $color = 'FFFF0000';

 $markSymbol = $factory->CreateMarkSymbol($resourceId,

 $symbolName, $width, $height, $color);

 // Create a text symbol

 $text = "ID";

 $fontHeight="12";

 $foregroundColor = 'FF000000';

 $textSymbol = $factory->CreateTextSymbol($text,

 $fontHeight, $foregroundColor);

 // Create a point rule.

 $legendLabel = 'trees';

 $filter = '';

 $pointRule = $factory->CreatePointRule($legendLabel,

 $filter, $textSymbol, $markSymbol);

 // Create a point type style.

 $pointTypeStyle = $factory->

 CreatepointTypeStyle($pointRule);

 // Create a scale range.

 $minScale = '0';

 $maxScale = '1000000000000';

 $pointScaleRange = $factory->CreateScaleRange($minScale,

 $maxScale, $pointTypeStyle);

 // Create the layer definiton.

 $featureClass = 'Library://Tests/Trees.FeatureSource';

 $featureName = 'Default:Trees';

 $geometry = 'Geometry';

 $layerDefinition = $factory->

 CreateLayerDefinition($featureClass, $featureName,

 $geometry, $pointScaleRange);

 //---//

Example - Using Point Rules | 63

// ...

Adding Layers To A Map
The preceding examples have created or modified the XML for layer definitions
in memory. To add those layers to a map:

1 Save the layer definition to a resource stored in the session repository.

2 Add that resource to the map.

This function adds takes a layer’s XML, creates a resource in the session
repository from it, and adds that layer resource to a map.

64 | Chapter 5 Modifying Maps and Layers

<?php

require_once('../common/common.php');

///

function add_layer_definition_to_map($layerDefinition,

 $layerName, $layerLegendLabel, $mgSessionId,

 $resourceService, &$map)

// Adds the layer definition (XML) to the map.

// Returns the layer.

{

 // Validate the XML.

 $domDocument = new DOMDocument;

 $domDocument->loadXML($layerDefinition);

 if (! $domDocument->schemaValidate(

 "$schemaDirectory\LayerDefinition-1.1.0.xsd"))

 {

 echo "ERROR: The new XML document is invalid.

\n.";

 return NULL;

 }

 // Save the new layer definition to the session

 // repository

 $byteSource = new MgByteSource($layerDefinition,

 strlen($layerDefinition));

 $byteSource->SetMimeType(MgMimeType::Xml);

 $resourceID = new MgResourceIdentifier(

 "Session:$mgSessionId//$layerName.LayerDefinition");

 $resourceService->SetResource($resourceID,

$byteSource->GetReader(), null);

$newLayer = add_layer_resource_to_map($resourceID,

$resourceService, $layerName, $layerLegendLabel,

$map);

return $newLayer;

}

This function adds a layer resource to a map.

Adding Layers To A Map | 65

function add_layer_resource_to_map($layerResourceID,

 $resourceService, $layerName, $layerLegendLabel, &$map)

// Adds a layer defition (which can be stored either in the

// Library or a session repository) to the map.

// Returns the layer.

{

 $newLayer = new MgLayer($layerResourceID,

$resourceService);

// Add the new layer to the map's layer collection

$newLayer->SetName($layerName);

$newLayer->SetVisible(true);

$newLayer->SetLegendLabel($layerLegendLabel);

$newLayer->SetDisplayInLegend(true);

$layerCollection = $map->GetLayers();

if (! $layerCollection->Contains($layerName))

{

// Insert the new layer at position 0 so it is at

// the top of the drawing order

$layerCollection->Insert(0, $newLayer);

}

return $newLayer;

}

This function adds a layer to a legend’s layer group.

66 | Chapter 5 Modifying Maps and Layers

function add_layer_to_group($layer, $layerGroupName,

 $layerGroupLegendLabel, &$map)

// Adds a layer to a layer group. If necessary, it creates

// the layer group.

{

 // Get the layer group

 $layerGroupCollection = $map->GetLayerGroups();

 if ($layerGroupCollection->Contains($layerGroupName))

 {

 $layerGroup =

 $layerGroupCollection->GetItem($layerGroupName);

 }

 else

 {

 // It does not exist, so create it

 $layerGroup = new MgLayerGroup($layerGroupName);

 $layerGroup->SetVisible(true);

 $layerGroup->SetDisplayInLegend(true);

$layerGroup->SetLegendLabel($layerGroupLegendLabel);

$layerGroupCollection->Add($layerGroup);

}

// Add the layer to the group

$layer->SetGroup($layerGroup);

}

Making Changes Permanent
So far, all the examples in this chapter have only affected the user’s runtime
version of the map. No other users see those changes, and when the current
user logs out those changes will be lost.

To make changes permanent, the script can save the modified layer back into
the Library.

$byteSource = new MgByteSource($layerDefinition, strlen($layerDefin

ition));

$byteSource->SetMimeType(MgMimeType::Xml);

$resourceId =

new MgResourceIdentifier("Library://LayerName.LayerDefinition");

$resourceService->SetResource(

$resourceId, $byteSource->GetReader(), null);

Making Changes Permanent | 67

68

Analyzing Features

Introduction
TIP The Analyzing Features sample, in the Developer’s Guide samples, demonstrates
concepts from this chapter.

Autodesk MapGuide includes methods for analyzing map features, including
comparing the spatial relationships between features, measuring distances, and
creating buffer areas around features.

Analyzing features requires knowing how the features are represented and what
spatial reference systems are being used. If different spatial reference systems
are being used, it is important to be able to convert between them.

Representation of Geometry
Autodesk MapGuide can represent geometric data in three different forms:

■ AGF text format, which is an extension of the Open Geospatial Consortium
(OGC) Well Known Text (WKT) format. This is used to represent geometry
as a character string.

■ Binary AGF format. This is used by the FDO technology supporting the
Feature Service.

■ Autodesk MapGuide internal representation, using MgGeometry and classes
derived from it.

6

69

NOTE This guide and the Web API Reference will often use the term WKT to mean
AGF text format. Be aware that AGF Text values do not always conform to the
OGC WKT standard. See the Geometry module in the Web API Reference for
details.

To convert between AGF text and the Autodesk MapGuide internal
representation, use an MgWktReaderWriter object. Call
MgWktReaderWriter.Read() to convert AGF text to MgGeometry. Call
MgWktReaderWriter.Write() to convert MgGeometry to AGF text.

To convert between binary AGF and the Autodesk MapGuide internal
representation, use an MgAgfReaderWriter object. Call
MgAgfReaderWriter.Read() to convert binary AGF to MgGeometry. Call
MgAgfReaderWriter.Write() to convert MgGeometry to binary AGF.

For example, if you have a WKT representation of the geometry, you could
create a geometry object as follows:

MgWktReaderWriter wktReaderWriter = new MgWktReaderWriter();

MgGeometry geometry = wktReaderWriter.Read(wktGeometry);

Geometry Objects
MgGeometry is the base class for all the geometry types. The simple geometry
types are:

■ MgPoint — a single point

■ MgLineString — a series of connected line segments

■ MgCurveString — a series of connected curve segments

■ MgPolygon — a polygon with sides formed from line segments

■ MgCurvePolygon — a polygon with sides formed from curve segments

The curve segments are circular arcs, defined by a start point, an end point,
and a control point.

Complex types are formed by aggregating simple types. The complex types
are:

■ MgMultiPoint — a group of points

■ MgMultiLineString — a group of line strings

70 | Chapter 6 Analyzing Features

■ MgMultiCurveString — a group of curve strings

■ MgMultiPolygon — a group of polygons

■ MgMultiCurvePolygon — a group of curve polygons

■ MgMultiGeometry — a group of simple geometry objects of any type

Comparing Geometry Objects
The MgGeometry class contains methods for comparing different geometry
objects. These are similar to the spatial filters described in Selecting with the
Web API (page 37). Methods to test spatial relationships include:

■ Contains()

■ Crosses()

■ Disjoint()

■ Equals()

■ Intersects()

■ Overlaps()

■ Touches()

■ Within()

For example, if you have an MgLineString object $line and an MgPolygon
object $polygon, you can test if the line crosses the polygon with a call to

$line->Crosses($polygon)

Methods to create new geometry objects from the point set of two other
geometries include:

■ Difference()

■ Intersection()

■ SymmetricDifference()

■ Union()

Comparing Geometry Objects | 71

Complete details are in the Geometry module of the Web API reference, under
Spatial Relationships.

Coordinate Systems
A single map will often combine data from different sources, and the different
sources may use different coordinate systems. The map has its own coordinate
system, and any feature sources used in the map may have different coordinate
systems. It is important for display and analysis that all locations are
transformed to the same coordinate system.

NOTE A coordinate system can also be called a spatial reference system (SRS) or
a coordinate reference system (CRS). This guide uses the abbreviation SRS.

Autodesk MapGuide supports three different types of coordinate system:

■ Arbitrary X-Y

■ Geographic, or latitude/longitude

■ Projected

An MgCoordinateSystem object represents a coordinate system.

NOTE You cannot transform between arbitrary X-Y coordinates and either
geographic or projected coordinates.

To create an MgCoordinateSystem object from an MgMap object,

■ Get the WKT representation of the map coordinate system, using
MgMap::GetMapSRS().

■ Create an MgCoordinateSystem object, using
MgCoordinateSystemFactory::Create().

To create an MgCoordinateSystem object from a map layer,

■ Get the feature source for the layer.

■ Get the active spatial context for the feature source.

■ Convert the spatial context to a WKT.

■ Create an MgCoordinateSystem object from the WKT.

72 | Chapter 6 Analyzing Features

To transform geometry from one coordinate system to another, create an
MgCoordinateSystemTransform object using an MgCoordinateSystemFactory
and the two coordinate systems. Apply this transform to the MgGeometry object.

For example, if you have geometry representing a feature on a layer that uses
one coordinate system, and you want to compare it to a feature on another
layer that uses a different coordinate system, perform the following steps:

$featureSource1 = $layer1->GetFeatureSourceId();

$contexts1 = $featureService->GetSpatialContexts(

$featureSource1, true);

$contexts1->ReadNext();

$srs1 = $contexts1->GetCoordinateSystemWkt();

$featureSource2 = $layer2->GetFeatureSourceId();

$contexts2 = $featureService->GetSpatialContexts(

$featureSource2, true);

$contexts2->ReadNext();

$srs2 = $contexts2->GetCoordinateSystemWkt();

$coordSysFactory = new MgCoordinateSystemFactory();

$xform = $coordSysFactory->GetTransform($srs1, $srs2);

$geometry1xform = $geometry1->Transform($xform);

Measuring Distance
Measuring distance in geographic or projected coordinate systems requires
great circle calculations. Both MgGeometry::Buffer() and
MgGeometry::Distance() accept a measurement parameter that defines the
great circle to be used. If the measurement parameter is null, the calculation
is done using a linear algorithm.

Create the measurement parameter, an MgCoordinateSystemMeasure object,
from the MgCoordinateSystem object.

Distance is calculated in the units of the SRS. MgCoordinateSystem includes
two methods, ConvertCoordinateSystemUnitsToMeters() and
ConvertMetersToCoordinateSystemUnits() to convert to and from linear
distances.

For example, to calculate the distance between two MgGeometry objects $a and
$b, using the coordinate system $srs, perform the following steps:

Measuring Distance | 73

$measure = $srs->GetMeasure();

$distInMapUnits = $a->Distance($b, $measure);

$distInMeters = $srs->ConvertCoordinateSystemUnitsToMeters(

$distInMapUnits);

Another way to calculate the distance is to use
MgCoordinateSystemMeasure::GetDistance(), as in the following:

$distInMapUnits = $measure->GetDistance($a, $b);

Temporary Feature Sources
Many geometric analysis operations require creating new features and new
feature sources. For example, drawing a buffer around a point on a map requires
a layer to display the buffer polygon, and the layer requires a feature source.

To create a temporary feature source, perform the following steps:

■ Create a feature class definition.

■ Determine what properties you need to store for the features. Add the
property definitions to the feature class definition.

■ Create a feature schema containing the feature class definition.

■ Determine the SRS for the feature source. This can be the same as the SRS
used for the map.

■ Create a feature source using the schema and the SRS. The feature source
can be stored in the session repository.

It is possible for a single feature source to contain more than one feature class.
A feature source that is to be used for temporary data, however, normally
contains one feature class.

A feature schema (MgFeatureSchema object) contains class definitions
(MgClassDefinition objects) for each feature class in the schema.

Each class definition contains property definitions for each property in the
feature class. The property definitions can be the following types:

■ MgDataPropertyDefinition

■ MgGeometryPropertyDefinition

■ MgObjectPropertyDefinition

74 | Chapter 6 Analyzing Features

■ MgRasterPropertyDefinition

MgDataPropertyDefinition is used to define simple properties like numbers
or strings. MgGeometryPropertyDefinition is used to define geometric
properties. Most feature classes will have a geometric property to describe the
feature’s location.

For example, the following creates a temporary feature source to hold buffer
features. The feature source contains a single feature class named BufferClass.

Features in BufferClass have two properties. ID is an autogenerated unique
ID number, and BufferGeometry contains the geometry for the buffer polygon.

The FDO technology supporting the Feature Service allows for multiple spatial
reference systems within a single feature source. However, this capability is
dependent on the data provider, and does not apply to the SDF provider that
is used for creating feature sources within Autodesk MapGuide. For temporary
feature sources, you must define a single default SRS for the feature source,
and you must set any geometry properties to use the same SRS. The name of
the SRS is user-defined.

