
 1

AUTODESK® MAYA® API

WHITE PAPER

Autodesk Maya API | White Paper
This white paper introduces Autodesk® Maya® software and its architecture to
programmers who may be unfamiliar with its APIs (application programming
interfaces).

Contents

CONTENTS .. 1

INTRODUCTION... 3

AN OVERVIEW OF THE MAYA ARCHITECTURE.. 3

MAYA API AND MAYA PYTHON API.. 4

PLUG-INS ... 5

Loading and Unloading .. 5

The simplest Maya Plug-in .. 6

A more complex example .. 8

PLUG-IN INTEGRATION WITH MAYA .. 11

Types of Plug-ins .. 11

Plug-in access to Maya scene data ... 12

IMPLEMENTATION OF THE MAYA API ... 12

Objects and Function Sets .. 12

Objects ... 13

Function Sets... 13

Transient Objects .. 14

Math Classes ... 15

Proxy Objects .. 15

UI ... 15

MAYA® API | WHITE PAPER

 2

Access to the Dependency Graph.. 15

A Note on the API and MEL .. 16

MAYA API DOCUMENTATION AND RESOURCES.................................... 16

CONCLUSIONS.. 17

APPENDIX A: MAYA API CLASSES... 17

APPEDIX B: MAYA API CLASS HIERARCHY.. 25

APPENDIX C: SELECTED LIST OF SAMPLE PLUG-INS 29

MAYA® API | WHITE PAPER

 3

Introduction
The Maya® Software Development Kit (SDK) contains a rich set of facilities that can help you
add new functionality to the Maya software. The SDK includes a C++ API called the Maya
API that provides functionality for querying and changing the Maya model along with the
ability to add new Maya objects to the Maya model. In addition, the SDK contains Python®
bindings to the Maya API. These bindings allow a developer to call the Maya API from
Python. We refer to this as the Maya Python API. Using either API, you can add new
elements to Maya such as: commands(accessible from MEL [Maya Embedded Language] or
Python script), file translators, shaders, animation nodes, 3D graphical manipulators,
geometry shapes, types of deformations, dynamic fields, particle emitters, inverse-kinematic
solvers and any type of custom node.

These functionalities are, for the most part, indistinguishable from native Maya features.
Functionality implemented in the C++ Maya API will perform almost as fast as a native Maya
feature. While they are powerful, the Maya APIs are not very complicated to learn. Any
programmer should be able to quickly write their first simple plug-in using either API.

Examples of plug-ins that have been built using the C++ Maya API are:

• Maya Classic Cloth

• Maya Live

• Maya Fur

• MTOR from Pixar (Maya to Renderman)

• Arete Software's Digital Nature Tools

Note: Throughout this document, "Windows®" is used to refer to the Windows operating
systems that we support for the release. Likewise, “Macintosh®” refers to Mac OS® X.

An Overview of the Maya Architecture
Maya is designed to be an open, flexible and extensible product.

The APIs of Maya and its command scripting languages (MEL and Python) are key to the
software being open and extensible. During the initial design of Maya, Maya and its C++ API
were built together in order to maximize its extensibility. To fully appreciate this relationship,
you must first understand the architecture of Maya.

At the lowest level, Maya is a very efficient database for storing graphical information. This
database is called the Dependency Graph (DG). Information in the DG is stored in objects
called nodes. Nodes have properties called attributes that store the configurable
characteristics of each node. Similar types of attributes can be connected together, letting
data flow from one node to another.

For example, a nurbsCurve node has an attribute that contains a NURBS curve. This
attribute can be connected to the input curve attribute of a revolve node. The revolve node
also has input attributes that describe the sweep angle and the axis that it would revolve
around. The output attribute of the revolve node is a NURBS surface. You can connect this
attribute to the input of a nurbsSurface node that knows how to draw a surface. You can then
make the nurbsSurface node a child of a transform node that knows how to position objects
in 3D space.

This data flow is, in fact, a mechanism for implementing construction history. If you change
one of the inputs to any node that participates in the construction of the revolved surface, the

MAYA® API | WHITE PAPER

 4

DG recomputes only the parts of the history that are affected in order to update the surface.
The DG keeps a clear record of what affects what, so that it only recomputes the graph as
necessary.

