
File Formats

Copyright Notice
Autodesk® Maya® 2011 Software
© 2010 Autodesk, Inc. All rights reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be
reproduced in any form, by any method, for any purpose.
Certain materials included in this publication are reprinted with the permission of the copyright holder.
The following are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries:
3DEC (design/logo), 3December, 3December.com, 3ds Max, Algor, Alias, Alias (swirl design/logo), AliasStudio, Alias|Wavefront (design/logo),
ATC, AUGI, AutoCAD, AutoCAD Learning Assistance, AutoCAD LT, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface,
Autodesk, Autodesk Envision, Autodesk Intent, Autodesk Inventor, Autodesk Map, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSnap,
AutoSketch, AutoTrack, Backburner, Backdraft, Built with ObjectARX (logo), Burn, Buzzsaw, CAiCE, Civil 3D, Cleaner, Cleaner Central, ClearScale,
Colour Warper, Combustion, Communication Specification, Constructware, Content Explorer, Dancing Baby (image), DesignCenter, Design
Doctor, Designer's Toolkit, DesignKids, DesignProf, DesignServer, DesignStudio, Design Web Format, Discreet, DWF, DWG, DWG (logo), DWG
Extreme, DWG TrueConvert, DWG TrueView, DXF, Ecotect, Exposure, Extending the Design Team, Face Robot, FBX, Fempro, Fire, Flame, Flare,
Flint, FMDesktop, Freewheel, GDX Driver, Green Building Studio, Heads-up Design, Heidi, HumanIK, IDEA Server, i-drop, ImageModeler, iMOUT,
Incinerator, Inferno, Inventor, Inventor LT, Kaydara, Kaydara (design/logo), Kynapse, Kynogon, LandXplorer, Lustre, MatchMover, Maya,
Mechanical Desktop, Moldflow, Moonbox, MotionBuilder, Movimento, MPA, MPA (design/logo), Moldflow Plastics Advisers, MPI, Moldflow
Plastics Insight, MPX, MPX (design/logo), Moldflow Plastics Xpert, Mudbox, Multi-Master Editing, Navisworks, ObjectARX, ObjectDBX, Open
Reality, Opticore, Opticore Opus, Pipeplus, PolarSnap, PortfolioWall, Powered with Autodesk Technology, Productstream, ProjectPoint, ProMaterials,
RasterDWG, RealDWG, Real-time Roto, Recognize, Render Queue, Retimer, Reveal, Revit, Showcase, ShowMotion, SketchBook, Smoke, Softimage,
Softimage|XSI (design/logo), Sparks, SteeringWheels, Stitcher, Stone, StudioTools, ToolClip, Topobase, Toxik, TrustedDWG, ViewCube, Visual,
Visual LISP, Volo, Vtour, Wire, Wiretap, WiretapCentral, XSI, and XSI (design/logo).
ACE™, TAO™, CIAO™, and CoSMIC™ are copyrighted by Douglas C. Schmidt and his research group at Washington University, University of
California, Irvine, and Vanderbilt University, Copyright © 1993-2009, all rights reserved.
Adobe, Illustrator and Photoshop are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or
other countries.
Intel is a registered trademark or trademark of Intel Corporation or its subsidiaries in the United States and other countries.
mental ray is a registered trademark of mental images GmbH licensed for use by Autodesk, Inc.
OpenGL is a trademark of Silicon Graphics, Inc. in the United States and other countries.Python and the Python logo are trademarks or registered
trademarks of the Python Software Foundation.
The Ravix logo is a trademark of Electric Rain, Inc.
All other brand names, product names or trademarks belong to their respective holders.
Disclaimer
THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC. DISCLAIMS
ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.

Contents

Chapter 1 Maya ASCII file format . 1
About file formats . 1
Maya ASCII file format . 1

Overview of Maya ASCII file format 1
Write file translators . 3
Embedded comments . 3
Organization of Maya data . 4
Organization of Maya ASCII files 5

Chapter 2 Animation curves . 13
Overview of animation curves . 13
Import anim curves . 13
Export anim curves . 14
Anim File Format . 15

Chapter 3 Maya Image File Format - IFF 23
Overview of Maya IFF . 23
Generate IFF files with Maya . 24
View and convert IFF images . 25
Program with the IL and FL libraries 25
Use example programs . 26
Additional resources . 26
IFF Format overview . 26

iii

Introduction to the image library . 33
Extensions to the IFF format . 35

Chapter 4 Channel move files - MOV . 37
Channel move files (.mov) . 37

Index . 39

iv | Contents

Maya ASCII file format

About file formats
This documentation is directed at technical users with prior programming
experience who want to do one of the following:

■ edit Maya files

■ write translators to/from Maya files

NOTE .pda and .pdb file formats are documented in the dynExport command
documentation.

Maya ASCII file format

Overview of Maya ASCII file format
Maya scene files define the geometry, lighting, animation, rendering, and other
properties of a scene.

Maya scenes can be saved as binary or ASCII files. A Maya ASCII file can be easily
edited.

If you have written a script using Maya’s MEL® programming language, you are
already familiar with the Maya ASCII file format. A Maya ASCII file uses a tiny
subset of the MEL language—in fact, of the hundreds of commands available
in MEL, only eleven are used:

■ file

1

1

■ requires

■ createNode

■ setAttr

■ addAttr

■ parent

■ connectAttr

■ disconnectAttr

■ select

■ currentUnit

■ fileInfo

These MEL commands are the only MEL commands that can be safely used
in a Maya ASCII file.

If you are not familiar with MEL, you may want to look at the MEL
documentation before continuing. See MEL Overview in the MEL and
Expressions book for details.

A statement in MEL consists of a keyword, followed by a series of options and
arguments, and ends in a semicolon. A statement can span any number of
lines in the file.

■ A keyword is always the first word in a statement.

■ An option provides more specific information to the statement.

■ An argument further defines each option.

For the examples in this chapter, the following typefaces designate the
keywords, options, and arguments:

Keywords and options are in bold-face type, such as bump or -s. The option
is always preceded by a dash.

Arguments are in non-bold italic, such as u or file.txb. The names of the
arguments are arbitrary labels. In your files, use the actual value or string.

2 | Chapter 1 Maya ASCII file format

Write file translators

To the Maya ASCII format

If you are writing a program to translate other kinds of files to Maya ASCII
file format, the work is fairly straightforward. The bulk of what you need to
do is find Maya node and attribute equivalences to the foreign data types. For
this you will probably want to construct your own sample Maya files and refer
to the document called Node and Attribute Reference.

Notes:

■ Ensure that the first 6 characters in your file are "//Maya".

■ Ensure that nothing is referenced until it is created.