Temporary Feature Sources | 75

$bufferClass = new MgClassDefinition();

$bufferClass->SetName('BufferClass');

$properties = $bufferClass->GetProperties();

$idProperty = new MgDataPropertyDefinition('ID');

$idProperty->SetDataType(MgPropertyType::Int32);

$idProperty->SetReadOnly(true);

$idProperty->SetNullable(false);

$idProperty->SetAutoGeneration(true);

$properties->Add($idProperty);

$polygonProperty = new

 MgGeometricPropertyDefinition('BufferGeometry');

$polygonProperty->

 SetGeometryTypes(MgFeatureGeometricType::Surface);

$polygonProperty->SetHasElevation(false);

$polygonProperty->SetHasMeasure(false);

$polygonProperty->SetReadOnly(false);

$polygonProperty->SetSpatialContextAssociation('defaultSrs');

$properties->Add($polygonProperty);

$idProperties = $bufferClass->GetIdentityProperties();

$idProperties->Add($idProperty);

$bufferClass->SetDefaultGeometryPropertyName('BufferGeometry');

$bufferSchema = new MgFeatureSchema('BufferLayerSchema',

'temporary schema to hold a buffer');

$bufferSchema->GetClasses()->Add($bufferClass);

$sdfParams = new MgCreateSdfParams('defaultSrs', $wkt,

$bufferSchema);

$featureService->CreateFeatureSource($bufferFeatureResId,

$sdfParams);

To display features from a temporary feature source in a map, create a layer
definition that refers to the feature source. Use the techniques described in
Modifying Maps and Layers (page 53).

76 | Chapter 6 Analyzing Features

Inserting, Deleting, and Updating Features
To change data in a feature source, create an MgFeatureCommandCollection
object. This can contain commands to insert, delete, or update features in an
FDO data source. The commands are executed sequentially. For FDO providers
that support transaction processing, the commands can be treated as a single
transaction.

Feature commands can be one of the following:

■ MgDeleteFeatures

■ MgInsertFeatures

■ MgUpdateFeatures

To execute the commands, call MgFeatureService::UpdateFeatures(). The
feature class name and property names in any of the feature commands must
match the class name and property names in the feature source.

For example, to delete all features in a feature class with an identity property
ID, execute the following:

$commands = new MgFeatureCommandCollection();

$deleteCommand = new MgDeleteFeatures($className, "ID >= 0");

$commands->Add($deleteCommand);

$featureService->UpdateFeatures($featureSource, $commands, false);

To insert features, create an MgPropertyCollection object that contains the
properties of the new feature. Create an MgInsertFeatures object and add
this to the MgFeatureCommandCollection object.

For example, to add a new feature with a single geometry property, execute
the following:

Inserting, Deleting, and Updating Features | 77

$commands = new MgFeatureCommandCollection();

$properties = new MgPropertyCollection();

$agfByteStream = $agfReaderWriter->Write($geometry);

$geometryProperty = new MgGeometryProperty($propertyName,

 $agfByteStream);

$properties->Add($geometryProperty);

$insertCommand = new MgInsertFeatures($className, $properties);

$commands->Add($insertCommand);

$featureService->UpdateFeatures($featureSource, $commands, false);

To update existing features, create an MgPropertyCollection object that
contains the new values for the properties and a filter expression that selects
the correct feature or features. See Querying Feature Data (page 36) for details
about filter expressions.

Creating a Buffer
To create a buffer around a feature, use the MgGeometry::Buffer() method.
This returns an MgGeometry object that you can use for further analysis. For
example, you could display the buffer by creating a feature in a temporary
feature source and adding a new layer to the map. You could also use the
buffer geometry as part of a spatial filter. For example, you might want to find
all the features within the buffer zone that match certain criteria, or you might
want to find all roads that cross the buffer zone.

To create a buffer, get the geometry of the feature to be buffered. If the feature
is being processed in an MgFeatureReader as part of a selection, this requires
getting the geometry data from the feature reader and converting it to an
MgGeometry object. For example:

$geometryData =

$featureReader->GetGeometry($geometryName);

$featureGeometry = $agfReaderWriter->Read($geometryData);

If the buffer is to be calculated using coordinate system units, create an
MgCoordinateSystemMeasure object from the coordinate system for the map.
For example:

78 | Chapter 6 Analyzing Features

$mapWktSrs = $currentMap->GetMapSRS();

$coordSysFactory =

 new MgCoordinateSystemFactory();

$srs = $coordSysFactory->Create($mapWktSrs);

$srsMeasure = $srs->GetMeasure();

Use the coordinate system measure to determine the buffer size in the
coordinate system, and create the buffer object from the geometry to be
buffered.

$srsDist =

$srs->ConvertMetersToCoordinateSystemUnits($bufferDist);

$bufferGeometry =

$featureGeometry->Buffer($srsDist, $srsMeasure);

To display the buffer in the map, perform the following steps:

■ Create a feature source for the buffer.

■ Insert a buffer feature in the feature source.

■ Create a layer that references the feature source.

■ Add the layer to the map and make it visible.

To use the buffer as part of a query, create a spatial filter using the buffer
geometry, and use this in a call to MgFeatureService::SelectFeatures(). For
example, the following code selects parcels inside the buffer area that are of
type “MFG”. You can use the MgFeatureReader to perform tasks like generating
a report of the parcels, or creating a new layer that puts point markers on each
parcel.

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RTYPE = 'MFG'");

$queryOptions->SetSpatialFilter('SHPGEOM', $bufferGeometry,

MgFeatureSpatialOperations::Inside);

$featureResId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Data/Parcels.FeatureSource");

$featureReader = $featureService->SelectFeatures($featureResId,

"Parcels", $queryOptions);

Creating a Buffer | 79

Example
This example builds on the example from Working With the Active Selection
(page 46). Instead of listing the parcels in the selection, it creates a series of
concentric buffers around the selection, showing increasing distance. The
code sections below contain the significant additions in this example. The
complete source code is available with the Developer’s Guide samples.

Because this example modifies the map, it must refresh the map when it loads,
by executing a JavaScript function. Add the function to the page.

<script language="javascript">

function OnPageLoad()

{

parent.parent.Refresh();

}

</script>

Add an OnLoad command to the <body> element:

<body onLoad="OnPageLoad()">

The example uses a temporary map layer named Buffer to store the buffer
feature. It creates a feature source and the layer if it does not exist. Otherwise,
it deletes any existing features before creating the new buffer. The functions
CreateBufferFeatureSource() and CreateBufferLayer() are in
bufferfunctions.php, which is described below.

80 | Chapter 6 Analyzing Features

include 'bufferfunctions.php';

$bufferRingSize = 100; // measured in metres

$bufferRingCount = 5;

// Set up some objects for coordinate conversion

$mapWktSrs = $map->GetMapSRS();

$agfReaderWriter = new MgAgfReaderWriter();

$wktReaderWriter = new MgWktReaderWriter();

$coordinateSystemFactory = new MgCoordinateSystemFactory();

$srs = $coordinateSystemFactory->Create($mapWktSrs);

$srsMeasure = $srs->GetMeasure();

// Check for a buffer layer. If it exists, delete

// the current features.

// If it does not exist, create a feature source and

// a layer to hold the buffer.

try

{

 $bufferLayer = $map->GetLayers()->GetItem('Buffer');

 $bufferFeatureResId = new MgResourceIdentifier(

 $bufferLayer->GetFeatureSourceId());

 $commands = new MgFeatureCommandCollection();

 $commands->Add(new MgDeleteFeatures('BufferClass',

 "ID >= 0"));

 $featureService->UpdateFeatures($bufferFeatureResId,

 $commands, false);

}

catch (MgObjectNotFoundException $e)

{

 // When an MgObjectNotFoundException is thrown, the layer

 // does not exist and must be created.

 $bufferFeatureResId = new MgResourceIdentifier("Session:" .

 $mgSessionId . "//Buffer.FeatureSource");

 CreateBufferFeatureSource($featureService, $mapWktSrs,

 $bufferFeatureResId);

 $bufferLayer = CreateBufferLayer($resourceService,

 $bufferFeatureResId, $mgSessionId);

 $map->GetLayers()->Insert(0, $bufferLayer);

Example | 81

}

The geometries for the selected features are merged into a single
multi-geometry. Then a series of concentric buffers is created and added to
the feature source. The style for the layer, which is set when function
CreateBufferLayer() processes bufferlayerdefinition.xml, should define the
buffer features to be partly transparent. When they are drawn on the map,
the rings get progressively darker towards the center of the buffer area.

82 | Chapter 6 Analyzing Features

// Process each item in the MgFeatureReader.

// Merge them into a single feature.

$inputGeometries = new MgGeometryCollection();

while ($featureReader->ReadNext())

{

 $featureGeometryData = $featureReader->GetGeometry('SHPGEOM');

 $featureGeometry = $agfReaderWriter->Read($featureGeometryData);

 $inputGeometries->Add($featureGeometry);

}

$geometryFactory = new MgGeometryFactory();

$mergedFeatures = $geometryFactory->

 CreateMultiGeometry($inputGeometries);

// Add buffer features to the temporary feature source.

// Create multiple concentric buffers to show area.

$commands = new MgFeatureCommandCollection();

for ($bufferRing = 0; $bufferRing < $bufferRingCount;

 $bufferRing++)

{

 $bufferDist = $srs->

 ConvertMetersToCoordinateSystemUnits($bufferRingSize *

 ($bufferRing + 1));

 $bufferGeometry = $mergedFeatures->Buffer($bufferDist,

 $srsMeasure);

 $properties = new MgPropertyCollection();

 $properties->Add(new MgGeometryProperty('BufferGeometry',

 $agfReaderWriter->Write($bufferGeometry)));

 $commands->Add(new MgInsertFeatures('BufferClass',

 $properties));

}

$results = $featureService->UpdateFeatures($bufferFeatureResId,

 $commands, false);

$bufferLayer->SetVisible(true);

$bufferLayer->ForceRefresh();

$bufferLayer->SetDisplayInLegend(true);

Example | 83

$map->Save($resourceService);

The functions CreateBufferFeatureSource() and CreateBufferLayer() are
in bufferfunctions.php. CreateBufferFeatureSource() creates a temporary
feature source, with a single feature class, BufferClass. The feature class has
two properties, ID and BufferGeometry. ID is autogenerated, so it does not
need to be added with a new feature. CreateBufferLayer() modifies a layer
definition from an external file and saves it to the repository. For more details,
see Modifying Maps and Layers (page 53).

84 | Chapter 6 Analyzing Features

function CreateBufferFeatureSource($featureService, $wkt,

 $bufferFeatureResId)

{

 $bufferClass = new MgClassDefinition();

 $bufferClass->SetName('BufferClass');

 $properties = $bufferClass->GetProperties();

 $idProperty = new MgDataPropertyDefinition('ID');

 $idProperty->SetDataType(MgPropertyType::Int32);

 $idProperty->SetReadOnly(true);

 $idProperty->SetNullable(false);

 $idProperty->SetAutoGeneration(true);

 $properties->Add($idProperty);

 $polygonProperty = new

 MgGeometricPropertyDefinition('BufferGeometry');

 $polygonProperty->

 SetGeometryTypes(MgFeatureGeometricType::Surface);

 $polygonProperty->SetHasElevation(false);

 $polygonProperty->SetHasMeasure(false);

 $polygonProperty->SetReadOnly(false);

 $polygonProperty->SetSpatialContextAssociation('defaultSrs');

 $properties->Add($polygonProperty);

 $idProperties = $bufferClass->GetIdentityProperties();

 $idProperties->Add($idProperty);

 $bufferClass->

 SetDefaultGeometryPropertyName('BufferGeometry');

 $bufferSchema = new MgFeatureSchema('BufferLayerSchema',

 'temporary schema to hold a buffer');

 $bufferSchema->GetClasses()->Add($bufferClass);

 $sdfParams = new MgCreateSdfParams('defaultSrs', $wkt,

 $bufferSchema);

 $featureService->CreateFeatureSource($bufferFeatureResId,

 $sdfParams);

}

function CreateBufferLayer($resourceService,

 $bufferFeatureResId, $sessionId)

{

 // Load the layer definition template into

 // a PHP DOM object, find the "ResourceId" element, and

 // modify its content to reference the temporary

 // feature source.

 $doc = DOMDocument::load('bufferlayerdefinition.xml');

 $featureSourceNode = $doc->getElementsByTagName(

Example | 85

'ResourceId')->item(0);

$featureSourceNode->nodeValue =

$bufferFeatureResId->ToString();

// Get the updated layer definition from the DOM object

// and save it to the session repository using the

// ResourceService object.

$layerDefinition = $doc->saveXML();

$byteSource = new MgByteSource($layerDefinition,

strlen($layerDefinition));

$byteSource->SetMimeType(MgMimeType::Xml);

$tempLayerResId = new MgResourceIdentifier("Session:" .

$sessionId . "//Buffer.LayerDefinition");

$resourceService->SetResource($tempLayerResId,

$byteSource->GetReader(), null);

// Create an MgLayer object based on the new layer definition

// and return it to the caller.

$bufferLayer = new MgLayer($tempLayerResId, $resourceService);

$bufferLayer->SetName("Buffer");

$bufferLayer->SetLegendLabel("Buffer");

$bufferLayer->SetDisplayInLegend(true);

$bufferLayer->SetSelectable(false);

return $bufferLayer;

}

There is an additional example in the Developer’s Guide samples. It queries
the parcels in the buffer area and selects parcels that match certain criteria.
The selection is done using a query that combines a basic filter and a spatial
filter.

$bufferDist = $srs->

ConvertMetersToCoordinateSystemUnits($bufferRingSize);

$bufferGeometry = $mergedGeometries->Buffer($bufferDist,

$srsMeasure);

// Create a filter to select parcels within the buffer. Combine

// a basic filter and a spatial filter to select all parcels

// within the buffer that are of type "MFG".

$queryOptions = new MgFeatureQueryOptions();

$queryOptions->SetFilter("RTYPE = 'MFG'");

$queryOptions->SetSpatialFilter('SHPGEOM', $bufferGeometry,

MgFeatureSpatialOperations::Inside);

It creates an additional feature source that contains point markers for each of
the selected parcels.

86 | Chapter 6 Analyzing Features

// Get the features from the feature source,

// determine the centroid of each selected feature, and

// add a point to the ParcelMarker layer to mark the

// centroid.

// Collect all the points into an MgFeatureCommandCollection,

// so they can all be added in one operation.

$featureResId = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Data/Parcels.FeatureSource");

$featureReader = $featureService->SelectFeatures($featureResId,

"Parcels", $queryOptions);

$parcelMarkerCommands = new MgFeatureCommandCollection();

while ($featureReader->ReadNext())

{

$byteReader = $featureReader->GetGeometry('SHPGEOM');

$geometry = $agfReaderWriter->Read($byteReader);

$point = $geometry->GetCentroid();

// Create an insert command for this parcel.