There are over 600 built-in nodes shipped as part of the Maya system. The Maya Help comes
with documentation called the Node and Attribute Reference that describes each of these
nodes and their attributes.

Working directly at the DG level gives you the maximum amount of flexibility and power, but it
is limiting. Fortunately, you are not required to work directly at this level because Maya also
comes with over 900 commands that can do this for you. These commands create DG nodes,
set and connect their attributes, and create the transform nodes that position objects. For
example, there is a revolve command that takes sweep angles and an axis as arguments,
and builds the revolve network described above from a selected NURBS curve. This
command handles all the low level details for you. The Maya Help comes with
documentation called the MEL Command Reference that describes all the built-in Maya
commands and their arguments.

About 200 of the Maya commands are UI creation commands that let you build windows,
menus, buttons, icons, and so on. Maya itself contains a large number of scripts that it uses
to build its UI. In addition to the revolve node and the revolve command, there is a menu item
called "Revolve", and a revolve icon on the UI shelf. The menu item or icon executes the
command that in turn creates the DG network. Scripting is used to implement approximately
98% of the UI of Maya.

At a high level (for example, for technical directors), Maya provides an extremely
customizable environment. MEL and Python are very powerful scripting languages that can
be used to expand an artist's palette of tools. Both are also very powerful UI creation
languages. For example, you can create a specific UI for each character being animated in
your scene and this can significantly increase your productivity.

Finally, if the script you want to write requires a Maya command that does not exist, or if your
script would be much simpler to write if a node with a certain set of characteristics existed,
you can add such commands and nodes to Maya using the API.

Maya API and Maya Python API
The APIs of Maya closely mirror the underlying architecture of Maya so that the scene graph
and DG, which manage the way data is processed, are visible through the Maya API in a
manner consistent with their underlying implementation.

The Maya API is a C++ interface with which developers can write plug-in shared objects that
may be loaded into Maya at runtime. When they are no longer needed, plug-ins can be
unloaded. As a result, you can efficiently develop a plug-in by compiling it, loading it, testing
it, unloading it, changing its source code, recompiling and reloading. The same can be done
for plug-ins that have been implemented using the Maya Python API.

Plug-ins (coded in C++) developed for Maya work in tandem with standard debugging
environments on Linux® and Windows operating systems. On Linux, you can launch Maya
with the -d flag and it will start under the control of the debugger. You can also set
breakpoints in your plug-in and get stack traces as you would with any other Unix®
application. On Windows, you can launch Maya directly from the Microsoft® Visual Studio®
development system and debug the plug-in as you would any other Windows application.

The APIs of Maya provide access to a significant portion of the functionality of Maya. This
includes, but is not limited to, the ability to query and modify existing data such as geometry,
transforms, hierarchies, scene graph, and DG nodes. Also, these APIs let you create new
objects such as shader types available to the renderer, and let you draw in OpenGL®. The
OpenMaya API also includes a class that permits the customization of a shape's hardware

MAYA® API | WHITE PAPER

 5

rendered appearance so that tools can be developed to let artists see how their work will
appear in a real time environment. Plug-in features can be added and removed at any time
using scripting language commands. Plug-ins can operate in either of the two modes of
operation of Maya: interactive or batch mode. The Maya API is available in a standalone form
for writing separate standalone applications. These applications can read and write the
ASCII and binary scene files of Maya and perform operations on the data therein.

As described in the previous section, you normally add a new command or node (or both) to
Maya using one of the APIs and then create a script that provides a UI for the new feature.
For example, you can use one of the APIs to create a new type of node, then write a new
command that creates an instance of the node and places it in the scene and connects it to
the appropriate nodes. Finally, you can write a MEL or Python script that inserts the
command in a menu so that you can access it.

The Maya API and the Maya Python API are designed to be platform neutral. In most cases,
no source code changes are required to "port" a plug-in between Linux, Windows or Mac OS
X. Normally, platform specific code is only required when creating or manipulating windows
without using the platform independent UI creation abilities of scripting, or when using a
platform specific 3rd party library.