From the Maya ASCII format

If you want to write a program to translate Maya ASCII files to other file
formats, you have a difficult job ahead of you. To do the job properly, you
would not only need to be able to read in the files, but also to read in the
referenced files. Since MEL references can contain any arbitrary MEL code,
you would either have to not support them, or write a full MEL interpreter.

An easier way to solve this problem is provided in the Maya Developer’s Tool
Kit. There you will find an example of a file translator plug-in under the
MPxFileTranslator class (. Using the documentation there, and the example
(called lepTranslator) as a basis, you can write a plug-in that will allow Maya
to save files in the format you prefer.

It is also possible to write data out through MEL. Though this method is
probably not appropriate for comprehensive, large-scale translators, it can be
a quick and easy way to export relatively small and simple sets of ASCII data.
Provided all of the data required is accessible through MEL, you can use the
fopen, fprint, and fclose commands to write the data to a file.

Embedded comments
An embedded comment is text in a MEL file that is ignored when the file is
read in.

If a line in the file contains two consecutive slashes ("//"), everything from
there to the end of the line is considered to be a comment. This is commonly
known as a "C++ style comment".

Write file translators | 3

If a line in the file contains a slash followed by an asterisk ("/*"), everything
from there on is considered a to be comment, until the next occurrence of an
asterisk followed by a slash ("*/"). This is commonly known as a "C style
comment".

NOTE Although supported in MEL, C style comments are not generally used.

Organization of Maya data
To understand how Maya ASCII files work, you need to have some
understanding of the way data is organized in Maya.

All the information in a scene is stored internally in nodes. A node is simply
a block of data with a name. Different kinds of nodes have different kinds of
data; the individual pieces of data are referred to as attributes of the node. All
nodes of the same type have the same set of attributes. A node may also have
additional "dynamic" attributes unique to itself.

Nodes in Maya are connected by two mechanisms. The first is parenting,
which is used to group related geometry together. When a parent node is
moved, all of its child nodes move with it. Only those nodes which represent
geometry (such as curves and surfaces) and nodes that group these together
(such as transforms) can be connected by parenting.

For example, a NURBS sphere in Maya may be represented by two nodes. One
of these nodes, named "nurbsSphere1", is a type of node called "transform".
Its attributes have information about its size and position, such as translation,
scaling, and rotation. The other node, named "nurbsSphereShape1", contains
information about the shape of the sphere, such as the exact positions of all
of its control points. The transform node is the parent of the other node, so
that you can move the sphere by setting the attributes of the transform.

The other mechanism that connects nodes together is called attribute
connections. Any attribute of any node can be connected to any other, as
long as the data types are compatible. When attributes are connected, changing
the value of the source attribute will change the value of the destination
attribute.

There are hundreds of different kinds of nodes in Maya, and more types can
be added using plug-ins. Using these simple building blocks, Maya can
represent elaborate models and animations.

For a complete description of all the different kinds of nodes that exist in
Maya, and their attributes, see the DG Node Reference listings (on-line only).

4 | Chapter 1 Maya ASCII file format

Organization of Maya ASCII files
The ASCII files that Maya generates are organized into eight sections:

■ Header on page 5

■ (Non-Procedural) File references on page 5

■ Requirements on page 6

■ Units on page 6

■ File references on page 5

■ Nodes, attributes, and parenting on page 7

■ Script nodes on page 9

■ Disconnections on page 10

■ Connections on page 10

The following describes each section. These sections must occur in the order
specified for the file to load properly.

Header

The file header consists of a block of comments to help identify where and
when the file was created. Like all comments, this block is ignored by the code
that reads in a Maya file. There is one exception, however: the first six
characters of the file must be "//Maya".

A typical Maya ASCII file header looks like:

//Maya ASCII 1.0 scene

//Name: solstice.ma

//Last modified: Sun, Dec 21, 97 10:18:26 AM

File references

The next section of the file specifies all the non-procedural references. That
is, all the other Maya files that are being referred to by this one, if any. For
each file that is referenced, there will be a single file command to read it in.
All the objects in the referenced Maya file will be available in this file, but
their names will be prefixed with a string, usually the file name. The syntax
of the file command when used for referencing is:

file -r -rpr prefixString fileName;

Organization of Maya ASCII files | 5

or

file -r -ns nameSpace fileName

The -r option specifies that the file is to be referenced. The -rpr option specifies
the string that will be prefixed to all the object names in the file. For complete
information about the file command, see the MEL Command Reference online
document.

Here is an example:

file -r -rpr "solar" "/u/sally/work/solar.ma";

If the file "solar" contained an object called "sun", that object would be
accessible in this file using the name "solar_sun".

Defer loading file references

Use the -dr flag to defer loading file references.

Requirements

The next section specifies the requirements. This consists of a series of requires
commands. This section of the file tells Maya what software is needed to load
the file properly. Specifically, what version of Maya, and what plug-ins.

A statement in the Requirements section looks like this:

requires productName version

This is an example of a typical requirements section:

requires maya "2.0";

requires specialPlugIn "1.2";

(For a full description of the requires command, see the MEL Command
Reference online document.)

Units

This section of the file consists of a single currentUnit command, stating what
units are used in this file. This setting will determine how all the numbers
found in the file are interpreted.

Example:

currentUnit -l cm -a deg -t ntsc;

This example would set the current linear unit to centimeters (other options
are millimeters, meters, kilometers, inches, feet, yards, and miles), the angular
unit to degrees (other option is radians) and the time unit to NTSC. (For a full

6 | Chapter 1 Maya ASCII file format

description of the currentUnit command and all of its options, see the MEL
Command Reference online document.)

IMPORTANT Be aware that if you change default linear units from cm to feet/miles
you may encounter unexpected results.

File Information

This next section consists of several lines providing information about the
file. The first five of these are defined by Maya: the application name (Maya),
productization (e.g. Complete or Unlimited), version, cut identifier (date and
time), and operating system and version. If you have provided additional
fileInfo commands specific to your file, they will also appear in this section.

fileInfo "application" "./maya.bin";

fileInfo "product" "Maya Unlimited 4.5";

fileInfo "version" "4.5";

fileInfo "cutIdentifier" "200111121041";

fileInfo "osv" "IRIX 6.5 04151556 IP32";

Maya saves out the current values for the 5 predefined fileInfo statements
each time you save your file. Any other fileInfo statements (or binary
equivalents) found when loading a file, or issued during the Maya session, are
preserved during a session and saved back out with the file.

Nodes, attributes, and parenting

This section of the file contains the bulk of the data.

This is where new nodes are created with the createNode command, and their
attributes are set with the setAttr command.

Nodes from referenced files (and globally defined nodes) can also be selected
here with the select command, and have their attributes set with the setAttr
command.