$properties = new MgPropertyCollection();

$properties->Add(new MgGeometryProperty('ParcelLocation',

$agfReaderWriter->Write($point)));

$parcelMarkerCommands->Add(

new MgInsertFeatures('ParcelMarkerClass', $properties));

}

$featureReader->Close();

if ($parcelMarkerCommands->GetCount() > 0)

{

$featureService->UpdateFeatures($parcelFeatureResId,

$parcelMarkerCommands, false);

}

else

{

echo '</p><p>No parcels within the buffer area match.';

}

Example | 87

88

Digitizing and Redlining

Introduction
TIP The Digitizing and Redlining sample, in the Developer’s Guide samples,
demonstrates concepts from this chapter.

This chapter describes digitizing (capturing the user’s clicks on the map and
converting the locations to map coordinates) and redlining (drawing items such
as lines or rectangles on the map in response to the user’s clicks).

Digitizing
The Viewer API has a number of functions for digitizing user input. For an
example of how these can be used, see task_pane_digitizing.php in the
digitizing_features directory in the Developer Guide samples.

In this example, if the user clicks the button to digitize a point

<input type="button" value=" Point " onclick="DigitizePoint();">

the script calls the JavaScript function

function DigitizePoint() {

parent.parent.mapFrame.DigitizePoint(OnPointDigitized);

}

which in turn calls the DigitzePoint() method of the Viewer API in the map
frame. It also passes the name of a callback function, OnPointDigitized, which
is defined in the current script. DigizitzePoint() calls this function after it
has digitized the point and passes it the digitized coordinates of the point.

7

89

You can use this callback function to process the digitized coordinates as you
wish. In this example, the script simply displays them in the task pane.

function OnPointDigitized(point) {

ShowResults("X: " + point.X + ", Y: " + point.Y);

}

Redlining
There are three main steps involved in redlining:

1 Pass the digitized coordinates from the client to the server.

2 Create a temporary feature source. This will be used to draw the lines on.

3 Create a layer to display that temporary feature source.

For example, see task_pane_redlining.php in the digitizing_features
directory in the Developer Guide samples.

Passing Coordinates
The digitizing functions in the Viewer API provide us with the digitized
coordinates on the client, but we usually need to pass them to a server side
script. This can be done with the Viewer API, using the Submit() method of
the formFrame.

function OnLineDigitized(line) {

// Send the Javascript variables to 'draw_line.php',

// via the form frame

var params = new Array("x0", line.Point(0).X,

"y0", line.Point(0).Y,

"x1", line.Point(1).X,

"y1", line.Point(1).Y,

"SESSION", "<?= $sessionId ?>",

"MAPNAME", "<?= $mapName ?>");

parent.parent.formFrame.Submit(

"/mapguide/samplesphp/digitizing_features/draw_line.php",

params, "scriptFrame");

}

This submits the coordinates to the server-side function to draw the line. It
uses the hidden scriptFrame so the page output is not visible.

90 | Chapter 7 Digitizing and Redlining

Creating a Feature Source
The next step is create a feature source

See draw_line.php in the digitizing_features directory in the Developer
Guide samples.

Creating a Feature Source | 91

// Create a temporary feature source to draw the lines on

// Create a feature class definition for the new feature

// source

$classDefinition = new MgClassDefinition();

$classDefinition->SetName("Lines");

$classDefinition->SetDescription("Lines to display.");

$geometryPropertyName="SHPGEOM";

$classDefinition->

 SetDefaultGeometryPropertyName($geometryPropertyName);

// Create an identify property

$identityProperty = new MgDataPropertyDefinition("KEY");

$identityProperty->SetDataType(MgPropertyType::Int32);

$identityProperty->SetAutoGeneration(true);

$identityProperty->SetReadOnly(true);

// Add the identity property to the class definition

$classDefinition->GetIdentityProperties()->

 Add($identityProperty);

$classDefinition->GetProperties()->Add($identityProperty);

// Create a name property

$nameProperty = new MgDataPropertyDefinition("NAME");

$nameProperty->SetDataType(MgPropertyType::String);

// Add the name property to the class definition

$classDefinition->GetProperties()->Add($nameProperty);

// Create a geometry property

$geometryProperty = new

 MgGeometricPropertyDefinition($geometryPropertyName);

$geometryProperty->

 SetGeometryTypes(MgFeatureGeometricType::Surface);

// Add the geometry property to the class definition

$classDefinition->GetProperties()->Add($geometryProperty);

// Create a feature schema

$featureSchema = new MgFeatureSchema("SHP_Schema",

 "Line schema");

// Add the feature schema to the class definition

$featureSchema->GetClasses()->Add($classDefinition);

// Create the feature source

$wkt = $map->GetMapSRS();

92 | Chapter 7 Digitizing and Redlining

$sdfParams = new MgCreateSdfParams("spatial context",

$wkt, $featureSchema);

$featureService->CreateFeatureSource($resourceIdentifier,

$sdfParams);

Creating A Layer
The final step is to create a new layer to display the feature source, the same
way it was done in Adding Layers To A Map (page 64).

Creating A Layer | 93

94

Custom Output

Introduction
TIP The Custom Output sample, in the Developer’s Guide samples, demonstrates
concepts from this chapter.

Autodesk MapGuide includes services for saving map representations for use in
external programs.

To save a map as a bit-mapped image (PNG or GIF), use the Rendering Service.

To save a map as a Design Web Format (DWF), use the Mapping Service. DWF
files can be saved in two variations. An eMap DWF contains metadata that
describes the current map view, not the map data itself. This is a compact format,
but it requires access to the map agent to view the map. It is not suitable for
offline viewing, and it requires a current Autodesk MapGuide session.

An ePlot DWF is designed for offline viewing or printing. It can contain multiple
sheets, where each sheet is a complete map image that can be viewed offline
using Autodesk Design Review. Each sheet in an ePlot DWF is a static
representation of a single map view state.

Characteristics of bit-mapped images:

■ Images can be in PNG or GIF formats.

■ An image displays a portion of the the map view state at a particular scale.

■ The image is static with a fixed resolution. Zooming in creates a pixelated
image.

■ Images are cross-platform.

8

95

■ Images are suitable for use in HTML pages, word processor documents, or
graphics editing programs.

Characteristics of an ePlot DWF:

■ A single ePlot can contain multiple sheets.

■ Each sheet shows a single image, showing a portion of the map view at a
particular scale.

■ The ePlot area and scale are static, but geometric features are stored as
vector graphics, so zooming is smooth.

■ Some interactive features of the Autodesk MapGuide DWF Viewer are
available, such as the ability to turn layers on and off.

■ The ePlot requires the Autodesk Design Review, either standalone or as a
plug-in for Internet Explorer.

■ Images can be copied to the Windows clipboard and used in other
applications.

■ Autodesk Design Review is a free program that is only available on
Windows. Visit http://www.autodesk.com to download.

Characteristics of an eMap DWF:

■ An eMap DWF is dynamic, with all the zooming and panning capabilities
of the Autodesk MapGuide DWF Viewer.

■ Because the eMap Viewer uses the map agent, the entire map is available
for smooth zooming and panning. The layer stylization rules apply.

■ The eMap requires the Autodesk Design Review, either standalone or as a
plug-in for Internet Explorer.

■ The eMap requires an active Autodesk MapGuide session. If the session
times out the map cannot be displayed.

■ Individual views from an eMap DWF can be saved as ePlot DWFs.

■ Autodesk Design Review is a free program that is only available on
Windows.

96 | Chapter 8 Custom Output

http://www.autodesk.com

Rendering Service
The Rendering Service creates bit-mapped images of a map suitable for
displaying in a browser or saving to a file. The image is returned as an
MgByteReader object, which can be sent to a browser or saved to a file.

For example, to create a PNG image of a map area, perform the following
operations. Note that the aspect ratio of the envelope should match the image
dimensions or the image will be distorted.

$byteReader = $renderingService->RenderMap($map, $selection,

$envelope, $imageWidth, $imageHeight, $color, 'PNG');

header("Content-type: " . $byteReader->GetMimeType());

$buffer = '';

while ($byteReader->Read($buffer, 50000) != 0)

{

echo $buffer;

}

Mapping Service
The Mapping Service creates eMap and ePlot DWFs.

Generating an eMap DWF requires the DWF version and the URI of the map
agent. Note that the HTTP header must include content length information,
as in the following example.

Rendering Service | 97

$dwfVersion = new MgDwfVersion("6.01", "1.2");

$mapAgentUri =

 'http://localhost:8008/mapguide/mapagent/mapagent.exe';

$byteReader = $mappingService->GenerateMap($map, $mapAgentUri,

 $dwfVersion);

$outputBuffer = '';

$buffer = '';

while ($byteReader->Read($buffer, 50000) != 0)

{

 $outputBuffer .= $buffer;

}

header('Content-Type: ' . $byteReader->GetMimeType());

header('Content-Length: ' . strlen($outputBuffer));

echo $outputBuffer;

An ePlot DWF is designed primarily for offline viewing or printing. It includes
an MgPlotSpecification that defines the page size and margins. It can also
include an optional MgLayout that defines additional components to include
in the plot, like a legend or a custom logo. The layout is based on a print
layout in the repository. For a description of the PrintLayout schema, see the
Autodesk MapGuide Web API Reference.

To create an ePlot DWF with more than one sheet, use an
MgMapPlotCollection, where each item in the collection is an MgMapPlot that
describes a single sheet.

NOTE The map name becomes the sheet name in the multi-plot DWF. Because
each sheet in the DWF must have a unique name, you must create a separate
MgMap object for each sheet in the DWF.

The following example creates a multi-plot DWF with two sheets. The second
sheet displays the same map area as the first, but it adds the title and legend
information from the print layout.

98 | Chapter 8 Custom Output

$dwfVersion = new MgDwfVersion("6.01", "1.2");

$plotSpec = new MgPlotSpecification(8.5, 11,

 MgPageUnitsType::Inches);

$plotSpec->SetMargins(0.5, 0.5, 0.5, 0.5);

$plotCollection = new MgMapPlotCollection();

$plot1 = new MgMapPlot($map, $plotSpec, $layout);

$plotCollection->Add($plot1);

// Create a second map for the second sheet in the DWF. This

// second map uses the print layout

// to display a page title and legend.

$map2 = new MgMap();

$map2->Create($resourceService, $map->GetMapDefinition(),

'Sheet 2');

$layoutRes = new MgResourceIdentifier(

"Library://Samples/Sheboygan/Layouts/SheboyganMap.PrintLayout");

$layout = new MgLayout($layoutRes, "City of Sheboygan",

MgPageUnitsType::Inches);

$plot2 = new MgMapPlot($map2,

$map->GetViewCenter()->GetCoordinate(), $map->GetViewScale(),

$plotSpec, $layout);

$plotCollection->Add($plot2);

$byteReader = $mappingService->

GenerateMultiPlot($plotCollection, $dwfVersion);

// Now output the resulting DWF.

$outputBuffer = '';

$buffer = '';

while ($byteReader->Read($buffer, 50000) != 0)

{

$outputBuffer .= $buffer;

}

header('Content-Type: ' . $byteReader->GetMimeType());

header('Content-Length: ' . strlen($outputBuffer));

echo $outputBuffer;

Mapping Service | 99

100

Flexible Web Layouts

Introduction
Flexible web layouts are an alternative to the MapGuide viewers described in
The MapGuide Viewer (page 13). They work in major browsers on Windows,
Macintosh, and Linux, including Internet Explorer and Mozilla Firefox. They
use JavaScript and so require no browser plugins or proprietary technologies.

This chapter assumes you are familiar with configuring flexible web layouts
through MapGuide Studio, which provides a user interface for routine
configuration. This chapter describes some of the ways you can extend their
default functionality.

Related Technologies

Flexible web layouts make use of additional libraries and technologies for some
functionality. At times it may be useful to refer to documentation for these
libraries. See the following for more information:

■ Fusion, the open source technology used by Flexible Web Layouts.
http://trac.osgeo.org/fusion/wiki

■ OpenLayers, a JavaScript library for displaying map data in a browser.
http://www.osgeo.org/openlayers

■ Jx, a JavaScript library for building UI components like dialogs.
http://jxlib.org

9

101

http://trac.osgeo.org/fusion/wiki
http://www.osgeo.org/openlayers
http://jxlib.org

Creating Templates
When you create a flexible web layout in MapGuide Studio, you can base it
on one of a number of templates, such as the Aqua template. These templates
work for many applications and can be customized when needed. However,
if you need to create a new template, this section describes how to do so.

A template for a flexible web layout contains various interrelated pieces that
contribute to how the template looks and what it does. All the files for a given
template are stored in the folder
web_server_extensions\www\fusion\templates\mapguide. Some important
pieces are described in the following table.

DescriptionName

Contains information about the template and a list of the
panels available for the template. These correspond to the

Template Info XML file

tabs shown in MapGuide Studio on the Configure Compon-
ents of the Selected Template section of the Web Layout
Editor.
The template XML file has the same name as the template.
For example, the Aqua template uses aqua.xml.

NOTE The template XML file is used internally by MapGuide
Studio. It is not required for displaying a flexible web layout
in a browser. MapGuide Studio saves any necessary data
from the template XML file into the application definition.

Generated by MapGuide Studio and stored in the site repos-
itory. The application definition defines which components
(menus and widgets) are available in a given template.
The application definition uses the ApplicationDefinition.xsd
schema.

ApplicationDefinition

NOTE The default templates each contain a file named Ap-
plicationDefinition.xml. This is an alternate location for the
application definition. See Application Definitions (page 109)
for details.

Home page for displaying a flexible web layout in a browser.
The index.html file defines the arrangement and operation

index.html

of the components from the application definition. For ex-
ample, the selection panel can be docked or floating, and

102 | Chapter 9 Flexible Web Layouts

DescriptionName

can be initially hidden or visible, depending on how it is
initialized in index.html.

Style definitions for the template.CSS files

Buttons, icons, and related items.Image files

The simplest way to understand the files in a flexible web layout is to
experiment with the existing templates. Follow the instructions below to
create a new template or a copy of an existing template.