Both the Maya API and the Maya Python API provide source code compatibility. Therefore,
C++ plug-ins written for earlier Maya releases can recompile without any source code
changes in the current version of Maya. An existing Python plug-in should import and run
correctly without source code changes if source code compatibility is maintained. If source
code incompatibility occurs, the documentation for the new release will contain detailed
instructions on what changes need to be made to the plug-ins.

The APIs of Maya use objects and function sets to access internal objects of Maya. Objects
are very lightweight classes that provide RTTI (Run Time Type Identification) and can be
used in a type-less manner. A function set is a user owned structure that allows operations
on Maya owned objects. Since an object is simply a handle that knows its type, a function set
provides you with a tool that acts upon objects of the right type. These function sets usually
have names that match the Maya features, such as MFnSkinCluster and MFnNurbsSurface.
For example, the MFnSkinCluster class can be instantiated with an object of type
kSkinCluster, and subsequently can be used to perform operations on that object. The
object itself is not able to perform any functions without the aid of its function set.

Proxies let you develop new types of objects. Proxy object classes let you create functionality
that integrates into Maya as first-class citizens. Examples of proxies are: commands, file
translators, and new types of shaders.

The APIs of Maya are very flexible. This flexibility lets you accomplish a particular task in a
number of ways, and lets you determine where to make the tradeoff between speed of
development and the performance of the plug-in. With either API, if the performance of the
plug-in is not critical, then it is possible to quickly prototype a solution to a particular problem.
If performance is critical, the C++ Maya API should be utilized.

Plug-ins
This section describes some simple Maya plug-ins and how they can be used.

Loading and Unloading
Plug-ins can either be binary if implemented in the C++ Maya API or scripted if the Maya
Python API is used. Either type of plug-in can be loaded and unloaded using the Plug-in

MAYA® API | WHITE PAPER

 6

Manager Window or by using script (MEL or Python). The Plug-in Manager provides a quick
and easy way to load and unload both C++ and Python implemented plug-ins.

Plug-in Manager Window

If a plug-in has been loaded, information about the item can be found by clicking the "i"
button. For developers who wish to write scripts for loading and unloading plug-ins, the
following MEL commands are available:

loadPlugin "name"

The "name" parameter identifies the plug-in file. For example, the command:
loadPlugin feature;

loads the plug-in named "feature". The environment variable MAYA_PLUG_IN_PATH is
searched for a file named "feature.so" on Linux, "feature.mll" on Windows, and
"feature.dynlib" on Mac OS X. The command could also be used to load feature.py on any of
our supported platforms.

 Plug-ins are unloaded with the MEL command:
unloadPlugin "name"

The parameter "name" is the name of the plug-in. Equivalent commands are available in
Python.

The simplest Maya Plug-in
When learning a new computer language, the first program you are likely to see is a "Hello
World" program. The following is the plug-in code required for outputting "Hello World" to the
script editor window in Maya.

#include <maya/MSimple.h>
#include <maya/MGlobal.h>

MAYA® API | WHITE PAPER

 7

DeclareSimpleCommand(helloWorld, "Autodesk", "8.5");
MStatus helloWorld::doIt(const MArgList&)
{
 MGlobal::displayInfo("Hello World\n");
 return MS::kSuccess;
}

The Maya Python API version is as follows:
import sys
import maya.OpenMaya as OpenMaya
import maya.OpenMayaMPx as OpenMayaMPx

kPluginCmdName = "spHelloWorld"

command
class scriptedCommand(OpenMayaMPx.MPxCommand):
 def __init__(self):
 OpenMayaMPx.MPxCommand.__init__(self)
 def doIt(self,argList):
 print "Hello World!"

Creator
def cmdCreator():
 return OpenMayaMPx.asMPxPtr(scriptedCommand())

Initialize the script plug-in
def initializePlugin(mobject):
 mplugin = OpenMayaMPx.MFnPlugin(mobject)
 try:
 mplugin.registerCommand(kPluginCmdName, cmdCreator)
 except:
 sys.stderr.write("Failed to register command: %s\n" %
kPluginCmdName)
 raise

Uninitialize the script plug-in
def uninitializePlugin(mobject):
 mplugin = OpenMayaMPx.MFnPlugin(mobject)
 try:
 mplugin.deregisterCommand(kPluginCmdName)
 except:
 sys.stderr.write("Failed to unregister command: %s\n" %
kPluginCmdName)
 raise

This example defines a new command “spHelloWorld”. We use the “sp” prefix since this is a
scripted plug-in.