New "dynamic" attributes may be added to a node with the addAttr command.

Finally, nodes can be parented to other nodes here with the parent command.

(For complete information on all of these commands, see the online MEL
Command Reference document.)

The creation of a new node looks like this:

createNode nodeType -n nodeName;

Organization of Maya ASCII files | 7

If this node is a node that can be parented (i.e., it represents geometry or a
group of geometry), and it has a parent node that has already been created,
the parenting can also be specified in the command:

createNode nodeType -n nodeName -p parentNodeName;

Some nodes (such as the default cameras) are common to every Maya scene.
For these nodes, the -s option is specified. This tells Maya not to bother creating
a new nodes if a node having the same name and parent) already exists. (This
case occurs when a file is being referenced in.)

After the new node is created, it is automatically selected. The createNode
command is then usually followed by a series of setAttr commands, to set the
data in the node. Since the node is already selected, these commands only
need to specify the attribute names and values.

The setAttr command looks like this:

setAttr attributeName value;

or sometimes:

setAttr attributeName -type typeName value;

Every attribute has a default value, so setAttr commands are only stored for
those attributes whose value is not default. (Or when the value of an attribute
from a referenced file is changed.) Here is an example definition, of a sphere:

createNode transform -n "sphere";

setAttr ".s" -type "double3" 2.44 2.44 2.44;

setAttr ".t" -type "double3" -6.96 0 6.9;

createNode nurbsSurface -n "sphereShape" -p "sphere";

setAttr ".tw" yes;

setAttr ".rtw" yes;

setAttr ".ipo" no;

The pattern is similar when setting attributes of nodes that were created in a
referenced file. Since these nodes have already been read in (and created),
instead of using a createNode command, a select command is used. For
example, say the file called "lunar" references another file called "solar", which
contains an object called "sun". In the file called "lunar", the scale of this object
is changed to 3. This is how that would look in the Maya ASCII file called
"lunar".

select -ne solar_sun;

setAttr ".s" -type "double3" 3.0 3.0 3.0;

It is also possible to add new (dynamic) attributes to nodes. This is done with
the addAttr command, used similarly to the setAttr command. For this

8 | Chapter 1 Maya ASCII file format

example, say you have created a sphere, and added a float-valued attribute to
it called "squish", which can range from -1 to 1, and set that attribute to 0.3.
When you save the file, the code will look like this:

createNode transform -n "sphere";

addAttr -ci true -sn "squish" -ln "squish"

-min -1 -max 1 -at "double";

setAttr -k on ".squish";

setAttr ".squish" 0.3;

// etc...

Not all of the parenting in the file can be done using the -p flag on the
createNode command. For example, nodes may need to be parented to other
nodes in referenced files. All the remaining parenting relationships are
established with the parent command, which looks like this:

parent childNodeName parentNodeName;

The parent command is also used to do instancing. (That is, when you want
to have two nodes that share children). This is done using the -add flag, like
this:

parent -add childNodeName parentNodeName;

For the special case of instancing an object at the top level (also called the
world), the -w flag is used in conjunction with the -add flag.

parent -w -add childNodeName;

(A parent node name is not specified, because the parent is the world, which
contains all things.)

Script nodes

Script nodes hold MEL code as part of a scene file. They are also set up to
(possibly) execute after loading from a file, just before closing a file, or just
before the node is deleted. The "before" scripts are executed when a file is
loaded. If a file is closed or the node is deleted, the "after" script is executed.
If a scene contains several script nodes, there is no guaranteed order of
execution and the scripts should not depend on a specific execution sequence.
See the MEL command documentation for scriptNode and the node
documentation for script node for details on how to create script nodes.

Because MEL gives access to virtually everything you can do in Maya, the
possibilities opened up by script nodes are endless. Specifically, script nodes
can be useful for things such as scene cleanup or custom UI.

Organization of Maya ASCII files | 9

Disconnections

In files that contain file references, this next section of the Maya ASCII file
breaks attribute connections among nodes from referenced files. This is done
with a series of disconnectAttr commands which have the following syntax:

disconnectAttr sourceAttributeName destinationAttributeName;

For example:

disconnectAttr "sphere.tx" "cone.ry";

For complete information on the disconnectAttr command, see the MEL
Command Reference online document.

Connections

The next section of the Maya ASCII file establishes the attribute connections
among all the nodes that have been created and referenced. This is done with
a series of connectAttr commands. (For complete information on the
connectAttr command, see the MEL Command Reference online document.)

The format of these commands is this:

connectAttr sourceAttributeName destinationAttributeName;

For example:

connectAttr "sphere.tx" "cone.ry";

connectAttr "sphere.squish" "sphere.sz";

Limitations to editing Maya ASCII files

Maya ASCII files support only the statements described above.

NOTE It is possible to edit a Maya ASCII file and add MEL commands to it.
However, we advise you against doing this.

If you do decide to add custom MEL code directly to a Maya ASCII file, keep
the following in mind:

■ If you edit a Maya ASCII file and add arbitrary MEL commands to it, these
commands will not be saved out after you read in the file.
Instead, they will be replaced by the explicit descriptions of the nodes,
attributes, and connections that resulted from executing the commands.
If you wish to add commands that will stay the way they are, you must
put them in a file with a .mel extension, and reference that file (using
Create Reference... in the File menu, or the file -r command.)

10 | Chapter 1 Maya ASCII file format

■ There are other limitations when you are adding arbitrary MEL commands
directly into a Maya ASCII file.
There is no guarantee that all commands will execute successfully. For
example, for performance reasons we suspend all undo operations during
loading of Maya ASCII and binary files. Some commands rely on undo
capability internally to perform their work; these commands will only
work from within .mel files (since loading of such files does not turn off
the undo capability).

Organization of Maya ASCII files | 11

12

Animation curves

Overview of animation curves
Maya provides a plug-in for importing and exporting animation to a separate
file. This facilitates copying animation from one scene to another. For example,
you could animate a scene with a lightweight representation of a character and
then transfer the animation to the final rendered version of the character in
another file.

Import anim curves
Internally, the plug-in imports and exports to the API clipboard. As part of the
import and export process, the plug-in executes the copyKey or pasteKey MEL
commands to transfer the anim curves from the API clipboard to the Maya
objects. Using the plug-in will not change the contents of the Maya animation
clipboard.

Import lets you set the same options as Edit > Keys > Paste Keys which are used
when the animation is applied to the selected object(s).

To import anim curves

1 Make sure the animImportExport plug-in is loaded.

2 Select the Maya objects to be animated.

3 Select File > Import.

4 Select the .anim file to import.

2

13

Export anim curves
Exporting anim curves uses the copyKey MEL command to copy the keys to
the API clipboard and then exports the clipboard contents to the anim file.
The entire operation is contained in the file export.