1 Create a sub-folder below the
web_server_extensions\www\fusion\templates\mapguide folder
(where web_server_extensions is the directory where the MapGuide
web server extensions are installed, typically C:\Program
Files\Autodesk\MapGuideEnterprise2011\WebServerExtensions). Give
this new folder the name of your template, for example HelloMap.

2 Copy the CSS files from an existing template to your template’s folder,
or create new ones.

3 Copy the images directory from an existing template to your template’s
folder, or create your own icons.

4 Create a preview graphic for your template and store in your template’s
folder. This graphic will be shown in the list of templates when you create
a flexible web layout in MapGuide Studio. The name of the graphic is
arbitrary. The dimensions should be 126 x 96 pixels. You will use this
name later when you create a TemplateInfo file.

5 In the template’s folder, create an HTML file called index.html. This file
defines the layout of the template.

■ Use a valid, strict doctype for your template pages. If you omit the
doctype, use an invalid doctype, or use a transitional doctype, most
browsers will revert to “Quirks Mode.” The layout will appear to
function correctly, but you may notice some minor issues and your
application may appear differently depending on the browser. By
using a valid HTML or XHTML doctype, browsers will use “Standards
Compliant Mode” and your application will work consistently between
browsers.

■ In the <Head> section, import the CSS file(s).
For example:

Creating Templates | 103

<style type="text/css">

@import url(template.css);

</style>

This is important, as the default CSS styles set all components to be
initially invisible.

■ In the <Head> section, include the fusion.js library.
For example:

<script type="text/javascript"

src="../../../lib/fusion.js">

</script>

Make sure that the src of the script tag that points to fusion.js is a
valid path. It can be relative (as in the example above) or absolute
(starting with http://). If it is absolute, then the URL must be pointing
to the same server as the URL you use to load the application.

■ In the <Head> section, define a window.onload function. In it, use
JavaScript and the Jx library to position the elements of the layout
including the components. Also, register for the FUSION_ERROR and
FUSION_INITIALIZED events.

For example:

<script type="text/javascript">

window.onload = function() {

Fusion.initializeLocale();

var main = new Jx.Layout('AppContainer',

{left: 0, right: 0, top: null, bottom: null});

new Jx.Layout('Help', {height: 25, left: 0,

right: 0, top: 34, bottom: null});

new Jx.Layout('Map', {width: null, height: null,

left: 25, right: 0, top: 59, bottom: 21});

main.resize();

$('AppContainer').style.visibility = 'visible';

Fusion.registerForEvent(

Fusion.Event.FUSION_ERROR, fusionError);

Fusion.registerForEvent(

Fusion.Event.FUSION_INITIALIZED, fusionInitialized);

Fusion.initialize();

}

</script>

For more information on the Fusion object, see Fusion API (page 118).

104 | Chapter 9 Flexible Web Layouts

For more information on events, see Events (page 120).

■ In the <Head> section, define the fusionError and fusionInitialized
functions. For example:
<script type="text/javascript">

var fusionError = function(eventId, error) {

console.log('Fusion Error: \n' + error.toString());

}

var fusionInitialized = function() {

}

</script>

For an example of a template where the fusionInitialized function
is used, see
web_server_extensions\www\fusion\templates\mapguide\aqua\index.html.

■ In the <Body> section, insert <div> elements to determine which
components will appear on the template. Any HTML element with
an ID that matches a component ID will be replaced with that
component. For example, <DIV id=”Help”> will be replaced with the
Help component. And <DIV id=”Toolbar”> will be replaced with a
toolbar; the components that appear on this toolbar will be configured
through MapGuide Studio. To see the available IDs, click Attach
Component while editing a flexible web layout in MapGuide Studio.

Components will be inserted in any DOM container object with a
matching ID, not just in <DIV>s. So you can also use Jx methods, such
as Jx.Panel and Jx.Layout to structure your page. For example, this
will create an object that will have a legend inserted:

var p1 = new Jx.Panel({label: 'Legend'});

Creating Templates | 105

If there is no matching component for the ID, then when the user
configures the flexible web layout, MapGuide Studio will display an
empty tab for it (one with no components added). The user can then
add components to it through MapGuide Studio. The ID will be used
for the tab’s title, so use IDs that will help the user understand what
he or she is configuring.

■ So in this example, the complete index.html file would look like this:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hello Map</title>

<meta http-equiv="Content-type"

content="text/html; charset=UTF-8">

<style type="text/css">

@import url(template.css);

</style>

<script type="text/javascript"

src="../../../lib/fusion.js"></script>

<script type="text/javascript">

window.onload = function() {

Fusion.initializeLocale();

var main = new Jx.Layout('AppContainer',

{left: 0, right: 0, top: null, bottom: null});

new Jx.Layout('Help', {height: 25, left: 0,

right: 0, top: 34, bottom: null});

new Jx.Layout('Map', {width: null, height: null,

left: 25, right: 0, top: 59, bottom: 21});

main.resize();

$('AppContainer').style.visibility = 'visible';

Fusion.registerForEvent(

Fusion.Event.FUSION_ERROR, fusionError);

Fusion.registerForEvent(

Fusion.Event.FUSION_INITIALIZED, fusionInitialized);

Fusion.initialize();

}

106 | Chapter 9 Flexible Web Layouts

var fusionError = function(eventId, error) {

console.log('Fusion Error: \n' + error.toString());

}

var fusionInitialized = function() {

}

</script>

</head>

<body>

<div id="AppContainer" style="visibility: hidden;">

<div id="Help"></div>

<div id="Map"></div>

</div>

</body>

</html>

6 Create a <TemplateInfo> XML file based on the
ApplicationDefinitionInfo XML schema. (The XML schemas are
installed in mapguide_server\Schema (where mapguide_server is the
installation directory of the MapGuide server, typically C:\Program
Files\Autodesk\MapGuideEnterprise2011\Server).

■ Name the file with the name of your template plus .xml, for example,
HelloMap.xml.

■ Store it in the parent folder of the template. In other words, store it
in web_server_extensions\www\fusion\templates\mapguide.

■ In the LocationUrl element, point to the location of your template’s
index.html file.

■ In the PreviewImageUrl element, use the name of the preview graphic
you created earlier.

■ Create a <Panel> element for each component (such as a toolbar) in
the template. Each panel here will be shown as a tab when the
template is configured in MapGuide Studio.
The order of the <Panel>s does not matter; the layout is controlled
through the index.htmlfile.

For the HelloMap example, the TemplateInfo file is:

<TemplateInfo>

Creating Templates | 107

<Name>HelloMap</Name>

<LocationUrl>

fusion/templates/mapguide/HelloMap/index.html

</LocationUrl>

<Description>HelloMap template</Description>

<PreviewImageUrl>

fusion/templates/mapguide/HelloMap/preview.png

</PreviewImageUrl>

<Panel>

<Name>Help</Name>

<Label>Help</Label>

<Description>The help button</Description>

</Panel>

<Panel>

<Name>Map</Name>

<Label>Map</Label>

<Description>The main map display</Description>

</Panel>

</TemplateInfo>

The template can now be used in MapGuide Studio just like any of the default
templates.

108 | Chapter 9 Flexible Web Layouts

If you create a flexible web layout based on this template, it will look like this:

NOTE If you edit a template’s index.html file, right-click the preview image in
MapGuide Studio and choose Refresh to see the changes. If you change any of
the other template files, such as modifying or adding a <Panel> element, also
right-click on one of the panel tabs and choose Refresh Panels to update the panel
definitions.

Application Definitions
An application definition defines the components of a flexible web layout
and how they are arranged. When a flexible web layout loads in a browser it
uses the application definition to set up the menus and dialogs. An application
definition conforms to the ApplicationDefinition.xsd schema.

MapGuide Studio is the preferred method for creating an application definition
because its user interface manages the complexity of the underlying XML
structure. Using MapGuide Studio it is simple to add new widgets to an existing
flexible web layout and rearrange or modify existing widgets. The resulting
application definition is stored as an ApplicationDefinition resource in the
Autodesk MapGuide site repository.

Application Definitions | 109

It is possible, however, to store an application definition in an external form,
outside the site repository. Normally, when a flexible web layout loads in a
browser, it checks for an application definition resource name passed as
parameter to index.html. If this exists, then the application definition is
loaded from the site repository. For example, the layout used in Flexible Web
Layouts Examples (page 123) passes the following as a GET parameter in the
URL:

?ApplicationDefinition=Library%3a%2f%2fSamples%2f

FlexibleWebLayouts%2fExamples.ApplicationDefinition

However, if the application definition path is not passed to index.html then
the flexible web layout looks for the file ApplicationDefinition.xml, located
in the same folder as index.html.

The default templates all include an ApplicationDefinition.xml file. This
should be used an an example only, and does not necessarily represent the
contents of an ApplicationDefinition resource stored in the site repository.
Changing the flexible web layout using MapGuide Studio will change the
ApplicationDefinition resource but will not have any effect on the external
ApplicationDefinition.xml file.

Creating Components
MapGuide Studio comes with a set of components that meet many customer’s
needs, but may not meet the needs of advanced developers. This is a brief
overview of components. For more detailed examples see Flexible Web Layouts
Examples (page 123).

Components are of two types: containers and widgets. Menus, toolbars, and
splitter bars are containers, and are used to hold other components. Widgets
are functional pieces, usually self-contained. For example, the map is a widget,
as are items like the selection panel and the measure tool.

Widgets require additional files that define what the widget does. Depending
on the function of the widget, it may require some or all of the following files:

■ JavaScript file with code to initialize and operate the widget

■ XML file for use by MapGuide Studio, describing the widget and any
parameters it may require

■ Additional JavaScript code in other files, such as index.html for the
template. See Example 3: Dialogs and Events (page 131) for an example.

110 | Chapter 9 Flexible Web Layouts

■ PHP files to implement functionality on the web tier. See Example 4:
Updating the Site Repository (page 136) for an example.

The Map Component
The Map component is the primary interface between the application and
the spatial data represented by the map. Most components either display
information about the map or allow the user to interact with the map in some
way.

The Map component supports the following API:

■ loadMap(mapDefinition) – causes the Map component to load the
specified MapDefinition.

■ reloadMap() – causes the Map component to reload the current
MapDefinition. This is necessary when the map state has changed in certain
ways (adding or removing layers in the map, for instance) and is primarily
an internal function.

■ setExtents(minx, miny, maxx, maxy) – used to set the map extents
to a particular bounding box programmatically.

■ drawMap() – used to render a map image and load it in the browser.
Normally, this is called automatically as required, but occasionally it may
be required to be called programmatically when the state of the map has
changed on the server without the knowledge of the Map component.

■ query(options) – used to query the Map in some way and create (or
modify) a selection. The options argument is a JavaScript object that can
contain the following properties:

■ geometry – a WKT string containing a geometry that defines the spatial
area to be queried. The default value is to not limit the query to a spatial
extent.

■ maxFeatures – an integer value that determines the maximum number
of features to be returned. A value of -1 means all features. The default
value is -1.

■ persistent – a boolean value that determines whether the query
results should be saved as a visual selection on the map, or not. The
default value is true.

The Map Component | 111

■ selectionType – a string value that determines how features are
selected with relation to the geometry. The value can be:

■ INTERSECTS – the feature is selected if any part of the geometry and
the feature intersect. This is the default value.

■ CONTAINS – the feature is selected if the geometry contains the feature

■ filter – a string value that represents a valid FDO SQL where clause
that is used to select features based on attribute values. This may be
combined with a geometry value. The default value is no filter.

■ layers – an array of layer names that are to be queried. If no layer
names are provided, then all layers will be queried. The default is to
query all layers.

■ extendSelection – a boolean value that controls whether the results
of this query will be added to the current persistent selection or will
replace the current persistent selection.

■ getSessionId() – returns the current session ID.

■ hasSelection() See Events (page 120).

■ getSelection(callback) See Events (page 120).

■ clearSelection() See Events (page 120).

A Map component can have a default MapDefinition that is automatically
loaded when the application is loaded. But it is not mandatory to specify a
default map. When no default map is specified, the Map component is still
initialized. The MapDefinition will then be loaded in response to another
component (such as the MapMenu component) or some application-specific
code. Regardless of how it happens, when a MapDefinition has been loaded,
the Map component will trigger a MAP_LOADED event. Most components are
not useful if there is no map loaded, so they use the MAP_LOADED event to
determine when they should be enabled. This means that most components
will appear initially disabled until the map has been loaded. There are some
notable exceptions, including the Map Menu component which is used to
provide a drop-down menu of MapDefinitions that the user can pick from.

Once the Map is loaded, the following events may be triggered:

■ MAP_SESSION_CREATED. The Map component is responsible for creating and
maintaining a session with the server. When the session has been created,

112 | Chapter 9 Flexible Web Layouts

this event is triggered. Nothing can happen until this event has been
triggered.

■ MAP_LOADING. The Map component triggers this event when it is starting
to load a new Map. This is primarily used by components to prepare
themselves for the new map by discarding their current state and
temporarily disabling themselves.

■ MAP_LOADED. The Map component triggers this event when a map has been
loaded and is ready.

■ MAP_EXTENTS_CHANGED. The Map component triggers this event for any
navigation that changes the current extents.

■ MAP_BUSY_CHANGED. The Map component maintains a reference count of
asynchronous events as they start and finish. An application can use this
event to display a processing image so that the user is aware that some
asynchronous activity is happening.

■ MAP_RESIZED. The Map component triggers this event when the size of the
map is changed.

■ MAP_SELECTION_ON. The Map component triggers this event when a new
selection has been created.

■ MAP_SELECTION_OFF. The Map component triggers this event when the
current selection has been cleared.

■ MAP_ACTIVE_LAYER_CHANGED. The Map component allows for a single layer
to be marked as active by the application. This event is triggered when the
active layer is changed.

■ MAP_GENERIC_EVENT. Most components rely directly on their Map
component for everything. In some cases, though, components need to
be informed of changes in other components. In these cases, the Map
component can act as a broker for events through the MAP_GENERIC_EVENT.
Components that employ the MAP_GENERIC_EVENT normally do so for a
specific internal purpose, and the application should not normally register
for this event.

Working With Selections
There are several components that allow the user to interactively select features
on the Map. MapGuide takes care of updating the Map image with the current

Working With Selections | 113

selection if necessary, but does not display attributes of the selected features
to the user. That is up to the application.