Once the plug-in is compiled and/or accessible through MAYA_PLUG_IN_PATH, type the
following MEL commands:

 loadPlugin "helloWorld";
 helloWorld;
 unloadPlugin "helloWorld";

Either binary or scripted plug-ins can be loaded and unloaded with the commands above.

MAYA® API | WHITE PAPER

 8

A more complex example
As outlined in the helloWorld example, it is quite easy to implement the standard helloWorld
plug-in in Maya. The helixCmd plug-in listed below is a more complex example of a Maya
plug-in.

#include <math.h>
#include <maya/MSimple.h>
#include <maya/MFnNurbsCurve.h>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MPoint.h>
#include <maya/MIOStream.h>

DeclareSimpleCommand(helix, "Autodesk", "8.5");

MStatus helix::doIt(const MArgList& args)
{
 MStatus stat;
 const unsigned deg = 3; // Curve Degree
 const unsigned ncvs = 20; // Number of CVs
 const unsigned spans = ncvs - deg; // Number of spans
 const unsigned nknots= spans+2*deg-1; // Number of knots
 double radius = 4.0; // Helix radius
 double pitch = 0.5; // Helix pitch
 unsigned i;

 // Parse the arguments.
 for (i = 0; i < args.length(); i++)
 if (MString("-p") == args.asString(i, &stat)
 && MS::kSuccess == stat)
 {
 double tmp = args.asDouble(++i, &stat);
 if (MS::kSuccess == stat)
 pitch = tmp;
 }
 else if (MString("-r") == args.asString(i, &stat)
 && MS::kSuccess == stat)
 {
 double tmp = args.asDouble(++i, &stat);
 if (MS::kSuccess == stat)
 radius = tmp;
 }

 MPointArray controlVertices;
 MDoubleArray knotSequences;

 // Set up cvs and knots for the helix
 for (i = 0; i < ncvs; i++)
 controlVertices.append(MPoint(radius * cos((double)i),
 pitch * (double)i, radius * sin((double)i)));

 for (i = 0; i < nknots; i++)
 knotSequences.append((double)i);

 // Now create the curve
 MFnNurbsCurve curveFn;
 MObject curve =

MAYA® API | WHITE PAPER

 9

curveFn.create(controlVertices, knotSequences, deg,
 MFnNurbsCurve::kOpen, false, false,
 MObject::kNullObj, &stat);

 if (MS::kSuccess != stat)
 cout << "Error creating curve.\n";

 return stat;
}

This example illustrates how to use the API to parse arguments passed to a command, how
to use array classes, how to create a curve and how to check the return status. These
operations are standard tasks for plug-in development.

A similar example using the Maya Python API follows:

import maya.OpenMaya as OpenMaya
import maya.OpenMayaMPx as OpenMayaMPx
import sys, math

kPluginCmdName="spHelix"

kPitchFlag = "-p"
kPitchLongFlag = "-pitch"
kRadiusFlag = "-r"
kRadiusLongFlag = "-radius"

command
class scriptedCommand(OpenMayaMPx.MPxCommand):
 def __init__(self):
 OpenMayaMPx.MPxCommand.__init__(self)

 def doIt(self, args):
 deg = 3
 ncvs = 20
 spans = ncvs - deg
 nknots = spans+2*deg-1
 radius = 4.0
 pitch = 0.5

 # Parse the arguments.
 argData = OpenMaya.MArgDatabase(self.syntax(), args)
 if argData.isFlagSet(kPitchFlag):
 pitch = argData.flagArgumentDouble(kPitchFlag, 0)
 if argData.isFlagSet(kRadiusFlag):
 radius = argData.flagArgumentDouble(kRadiusFlag, 0)

 controlVertices = OpenMaya.MPointArray()
 knotSequences = OpenMaya.MDoubleArray()

 # Set up cvs and knots for the helix
 #
 for i in range(0, ncvs):
 controlVertices.append(

OpenMaya.MPoint(radius * math.cos(i),
 pitch * i, radius * math.sin(i)))

MAYA® API | WHITE PAPER

 10

 for i in range(0, nknots):
 knotSequences.append(i)