NOTE Since MEL commands are used, any limitations they have are also limitations
of the plug-in. For example, if an anim curve is upstream from an attribute, but
there are blend nodes in-between the attribute and the anim curve, the export
command will not work.

The File > Export Selection options window lets you set the same options as
Edit > Keys > Copy Keys which are used to export the animation from the
selected object(s).

When an anim file is exported, any information previously on the API
clipboard is replaced with the new anim curves after the file export.

To export anim curves

1 Load the animImportExport plug-in.

2 Select the Maya objects to export animation from.

3 Select File > Export All or File > Export Selection.

4 Set the file type to animExport.

5 Enter or select the .anim file to export.

14 | Chapter 2 Animation curves

Anim File Format
Maya provides a file format that lets you export and edit anim curves.The file
format is defined in a form that can be easily read and written by external
applications without having to use the Maya API.

Anim File Format | 15

Anim File Format

// A description of the anim file format.

// August 16, 1998

//

// The .anim file format (version 1.0):

// // and # are both valid comment characters.

//

// All of the lines in the file that do not contain curly braces

// (’{’ or ’}’) should end with a ’;’ After the ’;’ character,

start

// a new line.

//

// The keywords and data are whitespace delimited.

//

// Version 1.1 changes:

// April 20, 1999

// new weighted keyword for animData

// new breakdown flag for keys

//

// The version of the file format. This is a required line.

//

animVersion string

// The Maya version. The string is the value of MGlobal::mayaVer

sion()

mayaVersion string

// The following two lines are optional. If they are not included,

// the clipboard is set to the range defined by the anim curves

// contained in the clipboard.

//

// These are used by anim curves that have time inputs.

//

startTime [float] // The starting frame for the clipboard.

endTime [float] // The ending frame for the clipboard.

// The following two lines are optional. If they are not included,

// the clipboard is set to the range defined by the anim curves

// contained in the clipboard.

//

// These are used by anim curves with unitless inputs.

//

startUnitless [float] // The starting value for for the clipboard.

endUnitless [float] // The ending value for the clipboard.

16 | Chapter 2 Animation curves

// The following three keywords are used to set the units for the

file.

// Each anim curve may have its own units, but these are the de

fault

// units if the anim curve units are not given (see the animData

section).

//

// If the units are not given, then the ui units are used.

//

timeUnit [game|film|pal|ntsc|show|palf|ntscf|hour|min|sec|millisec]

linearUnit [mm|cm|m|km|in|ft|yd|mi]

angularUnit [rad|deg|min|sec]

// All of the keywords described above can only be in the header

section

// of the file. As soon as anim curve information is encountered,

the

// header section is completed and the body of the file is begun.

//

// The string is the name of the attribute the anim curve is con

nected to.

// The next three ints are the row, child, and attr values used

by the

// clipboard. See the documentation for MAnimCurveClipboard for

more

// information.

//

// If the anim curve is not connected to any attributes, the string

// is not needed, but the following ints should be 0 0 0.

anim [string] [int] [int] [int]

// The second form of the anim line has three strings which list

what

// the anim curve was connected to.

//

// The strings are: the full attribute name, the leaf attribute

name,

// and the node name. The row, child, and attr ints are still re

quired.

//

anim [string] [string] [string] [int] [int] [int]

// The third and final form of the anim line is used for clipboard

// place holder objects. These are used to skip node which do not

// contain any anim curve data, but are positioned in a hierarchy

Anim File Format | 17

// with nodes that have attached anim curves.

//

// In this case, the string is the node name and the three ints

are the

// same as the other two formats.

//

anim [string] [int] [int] [int]

// The animData must follow a line with a valid anim statement.

//

animData {

// The input type of the anim curve. Defaults to time.

input [time|unitless]

// The output type of the anim curve. Defaults to linear.

output [time|linear|angular|unitless]

// Whether or not the anim curve has weighted tangents. Defaults

to false.

// This is available with animVersion >= 1.1

weighted [1|0]

// The unit of the anim curve input, if it is a time input.

// The units default to the time units specified in the file

header.

inputUnit [game|film|pal|ntsc|show|palf|ntscf|hour|min|sec|milli

sec]

// The unit of the anim curve output. The output unit should match

// the output type of the curve. These default to the units spe

cified

// in the header.

outputUnit [game|film|pal|ntsc|show|palf|ntscf|hour|min|sec|mil

lisec]

outputUnit [mm|cm|m|km|in|ft|yd|mi]

outputUnit [rad|deg|min|sec]

// The unit of the tangent angles, if there are any fixed tan

gents.

// The units default to the angular units specified in the file

header.

tangentAngleUnit [rad|deg|min|sec]

// The pre-infinity type. Defaults to constant.

preInfinity [constant|linear|cycle|cycleRelative|oscillate]

// The post-infinity type. Defaults to constant.

postInfinity [constant|linear|cycle|cycleRelative|oscillate]

18 | Chapter 2 Animation curves

// The start of the actual keyframe data. Each key is a row in

the

// braced section.

keys {

[float] [float] [in tan] [out tan] [tan locked] [weight locked]

// animVersion 1.1 adds breakdown information

[float] [float] [in tan] [out tan] [tan locked] [weight locked]

[breakdown]

.

.

.

// The first two values are the input and output values in the

// units defined by the inputUnit and outputUnit keywords.

// The in and out tangents should be valid tangent types.

// These are followed by three int values for tangent locking,

// weight locking and the breakdown flag. If they are 0, the

values

// are unlocked, or not a breakdown, otherwise they are locked.

//

// If either, or both, or the tangents are fixed, then additional

// information is needed: a tangent angle and weight.

// These two values, per fixed tangent, are added at the end of

// the above line.

//

// For example:

// 1.0 2.0 fixed linear 1 1 0 62.345 0.04;

//

// In the above case, 62.345 is the tangent angle for the first

// tangent and the tangent weight is 0.04.

//

// An example with two fixed tangents:

// 1.0 2.0 fixed fixed 1 1 0 62.345 0.04 45.3 0.023;

}

}

The pattern of an anim line followed by animData should be used

until all of the anim curves are described.