Regardless of how the features are selected, the Map component provides the
API for an application to retrieve and work with the user's selection. There are
two events that can be used by an application to know when the user selection
has changed:

■ MAP_SELECTION_ON. The Map component triggers this event when a new
selection has been created.

■ MAP_SELECTION_OFF. The Map component triggers this event when the
current selection has been cleared.

When the application receives a MAP_SELECTION_ON event from the Map
component, it can use the following functions to work with the selection:

■ hasSelection() returns a boolean value which indicates if there is currently
a selection or not.

■ getSelection(callback) retrieves the current selection. Retrieving the
selection is potentially an asynchronous operation and so the callee
provides a callback function that is called when the selection is ready. The
callback function is passed a single argument, a Selection object, described
below.

■ clearSelection() is used to clear the current selection. This removes the
selection from the map and invalidates the current selection object.

For an example, see Example 2: Selections (page 129)

An application will typically call getSelection() in response to the
MAP_SELECTION_ON event. Typical code for this might look like:

114 | Chapter 9 Flexible Web Layouts

window.onload=function() {

 // ...

 Fusion.registerForEvent(

 Fusion.Event.FUSION_ERROR,

 fusionError);

 Fusion.registerForEvent(

 Fusion.Event.FUSION_INITIALIZED,

 fusionInitialized);

 Fusion.initialize();

}

var theMap;

function fusionInitialized() {

theMap = Fusion.getWidgetById('Map');

theMap.registerForEvent(Fusion.Event.MAP_SELECTION_ON,

OpenLayers.Function.bind(this.selectionOn, this));

theMap.registerForEvent(Fusion.Event.MAP_SELECTION_OFF,

OpenLayers.Function.bind(this.selectionOff, this));

}

function selectionOn() {

//a new selection has been made, request it

theMap.getSelection(displaySelection);

}

function displaySelection(selection) {

//display the selection to the user in some way ...

}

function selectionOff() {

//clear the selection results

}

The parameter passed to the callback routine is an associative array that
contains selections from one or more maps. In most cases, there will be one
element in the array, with a selection object for the main map. This selection
object provides the following API:

■ getNumLayers() returns the number of layers that have features selected.

■ getNumElements() returns the total number of features that are selected.

■ getLowerLeftCoord() returns the lower, left coordinate of the bounding
box of all selected features.

Working With Selections | 115

■ getUpperRightCoord() returns the upper, right coordinate of the bounding
box of all selected features.

■ getLayerByName(name) gets the layer selection object for a layer from the
name of the layer. This returns null if there is no layer with the requested
name in the selection results.

■ getLayer(index) gets the layer selection object for the requested layer
where index is between 0 and one less than the value returned by
getNumLayers().

An application will typically loop over the layers in a selection and retrieve
individual results using the Layer Selection object returned by getLayer() or
getLayerByName(). Layer selection objects have the following API:

■ getName() returns the name of the layer that the selected features are in.

■ getNumElements() returns the number of features selected in this layer.

■ getNumProperties() returns the number of data properties, or attributes,
of the features in this layer.

■ getPropertyNames() returns an array of the names of each of the properties.

■ getPropertyTypes() returns an array of the types of the properties.

■ getElementValue(elementIndex, propertyIndex) returns the actual value
of a given property for a given element.

The following code is an example of how to use the Selection and Layer
Selection objects to create a tabular display of selected features.

116 | Chapter 9 Flexible Web Layouts

function displaySelection(multiSelection) {

 var theMap = Fusion.getWidgetById("Map");

 if (!theMap.hasSelection())

 {

 alert("Nothing selected");

 return;

 }

 var selection = multiSelection[theMap.getMapName()];

 //display the selection to the user in some way ...

 //make sure something got selected ...

 if (selection && selection.getNumLayers() > 0)

 {

 //obtain a reference to the HTML Element that the results

 //will be placed in

 var resultElm = $('selectionResultDiv');

 resultElm.innerHTML = '';

 for (var i=0; i<selection.getNumLayers(); i++) {

 var selectionLayer = selection.getLayer(i);

 var propNames = selectionLayer.getPropertyNames();

 var span = document.createElement('span');

 span.className = 'selectionResultsTitle';

 span.innerHTML = 'Layer ' + selectionLayer.getName();

 resultElm.appendChild(span);

 var table = document.createElement('table');

 table.className = 'selectionResultsTable';

 resultElm.appendChild(table);

 //set up the table header to be the property names

 var thead = document.createElement('thead');

 table.appendChild(thead);

 var tr = document.createElement('tr');

 thead.appendChild(tr);

 for (var j=0; j<propNames.length; j++) {

 var td = document.createElement('td');

 td.innerHTML = propNames[j];

 tr.appendChild(td);

 }

 //output the selection values

 var tbody = document.createElement('tbody');

 table.appendChild(tbody);

 for (var j=0; j<selectionLayer.getNumElements(); j++) {

 var tr = document.createElement('tr');

 tbody.appendChild(tr);

Working With Selections | 117

for (var k=0; k<propNames.length; k++) {

var td = document.createElement('td');

td.innerHTML = selectionLayer.getElementValue(j, k);

tr.appendChild(td);

}

}

}

} else {

//could display a message of some sort saying nothing was

//selected

}

}

Fusion API
The Fusion API is the JavaScript programming interface available to developers
building flexible web layout applications. When building an application, you
can implement functionality as new components or as custom JavaScript on
top of the Fusion API. The primary mechanism for interacting with the Fusion
API is through the global Fusion object. The Fusion object is created when
you include fusion.js in your page and initialize your application (via
Fusion.initialize()).

Methods
The Fusion object contains these methods:

■ registerForEvent(event_id, callback) – used to register a callback
function for events emitted by Fusion itself. Most events are actually
emitted by components, and you will need to register with those
components specifically if you want to receive their events.

■ deregisterForEvent(event_id, callback) – used to remove a callback
associated with an event. This can only be called if the callback has already
been registered via registerForEvent. The callback must be the same
function pointer that was passed to registerForEvent. If you are using
the bind() method to bind a function to an object instance, you should
save a reference to the result of calling bind() and use that for calling
registerForEvent if you plan to later call deregisterForEvent.

■ initializeLocale(optional_locale) – should be called at the beginning
of the window.onloadi function if String.Translate is going to be used.

118 | Chapter 9 Flexible Web Layouts

■ ajaxRequest(scriptUrl, options) – a helper function for calling
server-side scripts using XmlHttpRequest by modifying the scriptUrl to
use the redirect script if necessary. This is primarily used by components
that need to call a server-side script to perform some action so that they
are portable across a variety of uses. Custom JavaScript using the Fusion
API generally should not need to use this function. The options are passed
through to prototype's Ajax.Request and must conform to the
specifications for Ajax.Request.

■ getMapById(id) – returns a reference to a Map component by the ID of
the element the map was created in. If no map was created in an element
with this ID, it returns null.

■ getMapByName(name) – returns a reference to a Map component by the
name of the Map. If no map component has a map of the requested name,
it returns null.

■ getMapByIndice(index) – returns the map at the requested index. (The
index is zero-based.) A Map's index depends on its position in the Web
Layout file relative to other maps.

■ getWidgetById(id) – returns a reference to a component by the ID of the
element the component was created in. If no component was created in
an element with this ID, it returns null.

■ getWidgetsByType(type) – returns an array with references to all the
components of the given type. If no components of a given type are found,
an empty array is returned.

■ getConfigurationItem(arch, key) – returns a Fusion configuration value
for the given architecture and key.

■ getScriptLanguage() – returns the server-side scripting language for the
application, for example “PHP”. Flexible web layouts are designed to
support multiple server-side scripting languages. All communication with
server-side scripts should use the getScriptLanguage function to ensure
compatibility with future versions.

■ error(code, message) – triggers an error. Applications can register for
the FUSION_ERROR event to be informed of errors that occur.

Methods | 119

The following methods work with units of measurement. For more
information, see Units (page 121).

■ unitFromName(name) – returns the numeric code for a unit of measurement
from its name. Most functions that deal with measurements use the
numeric code.

■ unitName(code) – returns the name of a unit of measurement from a
numeric code.

■ unitAbbr(code) – returns the abbreviation of a unit of measure from a
numeric code.

■ toMeter(code, amount) – converts a measurement into meters from the
given numeric code.

■ fromMeter(code, amount) – converts a measurement from meters into
the units represented by the numeric code.

■ convert(fromCode, toCode, amount) – converts a measurement from
one unit of measurement into another.

Events
The event code is designed to provide an asynchronous notification mechanism
that can be used to register for, and receive notification of, key events that
happen asynchronously. The following terms are used with respect to events:

1 event id: a unique identifier for an event, represented by a JavaScript
variable that is all in upper case (e.g FUSION_INITIALIZED). All event IDs
are properties of the Fusion.Event object.

2 trigger: when an event occurs, it is “triggered” and all the registered
callback functions are notified

3 register: provide a callback function that is called when an event is
triggered

4 deregister: remove a callback function that was previously registered

5 publish: anything that can trigger an event must publish all the valid
event IDs

The event mechanism is implemented by two functions: registerForEvent
and deregisterForEvent. Both functions have the same signature, taking an

120 | Chapter 9 Flexible Web Layouts

event ID as the first parameter and a callback function pointer as the second
parameter.

The Fusion object provides two specific events that can be used by applications
to get notification of when Fusion initialization has completed and when an
error occurs anywhere in Fusion. These events are:

■ FUSION_ERROR. This is triggered when an internal error happens. Details
on the error are passed to the callback function. Applications should register
for this event before calling Fusion.initialize() to ensure that they
receive errors that happen during initialization.

■ FUSION_INITIALIZED. This is triggered when Fusion's initialization is
complete and the application is running. This signals that it is safe for the
application to communicate with specific components. Note that the Map
component, specifically, will be ready but may not have actually loaded
the map. There is a separate event for that. (See The Map Component (page
111).) Applications should register for this event before calling
Fusion.initialize().

Components are designed to be completely independent of one another,
allowing them to be added to, or removed from, applications with little or no
impact on the other components in the application. However, there are cases
(especially with the Map component) where it is important that components
be able to communicate with other components or with the application as a
whole. For these situations, there is an event mechanism that allows
components and applications to register for and trigger events. The event
mechanism allows components to be independent of each other, but still
provide a high level of integration when required. For more information on
the events supported by the Map component, see The Map Component (page
111) and Working With Selections (page 113).

To register a callback function for a component event, the application must
first obtain a reference to the component through one of the methods of the
Fusion object (typically getWidgetById) and then call registerForEvent
passing one of the event IDs that is valid for that component.

Units
The Fusion API provides convenience functions for converting between units
of measurement. Units of measurement are specified by a string in most
configuration files, but the API uses a numeric code internally. These numeric
codes are defined as attributes of the Fusion object. The following table lists

Units | 121

the Fusion attribute and associated unit name and abbreviations that are
associated with them.

If the units are not specified, the default units are Fusion.UNKNOWN.

Valid StringsAbbreviationNameUnit Code

unknownunkUnknownFusion.UNKNOWN

inches inch ininInchesFusion.INCHES

feet ftftFeetFusion.FEET

yards yard ydydYardsFusion.YARDS

miles mile mimiMilesFusion.MILES

nautical miles naut-
ical mile nm

nmNautical MilesFusion.NAUTICALMILES

millimeters milli-
meter mm

mmMillimetersFusion.MILLIMETERS

centimeters centi-
meter cm

cmCentimetersFusion.CENTIMETERS

meters meter mmMetersFusion.METERS

kilometers kilometer
km

kmKilometersFusion.KILOMETERS

degrees degree deg°DegreesFusion.DEGREES

decimal degrees dd°Decimal De-
grees

Fusion.DECIMALDE-
GREES

degrees minutes
seconds

°Degrees
Minutes
Seconds

Fusion.DMS

pixels pixel pxpxPixelsFusion.PIXELS

122 | Chapter 9 Flexible Web Layouts

Flexible Web Layouts
Examples

Overview
The examples in this chapter demonstrate some important techniques for use
with Autodesk MapGuide flexible web layouts.

The examples use a custom template that is based on the Slate template.

NOTE These examples require the Sheboygan sample data. See the Installing Sample
Data and Sample Applications PDF for details.

Installing the Examples
Complete source code is available for all the examples in this chapter on the
installation DVD in Samples\FlexibleWebLayoutsSamples.

There are two installation files required. A MapGuide package file,
FlexibleWebLayoutsExamples.mgp, contains the application definition for a
flexible web layout. Load this into the MapGuide site repository using the Site
Administrator. This creates the following resource:

Library://Samples/FlexibleWebLayouts/

Examples.ApplicationDefinition

A zip file, FlexibleWebLayoutsExamples.zip, contains source files. Unzip this
into the installDir\WebServerExtensions\www folder with “Use folder names”
selected in WinZip. It installs the following files:

■ fusion\templates\mapguide\examples*

10

123

■ fusion\widgets\Example*.js

■ fusion\widgets\widgetinfo\example*.xml

■ fusion\widgets\example**

The descriptions of the examples assume that both the package file and the
zip file have been installed.

Running the Examples
To run the examples, make sure that the Autodesk MapGuide Server is running.
Connect to

http://server:port/mapguide2011/fusion/templates/mapguide/

examples/index.html?ApplicationDefinition=

Library%3a%2f%2fSamples%2fFlexibleWebLayouts%2f

Examples.ApplicationDefinition

Modify the host name, port number, or path to the Autodesk MapGuide root
as required.

NOTE MapGuide Studio provides a shortcut to the correct web page. Inside
MapGuide Studio, open the sample flexible web layout,
Samples/FlexibleWebLayouts/Examples.ApplicationDefinition. Click View
in Browser to open the example template and layout in a browser.

Firefox and Firebug
Although flexible web layouts are designed to work with most current browsers,
Mozilla Firefox and the Firebug extension are recommended for developing
new layouts and widgets. Together they provide strong support for developing
web applications.

The Firebug extension includes features for inspecting the HTML, DOM,
JavaScript, and CSS on the pages. It also includes a JavaScript debugger and
many other features.

You can get the Mozilla Firefox browser at www.mozilla.com and the Firebug
extension at www.getfirebug.com.