 # Now create the curve
 #
 curveFn = OpenMaya.MFnNurbsCurve()

 nullObj = OpenMaya.MObject()

 try:
 curveFn.create(controlVertices,
 knotSequences, deg,

OpenMaya.MFnNurbsCurve.kOpen,
 0, 0,
 nullObj)
 except:
 sys.stderr.write("Error creating curve.\n")
 raise

Creator
def cmdCreator():
 # Create the command
 return OpenMayaMPx.asMPxPtr(scriptedCommand())

Syntax creator
def syntaxCreator():
 syntax = OpenMaya.MSyntax()
 syntax.addFlag(kPitchFlag, kPitchLongFlag,
OpenMaya.MSyntax.kDouble)
 syntax.addFlag(kRadiusFlag, kRadiusLongFlag,
OpenMaya.MSyntax.kDouble)
 return syntax

Initialize the script plug-in
def initializePlugin(mobject):
 mplugin = OpenMayaMPx.MFnPlugin(mobject, "Autodesk", "8.5", "Any")
 try:
 mplugin.registerCommand(kPluginCmdName, cmdCreator,
syntaxCreator)
 except:
 sys.stderr.write("Failed to register command: %s\n" %
kPluginCmdName)
 raise

Uninitialize the script plug-in
def uninitializePlugin(mobject):
 mplugin = OpenMayaMPx.MFnPlugin(mobject)
 try:
 mplugin.deregisterCommand(kPluginCmdName)
 except:
 sys.stderr.write("Failed to unregister command: %s\n" %
kPluginCmdName)
 raise

MAYA® API | WHITE PAPER

 11

Plug-in integration with Maya
Features implemented as plug-ins are, for the most part, virtually indistinguishable from built-
in Maya features. You can query a command or node to see if it is implemented by a plug-in,
but normally neither Maya nor features implemented by other plug-ins need to be aware of
the distinction.

Types of Plug-ins
Through the APIs of Maya, plug-ins can implement the following: new types of objects, tools
with interaction, data file translators, and new scripting language commands. For new
commands, plug-in developers can choose to implement undo and redo, batch mode
operation, and UI with the same look and feel as the Maya UI. Plug-in commands can be
used freely in MEL scripts with Maya built-in commands and other plug-in commands.
In Maya 8.5, plug-ins can implement the following:

• commands(accessible from MEL or Python)

• file translators (e.g. exporters for game engines, or third-party renderers)

• drawing in OpenGL

• inverse-kinematic solvers

• shaders, lights, textures

• hardware shaders

• procedural animation

• simulators (e.g. Maya Classic Cloth was written entirely using the API)

• user-defined deformations

• 3D graphical manipulators

• geometry shapes

• dynamic fields

• particle emitters

• node and plug locking

• monitors that listen to Maya messages

• custom model views

• user defined transformations

• motion capture servers

• manipulators

• locators

• user defined fluids

MAYA® API | WHITE PAPER

 12

• swatches for plug-in shaders

• viewport overriding

• any other type of custom node

It is important to note that almost all of the information one would need from a Maya scene is
available through the API. Essentially, if the data exists in the DG, there is most likely a way
to access it through a command or file translator, or plug into it with a custom node. This
opens up a great number of opportunities for modifying Maya to meet specific workflow
needs, or for getting exactly the information out of Maya that one needs for a specific
application.

Plug-in access to Maya scene data
The APIs of Maya let you access the contents of the scene graph, contents of the selection
list, contents of the DG and so on.

Access is provided by means of:

• Maya objects that represent a "node" in a Maya scene file. The methods needed to work
with these objects live separately from them in classes called function sets. Creation and
deletion of Maya objects is the responsibility of Maya.

• Transient objects that are used as base software tools (iterators, math library classes,
selection lists, DAG paths, etc.). You can create and destroy these freely by using the Maya
API. Unlike Maya objects that require a function set to operate, these objects contain their
own methods.

Implementation of the Maya API
The APIs of Maya are implemented with several types of objects: Maya objects, function sets,
transient objects, and proxy objects.

Objects and Function Sets
Most API development can be done through objects and function sets. This approach to
handling objects is type-free. This makes for rapid creation of prototypes without sacrificing
strong typing when this information is necessary in production code.