The following example is an animated joint chain consisting of 4

joints. The first three joints are animated and the fourth joint

is not animated.

animVersion 1.1;

mayaVersion 2.0;

timeUnit ntsc;

Anim File Format | 19

linearUnit cm;

angularUnit deg;

startTime 1;

endTime 30;

anim rotate.rotateX rotateX joint1 0 1 0;

animData {

input time;

output angular;

weighted 0;

preInfinity constant;

postInfinity constant;

keys {

1 0 linear linear 1 1 0;

30 0 linear linear 1 1 0;

}

}

anim rotate.rotateY rotateY joint1 0 1 1;

animData {

input time;

output angular;

weighted 0;

preInfinity constant;

postInfinity constant;

keys {

1 0 linear linear 1 1 0;

30 0 linear linear 1 1 0;

}

}

anim rotate.rotateZ rotateZ joint1 0 1 2;

animData {

input time;

output angular;

weighted 0;

preInfinity constant;

postInfinity constant;

keys {

1 0 spline spline 1 1 0;

10 -16.774359 spline spline 1 1 0;

15 -1.6493069 spline spline 1 1 0;

22 -3.064691 spline spline 1 1 0;

30 0 spline spline 1 1 0;

}

}

20 | Chapter 2 Animation curves

anim rotate.rotateX rotateX joint2 1 1 0;

animData {

input time;

output angular;

weighted 0;

preInfinity constant;

postInfinity constant;

keys {

1 0 linear linear 1 1 0;

30 0 linear linear 1 1 0;

}

}

anim rotate.rotateZ rotateZ joint2 1 1 1;

animData {

input time;

output angular;

weighted 0;

preInfinity constant;

postInfinity constant;

keys {

1 0 spline spline 1 1 0;

10 60.962438 spline spline 1 1 0;

15 106.06094 spline spline 1 1 0;

22 33.259896 spline spline 1 1 0;

30 0 spline spline 1 1 0;

}

}

anim rotate.rotateX rotateX joint3 2 1 0;

animData {

input time;

output angular;

weighted 0;

preInfinity constant;

postInfinity constant;

keys {

1 0 spline spline 1 1 0;

10 0 spline spline 1 1 0;

15 0 spline spline 1 1 0;

22 0 spline spline 1 1 0;

30 0 spline spline 1 1 0;

}

}

anim rotate.rotateY rotateY joint3 2 1 1;

Anim File Format | 21

animData {

input time;

output angular;

weighted 0;

preInfinity constant;

postInfinity constant;

keys {

1 0 spline spline 1 1 0;

10 0 spline spline 1 1 0;

15 0 spline spline 1 1 0;

22 0 spline spline 1 1 0;

30 0 spline spline 1 1 0;

}

}

anim rotate.rotateZ rotateZ joint3 2 1 2;

animData {

input time;

output angular;

weighted 0;

preInfinity constant;

postInfinity constant;

keys {

1 0 spline spline 1 1 0;

10 0 spline spline 1 1 0;

15 0 spline spline 1 1 0;

22 0 spline spline 1 1 0;

30 0 spline spline 1 1 0;

}

}

anim joint4 3 0 0;

22 | Chapter 2 Animation curves

Maya Image File Format -
IFF

Overview of Maya IFF
Maya outputs images in the Interchange File Format (IFF). IFF is a generic
structured file access mechanism, and is not limited to images - for example,
AIFF files are audio IFF. IFF images can have 8 or 16 bit per channel RGB, and
optionally Alpha, and can optionally contain a 32-bit floating point depth map
(sometimes called a Z-buffer).

Resolution limits
The following resolution limits are applied to image files which are:

Resolution limitImage file type

8192 x 8192file textures

8192 x 8192images planes

4096 x 4096interactively rendered out as images

8192 x 8192batch rendered out as images

8192 x 8192converted to BOT files

3

23

Generate IFF files with Maya
Rendered images can be saved as IFF files. These IFF files have RGBA data with
no depth map, by default. For example:

Rendered images

1 Load a scene, such as cone.ma

2 Switch to rendering mode, and select Render into new window from the
Render menu.

3 When the render has finished, use the right mouse button to click the
image and select Save image from the Images menu.

4 Enter a file name in the file browser. The output image should look like
cone.iff:

Shadow maps

Light sources in Maya can read and write shadow maps. These shadow maps
are stored as a depth map in an IFF file. The depth map may be either a
traditional Z buffer or a midmap. The stored value for a midmap is half of the
distance between the first and second surfaces. Midmaps reduce the number
of incorrect self shadowing occurrences.

Different light sources produce different shadow maps. A spot light subtending
an angle below 90 degrees will produce one shadow map. If the subtended
angle is greater than 90 degrees, it will produce five shadow maps - one central
and five peripheral. A point light will produce one shadow map in a simple
scene, and up to six shadow maps in more complicated scenes.

Try the following example:

1 Load a scene with a light in it, such as torusShadow.ma

24 | Chapter 3 Maya Image File Format - IFF

2 Select the light and open the Attribute Editor.

3 Expand the Shadows section.

4 Check the Use depth map check box in the Depth Map Shadow Attributes
section.

5 If you want a midmap, check the Use Mid Dist Depth Map check box in
the same section.

6 Check the Write shadow map check box in the same section. Enter a file
prefix in the Depth map name text field.

7 Render a scene.

8 You should now have one file*, each beginning with the prefix selected
in step 6. The suffix will be the name of the light source and then the
type of shadow map generated. For the torusShadow example, you should
have one of two images, shadowmap_pointLightShape1_int.SM.iff or
shadowmap_pointLightShape1_int.MIDMAP.SM.iff, depending upon
your choice in step 5.

View and convert IFF images
Included with Maya is a stand-alone program called fcheck that can view IFF
images and depth maps. The imgcvt program is able to convert IFF files to
other formats (Linux and Windows only). On Linux and Windows, use the
imgcvt program to convert IFF files to other formats.

Program with the IL and FL libraries
To use IFF images in custom software, we recommend using the IL and FL
libraries. The FL library is for use with generic IFF files. 99% of the time, it
won’t be necessary to work with this directly. The IL library—based on the FL
library—deals specifically with IFF images, and is much more useful for image
reading and writing.

The IL library abstracts the contents and format of the file. You can specify
the format in which to retrieve the data, and the library deals with the nitty
gritty details. Using the library is fairly straightforward, and most of the
necessary information can be gleaned by reading through the example
programs listed below in the Maya Developer’s Tool Kit.

View and convert IFF images | 25

NOTE For stand-alone applications, the IL and FL libraries must be linked in. Maya
includes these libraries, though, so plug-ins don’t have to link in any special libraries.

Use example programs
To access these example programs and their descriptions, see the Maya API
Developer’s Manual, Maya Example Plug-in Descriptions, Miscellaneous plug-ins.

iffInfoCmd—a plug-in that retrieves information about an image. Requires
iffreader.

iffPixelCmd—a plug-in that retrieves the value of any pixel in an image.
Requires iffreader.

iffPpmCmd—a plug-in that converts an IFF to a PPM. Requires iffreader.