Some of the following examples write information to the Firebug console. If
you prefer to use a different browser for development, you can modify the
code to use another method of output.

124 | Chapter 10 Flexible Web Layouts Examples

www.mozilla.com
www.getfirebug.com

Hello World: A Simple Invoke Script
Autodesk MapGuide ships with a set of widgets that handle many common
requirements. Some of these widgets allow for simple customization to adapt
them to particular needs.

One example is the Invoke Script widget. This can be used to run JavaScript
commands from within a flexible web layout.

The example layout includes an Invoke Script widget that displays a JavaScript
alert.

To run the Hello World example, open the flexible web layout in a browser.
Click Examples menu ➤ Hello World. This displays the alert.

Example 1: Creating a Widget
A widget is a functional piece of code that can be added to a flexible web
layout. Most widgets are self-contained, so they can be added to the layout
without affecting other functionality. Widgets use JavaScript for client-side
interaction, and some also require pages on the web tier, written in a supported
language for the Autodesk MapGuide Web API.

Example 1 is a widget that is designed to be called as a command from a menu.
It displays a JavaScript alert like Hello World: A Simple Invoke Script (page
125), but it uses an external JavaScript file. It uses the following files in the
folder WebServerExtensionsInstallDir\www\fusion:

■ widgets\Example1.js

Hello World: A Simple Invoke Script | 125

■ widgets\widgetinfo\example1.xml

The JavaScript file, Example1.js, contains a class definition for the widget. All
widgets must inherit from the base class Fusion.Widget. Because this is a
simple widget, it only has an initialize method and an activate method. More
complex widgets require additional methods.

Fusion.Widget.Example1 = OpenLayers.Class(Fusion.Widget,

{

uiClass: Jx.Button,

initializeWidget: function(widgetTag)

{

this.enable();

},

/**

* Function: execute

*

* Says hello

*

*/

activate: function()

{

console.log('Example1.execute');

alert("Hello World!");

}

}

);

NOTE The class name must match the file name of the JavaScript file. In this
example, the class name is Fusion.Widget.Example1 and the file name is
Example1.js.

The widget information file, widgetinfo\example1.xml, is used by MapGuide
Studio to describe the widget. This widget is designed to be incorporated into
a menu, so its <ContainableBy> element is set to Any. See Example 3: Dialogs
and Events (page 131) for an example of a widget that is a stand-alone dialog.

126 | Chapter 10 Flexible Web Layouts Examples

<WidgetInfo>

 <Type>Example1</Type>

 <LocalizedType></LocalizedType>

 <Description>Simple Hello World example</Description>

 <Location></Location>

<Label>Example1</Label>

<Tooltip>Click to say hello</Tooltip>

<StatusText></StatusText>

<ImageUrl></ImageUrl>

<ImageClass></ImageClass>

<StandardUi>true</StandardUi>

<ContainableBy>Any</ContainableBy>

</WidgetInfo>

NOTE The widget type must match the class name in the JavaScript file.

The widget information file defines a master widget type. MapGuide Studio
uses this type to create instances of the widget and add them to flexible web
layouts. The sample flexible web layout already has this widget added to the
menu. If you want to add a new instance to another location in the web layout,
perform the following procedure:

1 Select the tab for the container where you want to place the new
component.

2 In the Components Available in this Layout section, click New.

3 The list of master widget types displays. Select the master type and click
OK.

Example 1: Creating a Widget | 127

4 This creates a new instance of the master type. Change any of the
parameters for the widget, as required.

5 Drag the widget to the list of items in the container to add it to the layout.

128 | Chapter 10 Flexible Web Layouts Examples

A single instance of a widget can be referenced in more than one place. The
parameters for the widget are the same for every instance. For example, the
widget for Example 1 could be added to the map context menu as well as the
Examples menu. It would perform the same function regardless of where it
was called.

Different instances of the same master type can have different behavior. For
example, the standard templates have various instances of InvokeScript widgets
that perform different operations.

Example 2: Selections
Example 2 is a widget that is designed to be called as a command from a menu.
It requires Mozilla Firefox and the Firebug extension because it writes to the
Firebug console. It uses the following files in the folder
WebServerExtensionsInstallDir\www\fusion:

■ widgets\Example2.js

■ widgets\widgetinfo\example2.xml

This example writes information about the currently selected parcels to the
Firebug console. For more information about selections, see The Map
Component (page 111) and Working With Selections (page 113).

In a flexible web layout, the current selection is available from the map object
using the getSelection() method. This is an asynchronous method that

Example 2: Selections | 129

accepts a callback routine as a parameter. For example, the following sets up
a callback for the current selection:

var theMap = Fusion.getWidgetById("Map");

theMap.getSelection(this.displaySelection);

The callback method must accept a single parameter, which is a selection
object:

displaySelection : function(selection){

// process the selection object

}

It is possible for a single selection object to contain selected features from
multiple maps and multiple layers in those maps. The selection object passed
to the callback routine is an associative array where each element in the array
has the selection data for a single map.

To get the selection for a single map, get the element corresponding to that
map. This is usually the main map. For example:

var theMap = Fusion.getWidgetById("Map");

if (!theMap.hasSelection())

{

alert("Nothing selected");

return;

}

var oSelection = selection[theMap.getMapName()];

To get the selected features for a layer, call either getLayerByName() or
getLayer(). For example, to get the selected features for the Parcels layer, call

var thisLayer = oSelection.getLayerByName('Parcels');

To loop through all the layers in a selection, do the following:

for (var layerNum = 0; layerNum < oSelection.getNumLayers();

layerNum++)

{

var thisLayer = oSelection.getLayer(layerNum);

var selectedFeaturesThisLayer = thisLayer.getNumElements();

if (selectedFeaturesThisLayer > 0)

{

// Process the selected features

}

}

To process each selected feature, do the following:

130 | Chapter 10 Flexible Web Layouts Examples

for (var featureNum = 0; featureNum < selectedFeaturesThisLayer;

featureNum++)

{

// process feature

}

The layer definition in MapGuide Studio defines what properties of the selected
features are available to the JavaScript API on the client. Each property has a
name and a value.

var propNames = thisLayer.getPropertyNames();

var nProperties = thisLayer.getNumProperties();

for (var propNum = 0; propNum < nProperties; propNum++)

{

// process property

var thisPropName = propNames[propNum];

var thisPropValue = thisLayer.getElementValue(featureNum,

ownerPropNum)

}

Example2.js combines these concepts to write the owner names of selected
parcels to the Firebug console.

Example 3: Dialogs and Events
Many of the standard widgets, such as the selection panel and the legend, are
separate dialogs. Depending on the template, they can behave somewhat
differently. For example, in the Aqua template the dialogs are floating, and
in the Slate template many of them are docked at the side of the map display.

Example 3: Dialogs and Events | 131

Example 3 creates a dialog that displays some details about the current
selection. It updates automatically when the selection changes. It uses the
following files in the folder WebServerExtensionsInstallDir\www\fusion:

■ widgets\Example3.js

■ widgets\widgetinfo\example3.xml

■ templates\mapguide\examples.xml

■ templates\mapguide\examples\index.html

There are a few different concepts shown in this example:

■ dialogs

■ opening dialogs programatically

■ responding to events

Dialogs

The Jx library includes full support for many different types of dialog. The
style used is defined by the template, in the window.onload() function of
index.html. For a floating dialog, create a Jx.Dialog object, as in the following:

dExample3 = new Jx.Dialog({

id: 'dialogExample3',

label: OpenLayers.i18n('Example 3'),

modal: false,

resize: true,

horizontal: '50 left',

vertical: '85 top',

width: 400,

height: 400,

contentId: 'Example3'

});

For examples of other types of dialog, see index.html for the other standard
templates.

The properties passed to the Jx.Dialog constructor define the initial state of
the dialog, such as size and location. The value of the ContentID property
must correspond to a <div> element in the HTML. For example, the dialog
defined above must have the following in index.html:

<div id="Example3"></div>

132 | Chapter 10 Flexible Web Layouts Examples

This ContentID must also correspond to the class name of the widget as defined
in the JavaScript file. Example3.js contains the following class definition:

Fusion.Widget.Example3 = OpenLayers.Class(Fusion.Widget,

{

// ...

}

);

NOTE The id property of the Jx.Dialog constructor (dialogExample3 in the
example above) refers to a <div> element that contains the entire dialog, including
outside borders, the title bar, and other parts. The Jx library creates this outer
element when it initializes the dialog. In most cases, the widget code should only
work with the content area of the dialog, identified with the ContentID property.

Within MapGuide Studio, widgets that are dialogs are treated differently from
widgets that are run from menus. The widget information file for Example 3,
widgets\widgetinfo\example3.xml, contains the following:

<WidgetInfo>

<Type>Example3</Type>

<LocalizedType>Example3</LocalizedType>

<Description>Displays selection information</Description>

<Location></Location>

<Label>Example3</Label>

<Tooltip></Tooltip>

<StatusText></StatusText>

<ImageUrl></ImageUrl>

<ImageClass></ImageClass>

<StandardUi>false</StandardUi>

<ContainableBy></ContainableBy>

</WidgetInfo>

The <ContainableBy> element is empty because this widget is a separate dialog
and cannot be added to a menu. In MapGuide Studio, this widget does not
appear in the component list for toolbars and other containers.

The template definition file, templates\mapguide\examples.xml, contains a
<Panel> element that can hold dialogs or containers:

<Panel>

<Name>Example3</Name>

<Label>Example3</Label>

<Description>The dialog displaying example 3</Description>

</Panel>

Example 3: Dialogs and Events | 133

By default, MapGuide Studio places widgets with matching names into the
appropriate panel. The panel name matches the <div> ID in the index.html
file. If a given template uses a dialog-style widget it must have a matching
<div> element. The <Panel> elements create tabs in the MapGuide Studio UI.

Events

Many dialogs and other widgets react to events in the map, such as a user
selecting a feature.

There are two steps that must be done in a widget that handles events:

■ Create a callback routine to handle the event.

■ Register the callback routine for the event.

Example 3 uses the events Fusion.Event.MAP_SELECTION_ON and
Fusion.Event.MAP_SELECTION_OFF, which trigger when the selection changes.

The initialization code for the Example3 widget, in Example3.js, registers event
handlers for both these events, as follows:

this.getMap().registerForEvent(

Fusion.Event.MAP_SELECTION_ON,

OpenLayers.Function.bind(this.updateSelection, this));

this.getMap().registerForEvent(

Fusion.Event.MAP_SELECTION_OFF,

OpenLayers.Function.bind(this.clearSelection, this));

The event handler for Fusion.Event.MAP_SELECTION_OFF is simple:

134 | Chapter 10 Flexible Web Layouts Examples

clearSelection: function() {

this.showInformation('No features are selected.');

},

The event handler for Fusion.Event.MAP_SELECTION_ON is a bit more complex
because it needs to process the selection. It calls getSelection() with a callback
routine to process the current selection. See Example 2: Selections (page 129)
for more details about processing selections.

updateSelection: function() {

this.getMap().getSelection(this.listSelection.bind(this));

},

TIP For a quick list of available events, open the Script tab of the Firebug extension.
Enter Fusion.Event as a watch expression.

Running the Example

The initialization code for the Example3 widget, in index.html, hides the
dialog. There is a menu option to display the dialog, Examples
menu ➤ Example3. This is defined in the Application Definition as an Invoke
Script command that calls the following JavaScript routine:

var showExample3 = function() {

dExample3.open();

}

Example 3: Dialogs and Events | 135

The routine is defined in index.html where it is available to the Invoke Script
command.

When the dialog is open it reacts to changes in the selection. Any time the
selection changes, the dialog updates to show a list of the currently selected
features.

Example 4: Updating the Site Repository
Example 4 creates a dialog that displays the owner of the current selection
and allows it to be edited. The updated owner name is sent to a page on the
web tier for updating in the feature source. It uses the following files in the
folder WebServerExtensionsInstallDir\www\fusion:

■ widgets\Example4.js

■ widgets\widgetinfo\example4.xml

■ widgets\Example4\Example4.php

■ templates\mapguide\examples.xml

■ templates\mapguide\examples\index.html

136 | Chapter 10 Flexible Web Layouts Examples

Example 4 is very similar in structure to Example 3: Dialogs and Events (page
131). It uses a dialog that updates based on the events
Fusion.Event.MAP_SELECTION_ON and Fusion.Event.MAP_SELECTION_OFF.
Instead of simply displaying the selection information, though, the dialog
has an input field so the user can edit the owner of the currently selected
parcel.

The initialization code for the dialog, in Example4.js, creates the form with
an input text field and button, and sets the onclick action for the button.

this.messageDiv = document.createElement('div');

this.formInput = document.createElement('form');

this.formInput.innerHTML =

'<p><label>Property owner: <input type="text" ' +

'name="propertyOwner" ' +

'value="propertyowner" size="30" / ></label></p>' +

'<p><input name="inputButton" type="button" value="Update" ' +

'style="width: 70px;" class="Ctrl" /></p>';

this.formInput.inputButton.onclick = this.updatePropertyOwner;

this.messageDiv.appendChild(this.formInput);

this.domObj.appendChild(this.messageDiv);

The widget updates the dialog whenever the selection changes.

If a user clicks the update button, the widget sends the new owner name to a
page on the web tier, using an Ajax.Request object from the Prototype
JavaScript framework. It expects the web page to return results in a JSON
object.

Example 4: Updating the Site Repository | 137

updatePropertyOwner : function()

{

 var thisWidget = Fusion.getWidgetById('Example4');

 var theMap = Fusion.getWidgetById('Map');

 var reqParameters = {};

 reqParameters.session = Fusion.sessionId;

 reqParameters.mapname = theMap.getMapName();

 reqParameters.layer = 'Parcels';

 reqParameters.propName = 'RNAME'; // Must use name from feature

source, not display name

 reqParameters.newValue = thisWidget.formInput.propertyOwn

er.value;

 this.sBaseUrl = '/widgets/Example4/Example4.php';

 Fusion.ajaxRequest(this.sBaseUrl,

 {

 method:'post',

 parameters: reqParameters,

 onSuccess: function(transport)

 {

 var jsonContent = eval("(" + transport.responseText + ")");

 // Optionally, write the results to the Firebug console

 console.group('Returned values');

 for (var prop in jsonContent)

 {

 console.log(prop + ': ' + jsonContent[prop]);

 }

 console.groupEnd();

 if (jsonContent.error)

 {

 alert('There was an error:\n' + jsonContent.errorMsg);

 }

 else

 {

 alert('Update successful!');

 }

 },

 onFailure: function(ajaxResponse)

 {

138 | Chapter 10 Flexible Web Layouts Examples

alert('Error:\n' + ajaxResponse.status + ' ' +

ajaxResponse.statusText);

}

}

);

}

NOTE The client-side JavaScript uses the display names for properties, as defined
in the layer definition in MapGuide Studio. The Autodesk MapGuide Web API uses
the property names as defined in the feature class. In this example, the property
in the feature class is RNAME and the display name is Owner.