Objects are references (pointers) to the internal objects in Maya. They provide a means of
referencing the major types in Maya such as DAG nodes, dependency nodes, geometry and
so on. A function set is a group of methods that operate on an object.

Below is a brief C++ example that demonstrates the difference between objects and function
sets:

MObject obj = dagFn.child();
if (obj.hasFn(MFn::kCamera))
{

MFnCamera cam(obj);
 cam.setHorizontalFieldOfView(cam.horizontalFieldOfView()/2.0);
}

MAYA® API | WHITE PAPER

 13

In this example, the MObject is a reference to a camera node in the scene and MFnCamera is a
function set that operates on a camera node.

It is also possible to create new instances of objects using a function set. For example, in
C++:

MFnCamera cam;
MObject camera = cam.create(/* args... */);

This creates a new camera and adds it to the Maya scene.

Objects and function sets let you create, query, and modify objects. When additional types of
objects are introduced in future releases, they will also be made available through this
mechanism.

Objects
An "object" is a reference to a Maya object. You can access them through the APIs’ MObject
class. The only operations that can be performed directly on a MObject are the determination
of type, and of the function sets that can operate on this type of MObject. Once the MObject's
type has been determined, you can bind the function set for that type, or any base type, to
that MObject.

For example, given an MObject called 'obj' one can do the following:
if (obj.apiType() == MFn::kCamera)...

which determines whether or not the object is exactly a camera, or

if (obj.hasFn(MFn::kCamera))...

which determines if the object is compatible with the camera function set.

Function Sets
A function set is a class that operates on an object. It contains the set of methods necessary
to query, modify, and create a particular type of object.

Any instance of a MObject can have one and only one Maya Object type. All Function Sets
have one and only one Function Set type. But an MObject can, however, be compatible with
many types of Function Sets. This compatibility follows the class hierarchy of the Function
Sets. That is why an MObject with the Maya Object type MFn::kNurbsSurface is compatible
with MFnNurbsSurface, MFnDagNode, MFnDependencyNode, and MFnBase.

One could do the following:
if (obj.hasFn(MFn::kCamera))
{
// Create a camera function set.
MFnCamera camera(obj);
// Determine the fStop of the camera object.
double fStop;
camera.fStop(fStop);
...
}

Note: Function sets accept any object regardless of whether they can operate on it. In the
above code, the camera function set could have been created using a surface object instead.
In this case, the function set would be put into an invalid state and all methods would return
error values but would not cause a fatal error.

This makes it very easy to prototype code. For example:

MAYA® API | WHITE PAPER

 14

// Walk through a list of objects, and get the fStop of each
// camera. Note that if something other than a camera is on
// the list, this code will still work.
double fStop;
MFnCamera camera;
MObjectArray objectArray = <...get a list ...>;
for (int i = 0; i< objectArray.length(); i++)
{

if (camera.setObject(objectArray[i]) == MS::kSuccess)
{

camera.fStop(fStop);
 ...

}
}

The above example demonstrates that function sets let you work in an entirely type-less
manner. Doing so reduces the efficiency of a plug-in by forcing additional unnecessary
operations to be performed (each method of the function will try and then fail to operate on
the invalid object).

It is also possible to program in an entirely typed manner. For example:
// Walk through a list of objects, and get the fStop of each
// camera. Note that if something other than a camera is on
// the list, this code will skip it.
double fStop;
MFnCamera camera;
MObjectArray objectArray = <...get a list ...>;
for (int i = 0; i< objectArray.length(); i++)
{

if (objectArray[i].hasFn(MFn::kCamera))
{

 camera.setObject(objectArray[i]);
camera.fStop(fStop);

 ...
}

}

This code is more efficient than the previous one because the camera methods are only
applied to the cameras in the list. Efficiency can also be achieved in the form of filtering when
using the iterator classes. Iterators are prefixed with MIt. These classes are designed to loop
through objects of a given type and further filtering is available to select among those objects.
For example, you can use an iterator to process only 2D textures.

Transient Objects
The Maya API contains several types of basic objects that do not represent nodes in a Maya
scene. These objects include the math objects for vectors and matrices, strings, DAG paths
(Maya instancing support), selection lists, command argument lists. These objects are quite
small and are transient in nature (they are not stored in a data file).