Additional resources
IL and FL man pages

The IL and FL man pages contain documentation for each of the functions
that can be called from a plug-in to manipulate IFF files. See the IFFmanPages
for details.

fcheck man page

The fcheck program provided with Maya allows you to view IFF files directly.
See Overview of FCheck in the Rendering Utilities book for details.

imgcvt man page (Linux and Windows only)

The imgcvt program provided with Maya allows you to convert IFF files to
other formats. See imgcvt in the Rendering Utilities book for details.

IFF Format overview
The following is a quick description of the flib library. It implements a generic
structured file access mechanism based on a generalized IFF format. This is
what we currently use for images and textures.

26 | Chapter 3 Maya Image File Format - IFF

Kernel

File type independence

The primary goal of the flib library is to present all file accesses in a
homogeneous manner. Disk files, pipes, memory segments, and so on are all
logically represented as files and are manipulated through the same set of
functions. The flib kernel is composed of eight functions: FLopen, FLreopen,
FLclose, FLread, FLwrite, FLseek, FLtell and FLflush. These low level IO routines
can be used instead of the libc routines (open, fopen, read, fread, write,
fwrite...).

Another advantage is the removal of certain restrictions caused by the files
opening mode. For example, writing in a read open pipe file (such as "pipe:cat
file") is made possible.

FLopen uses naming conventions to identify the type of logical file you wish
to handle (no longer necessary to specify different methods for open, popen,
fopen, socket, and so on). The currently recognized names are:

DescriptionFile name

ordinary disk filename

compressed filename.Z

memory mapped filemmap:name

standard input (output) of cmdpipe:cmd [args]

file descriptor number #, 0,1,2 for stdin,
stdout, stderr

fd:#

aliases for descriptors 0,1 and 2stdin, stdout, stderr

file on remote hosthost:name

file on remote host accessed via user ac-
count

user@host:name

memory segment at address addrmem:addr

Certain limitations exist depending on the exact nature of the opened file
object (e.g. can’t FLseek on a pipe).

IFF Format overview | 27

Files are buffered when this makes sense. Transfers can equally be accelerated
by minimizing the amount of memory moves. FLbgnread, FLendread,
FLbgnwrite and FLendwrite allow you to gain direct access to the read/write
buffers in the library. These are particularly efficient for memory mapped files.

Format independence

File access libraries based on flib can provide an extra degree of independence
with respect to the format of the data it contains by using the FLfilter function
which lets you pass a file through an external filter before reading/writing it.

Control

Error handling is similar to that offered by the standard C IO functions and
system calls. The state variable flerror is modified when a error occurs and
several functions are provided to allow access to this value: FLerror, FLseterror,
FLperror, FLstrerror, FLoserror, and FLsetoserror. The set of errors that are
handled is a superset of the Linux standard errors (errno, strerror, h_errno and
hstrerror if supported by the system).

IO functions are implemented to avoid cascading errors. However, it is strongly
suggested that you do not attempt to continue reading/writing when an error
occurs.

Certain parameters of the library can be modified by calling FLconfig: creation
of temporary files, mapping, automatic compression/decompression.

FLsetpath and FLaddpath allow you to define and augment the path used to
resolve file names for read access.

FLbuildpath and FLfreepath are used to construct and destroy path that are
activatable by the FLswitchpath call which optimizes frequent path changes.
FLsetreorder can also be called to optimize path traversal.

Structured files

Flib implements a set of rules for file structure derived from IFF. The structure
is based on the use of tags to identify blocks of data called chunks or structures
of chunks called groups. Each tag is made up of four characters and is
immediately followed by the size of the chunk or group that it describes coded
on 4 bytes. This structure is the same as in the IFF (Interchange File Format),
with a few extensions. All data is written in big endian format, except for tags,
which are handled as pseudo character strings. (Byte swapping is handled at
compile time).

Block size data allows the parser to skip information it does not recognize.

28 | Chapter 3 Maya Image File Format - IFF

There are two types of tags: tags that define the file structure (i.e groups) and
tags that contain data.

Groups

Four tags are used to arrange blocks into groups: FORM, CAT, LIST, and PROP.
The first four characters following the size are used to identify the type of the
group.

FORM defines the beginning of a data block, in a way similar to a C struct.

FORM 38 TEXT

CHAR 6 "Times"

CHAR 12 "Hello World"

EOF

is similar to

struct Text t = {

char *f = "Times";

char *c = "Hello World";

};

The size of the group (38) is equal to the size of the data it contains (6 plus
12) plus the size of the headers (4 for TEXT, 8 for CHAR 6 and 8 for CHAR 12)
giving, in this case, 6+12+4+8+8 = 38.

As in C structures you can nest groups as in the following example:

FORM 52 TEXT

FORM 8 FONT

CHAR 6 "Times"

LONG 4 <12>

LONG 4 <0>

CHAR 12 "Hello World"

EOF

or in C terms:

struct Text t = {

struct Font f = {

char *n = "Times";

int s = 12;

int d = 0;

};

char *string = "Hello World";

};

IFF Format overview | 29

This example may not show that blocks are not constrained to use a unique
data type and may contain the equivalent of a complete C structure. The role
of the FORM tag is to separate independent blocks of data that can be handled
separately and to specify the meaning of each sub-unit. In the example above
the CHAR chunk in the FONT FORM does not mean the same thing as the
CHAR chunk in the TEXT FORM. The FORM tag is used to determine how
you interpret an ordered set of data types.

CAT defines a concatenation of independent objects with no order relation
between them. Two typical uses of CAT’s are for libraries of objects (pictures
in the upcoming example) or clipboards (second example).

CAT 3632 PICT

FORM 1234 PICT ...

FORM 2378 PICT ...

EOF

CAT 2130 CLIP

FORM 1234 PICT ...

FORM 876 DRAW ...

EOF

Searching through a structured file is generally greatly accelerated, even in a
CAT that has no order amongst its members, through the knowledge of the
size of every group or chunk specified in the header.

LIST defines an ordered set of objects (FORM data blocks) and, along with
PROP, is used to group objects with similar properties, avoiding redundancy.
For example a sequence of equal sized images might be represented in the
following way:

One image would have a structure like:

FORM PICT

IHDR 32 [image size info]

BODY ... [image data]

EOF

30 | Chapter 3 Maya Image File Format - IFF

then a sequence of like-sized images could be done as follows, sharing the
common header information:

LIST ... ANIM

PROP 44 PICT

IHDR 32

FORM ... PICT

BODY

FORM ... PICT

BODY

FORM ... PICT

BODY

EOF

The information specified in a PROP construct applies until the end of the
LIST. They can be redefined locally in a FORM the same way local C variables
can (in the above example the common IHDR is valid in all PICTs that don’t
include an IHDR block of their own.