The web page, Example4.php, updates the property for the selected feature.
This is standard use of the Web API as described in Modifying Maps and Layers
(page 53) and other sample programs. There are a few items that are specific
to flexible web layouts, though.

It includes the file Common.php which performs some standard initialization
for widgets, including creating an MgResourceService object $resourceService
and setting the $mapName variable.

$fusionMGpath = '../../layers/MapGuide/php/';

include $fusionMGpath . 'Common.php';

Because the client-side JavaScript function expects to receive JSON-formatted
results, the web page must set the appropriate headers.

header('Content-type: text/x-json');

header('X-JSON: true');

It must also format the results properly. In this case, the web page returns the
original POST arguments with some added members to indicate success or
failure of the request. The added members are simply added to the arguments
array. For example:

$args['error'] = false;

The entire arguments array is returned to the client.

echo json_encode($args);

Example 4: Updating the Site Repository | 139

NOTE When first loaded, the feature source for the SDF layer in the Sheboygan
data may be set to read-only. Example4.php contains code to make it writable.
This may not apply to other feature sources.

$reader =

$resourceService->GetResourceContent($layerFeatureResource);

$xmlString = $reader->ToString();

$domDoc = DOMDocument::loadXML($xmlString);

$xpath = new DOMXPath($domDoc);

$query = "//Parameter[Name='ReadOnly']";

$nodes = $xpath->query($query);

foreach ($nodes as $node)

{

$query = "Value";

$subNodes = $xpath->query($query, $node);

foreach ($subNodes as $subNode)

{

$subNode->nodeValue = 'FALSE';

}

}

$newXml = $domDoc->saveXML();

$resourceService->SetResource($layerFeatureResource,

new MgByteReader($newXml, MgMimeType::Xml), NULL);

140 | Chapter 10 Flexible Web Layouts Examples

Example 5: Anonymous Login
Normally, when a user opens a flexible web layout in a web browser they will
be prompted for a username and password. (You will not see this if you use
the View In Browser button in MapGuide Studio.)

To enable anonymous login, the examples include the file
WebServerExtensionsInstallDir\www\fusion\FlexViewer.php:

<?php

$fusionMGpath = './layers/MapGuide/php/';

include $fusionMGpath . 'Common.php';

$locale = GetDefaultLocale();

$appdef = "";

$template = "";

$session = $siteConnection->GetSite()->CreateSession();

GetRequestParameters();

$viewerSrc = 'templates/mapguide/' . $template

. '/index.html';

$viewerSrc = $viewerSrc . '?APPLICATIONDEFINITION='

. $appdef;

$viewerSrc = $viewerSrc . '&SESSION=' . $session;

header('Location: ' . $viewerSrc) ;

function GetParameters($params)

{

global $appdef, $template;

$appdef = $params['APPLICATIONDEFINITION'];

$template = $params['TEMPLATE'];

}

function GetRequestParameters()

{

if($_SERVER['REQUEST_METHOD'] == "POST")

GetParameters($_POST);

else

GetParameters($_GET);

}

?>

You can now log in anonymously (without supplying a username and
password) through the URL:

Example 5: Anonymous Login | 141

http://server:port/mapguide2011/fusion/FlexViewer.php

?APPLICATIONDEFINITION=Library%3a%2f%2fSamples%2f

FlexibleWebLayouts%2fExamples.ApplicationDefinition

&TEMPLATE=examples

NOTE Since an anonymous user does not have rights to modify the repository,
you will not be able to update the parcel owner in Example 4 if you log in this
way.

142 | Chapter 10 Flexible Web Layouts Examples

Using MapGuide Logging

Introduction
This chapter describes MapGuide’s logging capabilities and gives examples of
how they can be used. It is intended for technical individuals such as MapGuide
application developers and system administrators.

Logs and Logging Detail
MapGuide provides three logs, the access log, error log and trace log, to aid in
debugging and performance tuning.

Access Log
The access log has been enhanced to include the thread identifier of the thread
executing the operation. This thread identifier along with the timestamp can
be used to trace execution of an operation through the error.log and trace.log.
A sample log excerpt is given below. 2332 and 2344 are the thread identifiers.

<2008-07-16T12:55:48>

2332 Anonymous

RenderDynamicOverlay.1.0.0:4(MgMap,MgSelection,PNG,true)

Success

<2008-07-16T12:55:48>

2344 Anonymous

GenerateLegendImage.1.0.0:7(MgResourceIdentifier,53344,

16,16,PNG8,-1,-1)

Success

11

143

Error Log
The error log has been enhanced to include:

■ The thread identifier.

■ Display of input parameters for method calls configurable on a per-service
basis.

■ Non-fatal warning statements such as FDO errors when rendering a layer
on a map. This is configurable on a per-service basis.

A sample error.log showing a warning is given below. This warning was
generated during the stylization of a layer. The operation was executed on
thread 2340.

<2008-07-17T14:57:29> 2340 Anonymous

Warning: An exception occurred in FDO component.

Geometry property value encountered!

StackTrace:

- MgStylizationUtil.ExceptionTrap() line 199 file

.\GeometryAdapter.cpp

An exception occurred in FDO component.

Geometry property value encountered!

Trace Log
The trace log includes:

■ The thread identifier.

■ Display of input parameters for method calls configurable on a per-service
basis.

■ Non-fatal warning statements such as FDO errors when rendering a layer
on a map. This is configurable on a per-service basis.

■ Timestamped begin (BGN) and end (END) statements for each method
call.

Here a sample excerpt from the trace log.

144 | Chapter 11 Using MapGuide Logging

<2008-07-17T14:57:29>

 2364 BGN MgStylizationUtil.StylizeLayers

 Map=Sheboygan,LayerId=Library://Samples/Sheboygan/Layers/

CityLimits.LayerDefinition

<2008-07-17T14:57:29>

2364 BGN MgServerFeatureService.GetSpatialContexts

Id=Library://Samples/Sheboygan/Data/CityLimits.FeatureSource,Act

iveOnly=0

<2008-07-17T14:57:29>

2364 END MgServerFeatureService.GetSpatialContexts

<2008-07-17T14:57:29>

2364 BGN MgServerFeatureService.SelectFeatures

Resource=Library://Samples/Sheboygan/Data/

CityLimits.FeatureSource,ClassName=SHP_Schema:CityLimits,

Options={{Operator=1}{GeomProp=SHPGEOM}{GeomOp=

EnvelopeIntersects}{Geometry=POLYGON

((-87.780335659913959 43.691398128787803,

-87.680172841948519 43.691398128787803,

-87.680172841948519 43.797520000480297,

-87.780335659913959 43.797520000480297,

-87.780335659913959 43.691398128787803))}}

<2008-07-17T14:57:29>

2364 END MgServerFeatureService.SelectFeatures

<2008-07-17T14:57:29>

2364

Warning: An exception occurred in FDO component.

Geometry property value encountered!

<2008-07-17T14:57:29>

2364 END MgStylizationUtil.StylizeLayers

Configurable Log Detail
Log detail can be configured on a per-service basis using the LogsDetail
parameter in the general properties section of serverconfig.ini:

[GeneralProperties]

LogsDetail = MappingService:3,FeatureService:3,RenderingService:3,

ResourceService:3

The allowable service entries are:

■ MappingService

■ RenderingService

Configurable Log Detail | 145

■ FeatureService

■ ResourceService

■ SiteService

The detail level is defined as follows:

■ Level 0 - Errors without parameters

■ This is the default level of detail.

■ Errors (exceptions) are logged without method parameters for the
specified service.

■ Warnings are not logged for this service.

■ Traces are not logged for this service.

■ Call parameter generation is disabled at this level to improve
performance.

■ Level 1 - Warnings and Errors with parameters

■ Errors (exceptions) are logged with method parameters for the specified
service.

■ Warnings are logged with parameters for this service.

■ Traces are not logged for this service.

■ Level 2 - Trace, Warnings, and Errors

■ All Level 1 detail, plus traces with parameters are logged for published
Service API calls.

■ Level 3 - Internal Trace, Trace, Warnings, and Errors

■ All Level 2 detail, plus traces with parameters are logged for internal
API calls.

Turning on a level 2 or level 3 trace log for all services in a production
environment can generate more than 100MB of log information per hour.
Disk space should be continuously monitored when the MapGuide Server is
run under these conditions.

146 | Chapter 11 Using MapGuide Logging

NOTE Since the detail level is configurable for each service, the logs can be tailored
to debug specific error conditions. For example, tracing the execution of the
Resource service is not very useful when you are debugging a database connectivity
problem.

Sample Cases
This section describes how to use the logging functionality to debug or tune
some common issues in MapGuide.

Debugging and Tuning Feature Sources
To debug feature source issues, turn on warning level detail for the feature
service:

[GeneralProperties]

LogsDetail = FeatureService:1

This provides more detail for any thrown exceptions by including the method
parameters in the stack trace.

Sample Cases | 147

<2008-07-28T17:04:10> 3324 Anonymous

 Error: An exception occurred in FDO component.

 Failed to connect to 'calcrtora'. Invalid data

 source, user name or password.

 StackTrace:

 - MgFeatureServiceHandler.ProcessOperation() line 83 file

 f:\mgdev1.2\os\server\src\services\feature\

 FeatureServiceHandler.cpp

 - MgOpDescribeSchemaAsXml.Execute() line 107 file

 f:\mgdev1.2\os\server\src\services\feature\

 OpDescribeSchemaAsXml.cpp

 - MgServerFeatureService.DescribeSchemaAsXml

 (Resource=Library://Data/NT_NA.FeatureSource,

 SchemaName=) line 333 file f:\mgdev1.2\os\server\src\

 services\feature\ServerFeatureService.cpp

 - MgServerDescribeSchema.DescribeSchema() line 500 file

 f:\mgdev1.2\os\server\src\services\feature\

 ServerDescribeSchema.cpp

 - MgServerDescribeSchema.ExecuteDescribeSchema()

 line 173 file f:\mgdev1.2\os\server\src\services\

 feature\ServerDescribeSchema.cpp

- MgFdoConnectionManager.Open() line 979 file

f:\MgDev1.2\OS\Server\src\Common\Manager\

FdoConnectionManager.cpp An exception occurred in

FDO component.

Failed to connect to 'calcrtora'. Invalid data source,

user name or password.

Additional information can be obtained by enabling trace level detail:

[GeneralProperties]

LogsDetail = FeatureService:2

The trace log provides more context. For example, the DescribeSchemaAsXml
call below is failing after the resource content and resource data have been
retrieved from the repository. The trace log also provides timestamps for the
start and end of each feature service operation. These timestamps can be used
to determine the execution time of feature service operations.

148 | Chapter 11 Using MapGuide Logging

<2008-07-28T17:04:09.900546> 3324

 BGN MgServerFeatureService.DescribeSchemaAsXml

 Resource=Library://Data/NT_NA.FeatureSource,SchemaName=

<2008-07-28T17:04:09.900546> 3324

 BGN MgServerResourceService.GetResourceContent

 Id=Library://Data/NT_NA.FeatureSource,Tags=Substitution

<2008-07-28T17:04:09.900546> 3324

END MgServerResourceService.GetResourceContent

<2008-07-28T17:04:09.900546> 3324

BGN MgServerResourceService.GetResourceData

Id=Library://Data/NT_NA.FeatureSource,DataName=

config.xml,Tags=Substitution

<2008-07-28T17:04:09.900546> 3324

END MgServerResourceService.GetResourceData

<2008-07-28T17:04:10.884997> 3324

END MgServerFeatureService.DescribeSchemaAsXml

<2008-07-28T17:04:10.884997> 3324

Error: An exception occurred in FDO component.

Failed to connect to 'calcrtora'. Invalid data

source, user name or password.

<2008-07-28T18:20:01.259646> 1160

BGN MgServerFeatureService.DescribeSchemaAsXml

Resource=Library://Data/NT_NA.FeatureSource,SchemaName=

<2008-07-28T18:20:01.259646> 1160

BGN MgServerResourceService.GetResourceContent

Id=Library://Data/NT_NA.FeatureSource,Tags=Substitution

<2008-07-28T18:20:01.259646> 1160

END MgServerResourceService.GetResourceContent

<2008-07-28T18:20:01.259646> 1160

BGN MgServerResourceService.GetResourceData

Id=Library://Data/NT_NA.FeatureSource,DataName=

config.xml,Tags=Substitution

<2008-07-28T18:20:01.259646> 1160

END MgServerResourceService.GetResourceData

<2008-07-28T18:20:06.275657> 1160

END MgServerFeatureService.DescribeSchemaAsXml

<2008-07-28T18:20:06.275657> 1160

The timestamps for the BGN and END of
MgFeatureService.DescribeSchemaAsXml are 5 seconds apart indicating that
the DescribeSchema call is relatively slow for the NT_NA.FeatureSource.

Debugging and Tuning Feature Sources | 149

Debugging Broken Layers
By default MapGuide silently suppresses any errors which occur when
rendering a layer. So to help debug any errors which occur when it is rendering
a layer, turn on warning level logging so that warnings are logged to both the
error log and the trace log.

[GeneralProperties]

LogsDetail = MappingService:1,FeatureService:1,

RenderingService:1

The warning message alone will not provide enough detail to determine which
layer is causing problems:

<2008-07-17T14:57:29> 2364 Anonymous

Warning: An exception occurred in FDO component.

Geometry property value encountered!

StackTrace:

- MgStylizationUtil.ExceptionTrap() line 199 file

.\GeometryAdapter.cpp

An exception occurred in FDO component.