These objects do not require a function set class to operate upon them. Instead, they are
directly accessible and provide all the methods necessary to operate on the object without
the need for an additional function set class.

MAYA® API | WHITE PAPER

 15

Math Classes
The Maya API supplies a set of math classes. These classes include, for example, MMatrix,
MVector, MPoint, MQuaternion, and MEulerRotation. The math classes of the Maya API
implement many operator methods. For example, adding two vectors can be coded as:

MVector v(1, 0, 0);
MVector w(0, 1, 1);
MVector x = v + w;

If a developer provides a conversion routine from their math class to a Maya math class, the
Maya API can automatically work with their class. This allows developers to pass their math
objects to Maya API methods.

Proxy Objects
Proxy objects are objects that the programmer defines and that Maya knows how to operate
on. Proxy objects include commands, file translators, manipulators, contexts, dependency
graph nodes, surface shapes, fluid emitters and modeling editors. For example, proxy DG
nodes let you create new operations (such as a new revolve), but also allow for new types of
objects such as shaders, fields, particle emitters, and geometry shapes. The APIs provide
classes from which you can derive your own classes. These developer-defined classes are
registered with Maya, allowing users to create instances of them. However, since these
objects typically have a UI component to them (for example, they have UI to create them and
to manipulate their values), you will have to provide a UI for these objects.

An example of a proxy object is a new kind of surface creation node. This user-defined node
derives from the proxy DG node class, and uses code written by the developer to define the
input and output attributes of the node. The developer would also provide the contents of a
virtual method that is then called to provide the value of the output attribute based on its
inputs. In this case, the node could access several input attributes and use this information
to determine what the output NURBS surface will look like. A proxy node that creates a
simple NURBS surface can easily be written with less than 100 lines of source code. Once
the node itself has been written, you can write MEL or Python scripts to create the UI that will
let users easily create an instance of the node and modify the attributes of existing instances.

Note: Proxy nodes are stored by Maya and must be differentiated from one another. For
example, you may implement two different plug-in shader nodes and want to use/store both
in a scene. To handle this differentiation, a node ID is used. Customers on a support contract
can send requests to our Support team to receive a block of node IDs for plug-in
development.

UI
Using MEL or Python, you can create UI components for plug-in commands using the same
process that is used to create the UI for built-in features. MEL or Python also provide access
to drawing methods and widgets that let you create very complex UI objects.

Finally, since scripting is platform-neutral, the UI only needs to be specified in MEL or Python
once and it will work correctly on the Linux, Windows, and Mac OS X platforms.

Access to the Dependency Graph
The DG is the heart of Maya. While performing typical modeling, animation, and rendering
tasks, most users do not need to be aware of the underlying implementation of Maya.

MAYA® API | WHITE PAPER

 16

However, when working in Maya APIs, you may want to exploit the power of the DG to create
optimized and robust tools that integrate well with the overall architecture.

The DG has a dataflow structure that supports animation, construction history, and
constraints.

An API programmer can create new nodes that can be inserted into the DG. The Maya APIs
provide the necessary methods to both add new nodes and examine nodes that already
exist. By providing two levels of access to the DG, the Maya API does not limit the power
programmer's abilities and does not overwhelm the casual programmer.

The scene graph provides you with a high level view where you need to know little about the
DG but can still affect it. This is similar to the UI view where a user may keyframe an
animation without knowing that they are creating or modifying DG nodes. Similarly,
developers are able to keyframe animation without needing to know that they are creating
and manipulating DG nodes.

A lower level view of Maya is provided by API function sets. Function sets let you view the
DG so that you can see a node, the attributes of the node, the node connections, and the
data and messages coming in and going out of the node. In this view, the treatment of all
types of DG nodes is identical.

Access at either level of the animation system of Maya requires that a scene be evaluated
efficiently in a given context, namely the context of a user-interface editing tool or the context
of time. Time is represented in a DG node that can trigger events, cause expressions to be
evaluated, or enable keyframing on virtually everything in a scene.