Data blocks

Data blocks are defined by:

[tag] [size] [data]

Example: an image could have the following structure:

FORM 12304 IMAG

IHDR 200 ... picture header, size, maps ...

LINE 800 ... data from line 1 ...

LINE 800 ... data from line 2 ...

...

for a library:

CAT 64200 IMAG

FORM 12304 IMAG

IHDR 200

...

FORM 12304 IMAG

...

IFF Format overview | 31

and for a sequence,

LIST 64200 IMAG

PROP 208 IMAG

IHDR 200 ... Common header ...

FORM 12394 IMAG

...

FORM 12304 IMAG

IHDR 200 ... Local redefinition ...

...

Alignment considerations

IFF blocks align to 2 byte boundaries. The size specified in the header does
not take the padding into account. Current machines typically align their
memory on 4 or 8 byte boundaries. Flib uses 8 extra TAGS to let you specify
alignment information. Four are used to align to four byte boundaries (FOR4,
CAT4, LIS4 and PRO4) and four are used to align to 8 byte boundaries (FOR8,
CAT8, LIS8 and PRO8).

Data blocks inherit the alignment of the group that contains them (as well as
any sub-groups; hence it’s illegal to create a group aligned to 2 byte boundaries
inside a group aligned to 4 byte boundaries. However the reverse is perfectly
valid.)

Extensions

One of the major constraints of IFF is that you have to know the size of a
group or a chunk before writing it to a file. If you want to change the
information a block contains you have to be able to modify the header to
reflect changes in the size of the structure. This poses no problem for seekable
file (memory or disk files) but does pose problems for other types of files.
Rather than create intermediate temporary files, flib implements a mechanism
allowing you to say that you don’t know the size of the block you are working
on. Since negative block sizes are meaningless, two special values are set aside
for this purpose: FL_szFile, indicating that the size will be written in later once
the entire group has been written and FL_szFifo indicating that the size will
not be written because the file is not seekable, A special zero sized block (GEND)
is used to indicate the end of the structure.

Functions

Blocks can be read and written using calls to FLgetchunk and FLputchunk.
For more direct control the user can call FLbgnget and FLbgnput to open a
block. FLput and FLget supply services equivalent to FLread and FLwrite within

32 | Chapter 3 Maya Image File Format - IFF

a block. After appropriate number of FLput or FLget calls you close the block
using FLendput or FLendget.

Groups are handled using FLbgnrgroup, FLbgnWgroup, FLendrgroup and
FLendwgroup. Flib also implements a generic parser, FLparse, that can scan a
file and check its consistency as well install callbacks for each step of the parse
(start of group end of group).

Toolbox

The flib library also provides tools for the handling of linked lists (FLxxxnode
and FLxxxlist), buffers ((FLmalloc and al) and external filters (FLfilter and
FLexec).

Introduction to the image library
The IO image library is part of the flib library. A set of routines allows to read
and write images in a structured file.

File format

The format of an image file is very flexible. Constraints on the number and
relative position of the different blocks are minimal and often purely of a
logical nature (for example, "the header must come before the pixel blocks"
rather than more static constraints such as "the header begins at offset 124").

An image file being first and foremost a file (as far as flib is concerned) the
user is free to insert extra blocks. A minimal image is composed of a FOR4
group (aligned to a word) of CIMG type containing, in the following order:

■ a BMHD header (bitmap header)

■ a FOR4 group of type TBMP (tiled bitmap)

Pixel information is contained in the TBMP group, which can be quickly
skipped if necessary.

Introduction to the image library | 33

In its minimal version, the TBMP group contains pixel related data blocks, in
some order. For example, for a picture divided in four tiles we have:

FOR4 <size> CIMG

BMHD 24 ... definition of size, maps, etc...

FOR4 <size2> TBMP

RGBA <ttile1> ... tile 1 pixels ...

RGBA <ttile2> ... tile 2 pixels ...

RGBA <ttile3> ... tile 3 pixels ...

RGBA <ttile4> ... tile 4 pixels ...

The header is defined by structure ILheader. RGBA blocks have the following
structure:

[x1, y1, x2, y2] : tile coordinates (2 bytes each)

[pixels] : encoded according to compression mode.

If the image has a z-buffer, it is described by ZBUF blocks with the same
structure as the RGBA blocks, RLE encoded.

■ End fields. They display at the end of any image data, and will be displayed
by fcheck. Calls to FLIB after image loading can be used to check for and
retrieve this data. ILIB ignores these fields. The following four fields provide
information about the image:

HIST—string data giving the Maya command line from which this image was
created.

VERS—string data giving the Maya cut information.

CLPZ—depth map specific field giving the clipping planes used. This
information is stored as two float values.

ESXY—eye x-y ratios. This is a depth map specific field used to compute the
xy eye coordinates from the normalized pixel coordinates stored as two float
values.

NOTE The ILIB library does not support these end fields.

Functions

Some functions allow the reading and writing of images in line to line mode
without worrying about tile management. Images can also be automatically
zoomed and/or corrected (by lookup) during read (correction on compressed
data being significantly more efficient). Finally, an automatic conversion
system makes it possible to read images stored under other formats.

34 | Chapter 3 Maya Image File Format - IFF

For more details on routines from the image library, see the man pages as well
as "includes" and examples provided with the library.

Extensions to the IFF format
PATH defines the search path for includes.

INCL is an include block.

EOVC is the end-of-variable-length-chunk marker.

GEND is the end-of-group marker.

Syntax:

PATH # <directory names>

INCL # <file names>

EOVC szUnknown

GEND 0

PATH and INCL are data chunks and thus inherit alignment.

EOVC and GEND are use in fifo files since the chunk and group sizes can not
be random accessed. Creating groups or chunks with unspecified size on a fifo
will give something like:

FORM sz_Fifo TYPE ; start of form

BLCK sz_Fifo data ; block 1

EOVC sz_Unknown ; end of block 1

.... ;

BLCK sz_Fifo data ; block 2

EOVC sz_Unknown ; end of block 2

GEND 0 ; no more block in this FORM

EOVC is a block/group end marker, while GEND is understood as a request
to close the current group, going up one level.

Using unknown sizes when writing a seekable file will produce a very similar
structure except that no EOVC is written. This is very useful when parsing a
file under construction since the end of group can be detected w/o any random
access to the group header. The size field of GEND is set to zero to allow other
standard IFF parsers to skip it silently. The EOVC’s size field value will produce
an error if read by a standard parser (w/o fifo extensions).

WARNING For compatibility with the previous version of the IFF parser GEND is
still followed by sz_Unknown (and EOVC sz_Unknown if the file is a fifo).