The trace log can then be turned on to provide sufficient detail. The available
detail level depends on the service. Most services can return level 2 detail.
Mapping Service can return level 3 detail. The
MgStylizationUtil.StylizerLayers trace entry is level 3 detail for Mapping
Service.

To return level 3 detail for the Mapping Service and level 2 detail for the
Feature and Rendering Service, the LogsDetail parameter can be set as follows:

[GeneralProperties]

LogsDetail = MappingService:3,FeatureService:2,

RenderingService:2

This results in:

150 | Chapter 11 Using MapGuide Logging

<2008-07-17T14:57:29>

 2364 BGN MgStylizationUtil.StylizeLayers

 Map=Sheboygan,LayerId=Library://Samples/Sheboygan/Layers/

 CityLimits.LayerDefinition

<2008-07-17T14:57:29>

 1544 MgClientHandler::Initialize() -

 Address: 27.0.0.1:2812

<2008-07-17T14:57:29>

 1544 MgClientHandler::Initialize() -

 Address: 27.0.0.1:2811

<2008-07-17T14:57:29>

2300 MgServerMappingService::GenerateLegendImage

<2008-07-17T14:57:29>

2364 BGN MgServerFeatureService.GetSpatialContexts

Id=Library://Samples/Sheboygan/Data/

CityLimits.FeatureSource,ActiveOnly=0

<2008-07-17T14:57:29>

2364 END MgServerFeatureService.GetSpatialContexts

<2008-07-17T14:57:29>

2364 BGN MgServerFeatureService.SelectFeatures

Resource=Library://Samples/Sheboygan/Data/

CityLimits.FeatureSource,ClassName=SHP_Schema:CityLimits,

Options={{Operator=1}{GeomProp=SHPGEOM}

{GeomOp=EnvelopeIntersects}{Geometry=POLYGON

((-87.780335659913959 43.691398128787803,

-87.680172841948519 43.691398128787803,

-87.680172841948519 43.797520000480297,

-87.780335659913959 43.797520000480297,

-87.780335659913959 43.691398128787803))}}

<2008-07-17T14:57:29>

2364 END MgServerFeatureService.SelectFeatures

<2008-07-17T14:57:29>

2364 Warning: An exception occurred in FDO component.

Geometry property value encountered!

<2008-07-17T14:57:29>

2364 END MgStylizationUtil.StylizeLayers

From the error log, the warning message was generated on thread 2364. Using
the timestamp and the thread identifier the call stack can be traced using the
trace log. Starting at the warning statement in the trace log, thread 2364 can
be backtraced through the MgServerFeatureService.SelectFeatures call and
into the MgStylizationUtil.StylizeLayers call. The BGN/END statements
show operation nesting for each thread. By using Excel or a text editor, the
other threads can be removed from the log.

Debugging Broken Layers | 151

<2008-07-17T14:57:29>

2364 BGN MgStylizationUtil.StylizeLayers

Map=Sheboygan,LayerId=Library://Samples/Sheboygan/Layers/

CityLimits.LayerDefinition

<2008-07-17T14:57:29>

2364 BGN MgServerFeatureService.GetSpatialContexts

Id=Library://Samples/Sheboygan/Data/

CityLimits.FeatureSource,ActiveOnly=0

<2008-07-17T14:57:29>

2364 END MgServerFeatureService.GetSpatialContexts

<2008-07-17T14:57:29>

2364 BGN MgServerFeatureService.SelectFeatures

Resource=Library://Samples/Sheboygan/Data/

CityLimits.FeatureSource,ClassName=SHP_Schema:CityLimits,

Options={{Operator=1}{GeomProp=SHPGEOM}

{GeomOp=EnvelopeIntersects}{Geometry=POLYGON

((-87.780335659913959 43.691398128787803,

-87.680172841948519 43.691398128787803,

-87.680172841948519 43.797520000480297,

-87.780335659913959 43.797520000480297,

-87.780335659913959 43.691398128787803))}}

<2008-07-17T14:57:29>

2364 END MgServerFeatureService.SelectFeatures

<2008-07-17T14:57:29>

2364 Warning: An exception occurred in FDO component.

Geometry property value encountered!

<2008-07-17T14:57:29>

2364 END MgStylizationUtil.StylizeLayers

The FDO exception is emitted immediately after the SelectFeatures call. This
is logical because SelectFeatures returns an MgFeatureReader and the first
ReadNext() executed by the stylizer causes the error to occur.

From the log, the warning message occurs between the BGN/END blocks of
StylizeLayers. This means the CityLimits layer definition is the layer causing
the error. This allows the you to concentrate your effort on a single layer
instead of walking through every layer in a map.

152 | Chapter 11 Using MapGuide Logging

Index

$CurrentSelection 44

A

access log 143
AGF 69
AJAX Viewer

and base layer groups 28
Ajax.Request 137
anonymous login 141
arbitrary X-Y coordinates 72
authentication 11

B

base layer groups 28
basic selection filters 37
bit-mapped images 95
buffer polygon 74
buffer, creating 78
buffer, example of creating 80
buffers 73

C

callback functions 89
commands, in web layouts 7
Common.php 139
constants.php 9
ContainableBy element 126, 133
CONTAINS 39
coordinate reference system 72
coordinate systems 72

transforming between 73
COVEREDBY 39
creating geometry from feature 39
credentials 11
CROSSES 39
CRS 72
CSS

inspecting 124

custom commands, in web layouts 7

D

debugging broken layers 150
deleting features 77
digitizing 89
DISJOINT 39
distance, measuring 73
Document Object Model 54
DOM 54

inspecting 124
drawing order 28
DWF, saving map as 95

E

eMap 95
ePlot 95
EQUALS 39
error log 144
examples, preparing for 2

F

feature class definition 74
feature classes 35
feature readers 35–36
feature schema 74
feature service 12
feature source, temporary 74
features 35

active selection 43
getting geometry from 39
inserting, deleting, and updating 77
making features selectable 43
selecting features with Web API 37
selection example 41
sending active selection to Web

server 43

153 | Index

setting active selection with Web
API 49

working with the active selection 46
Firebug 124
Firefox 124
flexible web layouts 101

and Web API 136
buttons 137
Common.php 139
ContentID 133
creating templates 102
creating widgets 110, 125
dialogs 131
events 131, 134
examples 123
forms 137
Fusion API 118
getSelection() 129
JavaScript 125
Map widget 111
onclick action 137
Panel element 133
property names 139
Prototype JavaScript framework 137
request to web tier 137
selection object 115
selections 113, 129
template definition file 133
units 121

formFrame 45
formFrame, in Viewer 16
frame parent 18
Fusion

getSelection() 129
selection API 129

Fusion API 118
Fusion.Widget 126

G

geographic coordinates 72
geometry

comparing spatial relationships 71
geometry types 70
GEOMFROMTEXT() 39
GIF, saving map as 95

great circle calculation, in measuring
distance 73

H

hellomap.php 9
home task 7
HTML

inspecting 124
HTML frames, in Viewers 15
HTML page, with MapGuide Viewer 23

I

inserting features 77
INSIDE 39
INTERSECTS 39
Invoke Script command 19
Invoke Script command, passing

parameters 45
Invoke Script widget, in flexible web

layouts 125
Invoke URL command type 8
Invoke URL command, additional

parameters 44

J

JavaScript
debugging 124
in flexible web layouts 125

JSON 137
Jx.Dialog 132

ContentID 133

L

latitude/longitude coordinates 72
layer definition, and style 29
layer groups 28
layer name 27
layer properties 27
layer style 29
layer visibility 29
layer visibility, and layer groups 28

154 | Index

layerdefinitionfactory.php 56
layers 27

base groups 28
Library repository 3
log detail 145
logging 143
login

anonymous 141

M

map 4
map definition 4
map state, run-time 3
Map widget 111
maparea frame, in Viewer 15
mapFrame, in Viewer 16
MapGuide Server Page 7
MapGuide session 5
MAPNAME 45
mapping service 97
measuring distance 73
MgAgfReaderWriter 70
MgClassDefinition 74
MgCoordinateSystem 72
MgCoordinateSystemTransform 73
MgCurvePolygon 70
MgCurveString 70
MgFeatureReader 36
MgFeatureSchema 74
MgGeometry 69–70

creating from feature 39
MgLayer objects 27
MgLayerCollection

GetItem() 28
MgLayerCollection object 28, 30
MgLineString 70
MgMap

GetLayers() 28
MgMap object 4
MgMultiCurvePolygon 71
MgMultiCurveString 71
MgMultiGeometry 71
MgMultiLineString 70
MgMultiPoint 70
MgMultiPolygon 71

MgPoint 70
MgPolygon 70
MgWktReaderWriter 70
Mozilla Firefox 124
MSP 7
MSP processing flow 8

O

onclick 137
onClick event 46
OVERLAPS 39

P

parent frame 18
password 11
PNG, saving map as 95
printing map 95
projected coordinates 72
properties, of layers 27
Prototype JavaScript framework 137

R

redlining 89
rendering service 95, 97
repositories 3
resource service 12
resources 3
run-time map state 3–4

S

sample code 2
sbFrame, in Viewer 16
script frame, and Viewer API 19
scriptFrame, in Viewer 16
SDF feature sources, read-only 140
selection

active selection 43
making features selectable 43
selecting features with Web API 37
selection example 41

Index | 155

sending active selection to Web
server 43

setting active selection with Web
API 49

working with the active selection 46
selection filters

basic 37
spatial 38

selection object 115
selections 113
services 12
session 5
SESSION 45
Session repository 3
site connection 11
spatial filters 38
spatial operators 39
spatial reference system 72
spatial reference systems, in feature

sources 75
spatial relationships, between geometry

objects 71
SRS 72
Studio 1
style, of layers 29

T

task pane 7
and Viewer API 20

task pane frame, passing parameters
from 45

taskArea, in Viewer 16
taskBar, in Viewer 16
taskFrame, in Viewer 16
taskListFrame, in Viewer 16
taskPaneFrame, in Viewer 16
tbFrame, in Viewer 16
temporary feature source 74
tiling, of map image 28
TOUCHES 39
trace log 144
transforming coordinate systems 73

U

units 121
updating features 77
user credentials 11
user id 11

V

Viewer 5
active selection 43
and map state 43
making features selectable 43
passing Viewer information to Web

server 43
selecting features with Web API 37
selection example 41
sending active selection to Web

server 43
setting active selection with Web

API 49
working with the active selection 46

Viewer API 17
and script frame 19
and task pane 20

Viewer commands 1
Viewer frames 15, 18
Viewer, embedded in HTML page 23
visibility

of base layer groups 28
rules 29

W

web layout 5
web layout, defining 7
webconfig.ini 11
well-known text 69
widget

class name 126
ContainableBy element 126, 133
information file 126, 133
instances 127
master types 127

widgetinfo 126, 133

156 | Index

widgets 110
selections 129

WITHIN 39
WKT 69

Index | 157

158

	Contents
	Introduction
	What This Guide Covers
	Essential Concepts
	Preparing to Run the Examples
	Resources and Repositories
	Library and Session
	Maps

	Hello, Map – Displaying a Web Layout
	Hello, Map 2 – Adding a Custom Command
	Web Layouts and MapGuide Server Pages
	MapGuide Page Flow
	Example Code
	How This Page Works

	Understanding Services

	The MapGuide Viewer
	Introduction
	The AJAX Viewer
	Custom Commands

	Understanding Viewer Frames
	MapGuide Viewer API
	Calling the Viewer API with an Invoke Script Command
	Calling the Viewer API from the Script Frame
	Calling the Viewer API from the Task Pane
	Extending Map Initialization Functionality
	The Hello Viewer Sample

	Embedding a Viewer in Your Own Page

	Interacting With Layers
	Overview of Layers
	Basic Layer Properties
	Layer Groups
	Base Layer Groups

	Layer Style
	Layer Visibility
	Example: Actual Visibility

	Enumerating Map Layers
	Example

	Manipulating Layers
	Changing Basic Properties
	Example

	Changing Visibility

	Working With Feature Data
	Overview of Features
	Querying Feature Data
	Feature Readers
	Selecting with the Web API
	Basic Filters
	Examples

	Spatial Filters
	Creating Geometry Objects From Features
	Examples

	Example: Selection

	Active Selections
	Selecting with the Viewer
	Passing Viewer Information to the Web Server
	Additional Parameters to an Invoke URL Command
	Passing Parameters From an Invoke Script command
	Passing Parameters From the Task Pane Frame

	Working With the Active Selection
	Example: Listing Selected Parcels

	Setting the Active Selection With the Web API
	Example: Setting the Active Selection

	Modifying Maps and Layers
	Introduction
	Adding An Existing Layer To A Map
	Creating Layers By Modifying XML
	Another Way To Create Layers
	Example - Creating A Layer That Uses Area Rules
	Example - Using Line Rules
	Example - Using Point Rules

	Adding Layers To A Map
	Making Changes Permanent

	Analyzing Features
	Introduction
	Representation of Geometry
	Geometry Objects
	Comparing Geometry Objects

	Coordinate Systems
	Measuring Distance
	Temporary Feature Sources
	Inserting, Deleting, and Updating Features

	Creating a Buffer
	Example

	Digitizing and Redlining
	Introduction
	Digitizing
	Redlining
	Passing Coordinates
	Creating a Feature Source
	Creating A Layer

	Custom Output
	Introduction
	Rendering Service
	Mapping Service

	Flexible Web Layouts
	Introduction
	Creating Templates
	Application Definitions

	Creating Components
	The Map Component
	Working With Selections
	Fusion API
	Methods
	Events
	Units

	Flexible Web Layouts Examples
	Overview
	Installing the Examples
	Running the Examples
	Firefox and Firebug

	Hello World: A Simple Invoke Script
	Example 1: Creating a Widget
	Example 2: Selections
	Example 3: Dialogs and Events
	Example 4: Updating the Site Repository
	Example 5: Anonymous Login

	Using MapGuide Logging
	Introduction
	Logs and Logging Detail
	Access Log
	Error Log
	Trace Log
	Configurable Log Detail

	Sample Cases
	Debugging and Tuning Feature Sources
	Debugging Broken Layers

	Index