Extensions to the IFF format | 35

Since there is no reliable way of skipping a block of unknown length it is
STRONGLY RECOMMENDED that writer and reader of a fifo agree on the
file’s content.

Note that the implemented parser is smart enough to locate EOVCs in a file,
but the skipping process is slow due to intensive read and compares. And
again, this can NOT be considered 100% reliable.

36 | Chapter 3 Maya Image File Format - IFF

Channel move files - MOV

Channel move files (.mov)
A move file is an ASCII file that stores the channel data (such as x translate, y
translate, and z translate).

Format

The .mov file is a matrix of numbers where rows represent frames and columns
represent channels. There is one row for each frame in the .mov file and one
column for each channel.

Each row must start on a new line and each column must be separated by spaces.
The channel data is represented as doubles. This allows for roughly 16 significant
digits.

The following is a sample format from a .mov file. It has four rows and six
columns. This means that the sample shows the channel data for four frames
and six channels.

1.000 0.000 0.900 36.000 0.000 0.000 4.000 0.000 2.000 36.000 0.000

8.000 0.000 9.500 16.000 8.000 0.000 0.000 9.450 0.000 0.000 50.000

3.500 8.000

You can read and write .mov files to import and export motion data. Remember,
however, that the .mov file is simply columns of numbers without any header
information. In order for data to be written out and read back into the same
objects and channels, the list of channels must be identical in the File
Import/Export option boxes or with the movIn/movOut commands.

4

37

38

Index

.mov files
channel data 37

A

addAttr command 8
alignment considerations

in Maya image file format 32
attribute connections

in Maya ASCII files 4
attributes

in Maya ASCII files 7

B

blocks
alignment considerations 32
data 31

C

CAT
in image file format groups 29

comments, embedded 3
connectAttr command 10
connections

attribute 4
in Maya ASCII files 10

converting Maya image files
with imgcvt 25

createNode command 8
currentUnit command 6

D

data blocks
in Maya image file format 31

data organization
in Maya ASCII files 4

depth maps
midmaps 24
Zbuffer 24

E

editing limitations
in Maya ASCII files 10

embedded comments 3
EOVC extension

to Maya image file format 35
example programs

image programs 26
extensions

EOVC 35
GEND 35
in Maya image file format 32
INCL 35
PATH 35

F

fcheck stand-alone utility
to view Maya image files 25

file formats
and depth maps 24
and shadow maps 24
generating 24
Maya image file format (IFF) 23

file references
in Maya ASCII files 5

file structure
and Maya image file format 28

file translators
from Maya ASCII format 3
to Maya ASCII format 3

FL library 25
FL_szFifo 32
FL_szFile 32
FLaddpath 28
FLbgnget 32

39 | Index

FLbgnput 32
FLbgnread 28
FLbgnrgroup 33
FLbgnWgroup 33
FLbgnwrite 28
FLbuildpath 28
FLconfig 28
FLendget 32
FLendput 32
FLendread 28
FLendrgroup 33
FLendwgroup 33
FLendwrite 28
FLerror 28
FLfilter

and format independence 28
FLfreepath 28
FLget 32
FLgetchunk 32
Flib

and file structure 28
and groups 29
toolbox 33

Flib kernel
FLclose 27
FLflush 27
FLopen 27
FLread 27
FLreopen 27
FLseek 27
FLtell 27
FLwrite 27

FLopen 27
FLoserror 28
FLparse 33
FLperror 28
FLput 32
FLputchunk 32
FLread 32
FLseterror 28
FLsetoserror 28
FLsetpath 28
FLsetreorder 28
FLstrerror 28
FLswitchpath 28
FLwrite 32

FORM
in image file format groups 29

format independence
and FLfilter 28

functions 32
reading and writing blocks 32

G

GEND extension
to Maya image file format 35

groups
in file structure 29

I

IFF 23
and depth maps 24
and shadow maps 24
generating images 24
LIST groups 29
overview 26
PROP groups 29

IL library 25
image file format

and depth maps 24
and shadow maps 24
CAT groups 29
FORM groups 29
generating images 24
Maya IFF 23
Maya image file functions 34
Maya image files 33
overview 26

image library 33
imgcvt stand-alone utility

to convert Maya image files 25
INCL extension

to Maya image file format 35
IO image library 33

L

libraries
FL library 25

40 | Index

FL library toolbox 33
IL library 25

limitations
editing, in Maya ASCII files 10

LIST
in IFF groups 29

M

Maya ASCII files
attribute connections 4
attributes 7
connections 10
data organization 4
file references 5
limitations to editing 10
nodes 4, 7
organization 5
parenting 7
requirements 6
units 6

Maya image file format
and CAT 29
and data blocks 31
and file structure 28
and file structure groups 29
and FORM 29
and LIST 29
and PROP 29
block alignment considerations 32
EOVC extensions 35
extensions 32
functions 32, 34
GEND extensions 35
INCL extensions 35
IO image library 33
overview 26
PATH extensions 35

Maya image file format (IFF) 23
and depth maps 24
and shadow maps 24
generating images 24

Maya image files
converting with imgcvt 25
viewing with fcheck 25

Maya scene files 1

MEL
and Maya ASCII file format 2
embedded comments 3
statements 2

midmap depth maps 24

N

nodes
in Maya ASCII files 4, 7

O

organization
of Maya ASCII files 5

organization of data, in Maya ASCII
files 4

P

parent command 9
parenting

in Maya ASCII files 4, 7
PATH extension

to Maya image file format 35
programming

with FL library 25
with IL library 25

PROP
in IFF groups 29

R

references file, in Maya ASCII files 5
rendering images with Maya IFF 24
requirements

in Maya ASCII files 6

S

setAttr command 8
shadow maps 24

Index | 41

T

toolbox
in Flib library 33

translators
writing from Maya ASCII format 3
writing to Maya ASCII format 3

U

units
in Maya ASCII files 6

V

viewing Maya image files
with fcheck 25

W

writing file translators
from Maya ASCII format 3
to Maya ASCII format 3

42 | Index

	Contents
	Maya ASCII file format
	About file formats
	Maya ASCII file format
	Overview of Maya ASCII file format
	Write file translators
	Embedded comments
	Organization of Maya data
	Organization of Maya ASCII files

	Animation curves
	Overview of animation curves
	Import anim curves
	Export anim curves
	Anim File Format

	Maya Image File Format - IFF
	Overview of Maya IFF
	Generate IFF files with Maya
	View and convert IFF images
	Program with the IL and FL libraries
	Use example programs
	Additional resources
	IFF Format overview
	Introduction to the image library
	Extensions to the IFF format

	Channel move files - MOV
	Channel move files (.mov)

	Index