A Note on the API and Script
Almost everything that can be accomplished in script(MEL or Python commands) can be
done in the C++ API and in many cases is executed much more quickly. This is because a
plug-in is a compiled shared binary library while all scripts have to pass through the
interpreter that adds a further level of processing. However, the API and script are not
mutually exclusive. Often, the amount of time it takes to perform the C++ coding for
duplicating a single script method greatly outweighs the performance benefits. In some
situations, Maya script commands have broader access to scene data than might be
available through an API class implementation. Since Maya script commands can be called
from within plug-in code, you can use MEL or Python Maya commands when necessary and
use the C++ or Python APIs for everything else.

Maya API Documentation and Resources
The Maya 8.5 API comes with the following documentation:

• Maya API Developers Manual (includes a section of the Maya Python API).

• Maya Motion Capture API Guide.

• API Class Reference documentation (287 classes - each class is documented).

• Source code examples (160 working examples comprising over 100,000 lines of source
code)

• Makefiles are provided on Linux and Mac OS X

• Microsoft Developer Studio 2005 IDE solution files on Windows.

MAYA® API | WHITE PAPER

 17

• A convenient "Plug-in Wizard" for quickly creating MS Visual Studio 2005 Maya plug-in
solutions

• Xcode Project files on Mac OS X

Documentation is in HTML format and can be viewed with any web browser.

Additional resources for learning the Maya API are the following:

1. Maya API Developer Conference Notes (Available from the Autodesk Online Store)

2. Complete Maya Programming, An Extensive Guide to MEL and the C++ API; By David A. D.
Gould

3. Complete Maya Programming, An In-depth Guide to 3D Fundamentals, Geometry, and
Modeling. (Volume II); By David A. D. Gould

Conclusions
The APIs of Maya are easy to learn and provide an extremely powerful interface that lets you
quickly extend Maya in almost any way you want. Many plug-ins have been successfully
implemented using the Maya API. With the broad set of examples and documentation that is
available, it is easy to get started with either API. Although this document focuses primarily
on plug-ins, an alternate type of executable is supported. It is possible for developers to write
standalone applications that run on the command line using either the Maya API or Maya
Python API. Standalone applications can be used for file translation and batch operations
such as checking node naming conventions and so on. Examples of standalone applications
are included in our developer kit.

Once you decide that you want to start developing with the Maya API there are several routes
that you can take. If you are developing in-house applications, then you need to purchase the
Maya software that includes the Maya API and developer kit. If you want to write a
commercial Maya plug-in, then consider joining our Autodesk® Sparks® third-party plug-in
program. Information can be found at: www.Autodesk.com/sparks

Appendix A: Maya API Classes
This section contains an alphabetical list of the classes that are part of the Maya 8.5 API.

Notes:

1. The main library that contains the bulk of the API code is the OpenMaya library. Unless
otherwise indicated, the classes listed are accessible by linking with that library. The other
libraries are named and enclosed in parentheses. (Note: Python import library information is
not included below.)

2. Class names in bold are considered very important

M3dView A 3-D view (OpenMayaUI)
MAngle Manipulate Angular Data
MAnimControl Control over animation playback and values (OpenMayaAnim)
MAnimCurveChange Animation Curve Change Cache (OpenMayaAnim)
MAnimCurveClipboard Control over the animation clipboard (OpenMayaAnim)

MAYA® API | WHITE PAPER

 18

MAnimCurveClipboardIt
em

Wrapper for a clipboard item. (OpenMayaAnim)

MAnimCurveClipboardIt
emArray

Array of MAnimCurveClipboardItem data type (OpenMayaAnim)

ManimMessage Animation messages (OpenMayaAnim)
MAnimUtil Static class providing common animation helper methods

(OpenMayaAnim)
MargDatabase Command argument list parser
MArgList Create and retrieve argument lists
MArgParser Command argument list parser
MArrayDataBuilder Array builder for arrays in data blocks
MArrayDataHandle Data block handle for array data
MAttributeIndex The index information for an attribute specification
MAttributeSpec An attribute specification
MAttributeSpecArray An attribute specification array
MboundingBox Implementation of a 3D bounding box
MCallbackIdArray Container class for callback IDs
MCloth* A number of classes that allow the replacing of the Maya Cloth

solver (Not an OpenMaya class)
MColor A color math class
MColorArray Array of MColor data type
MCommandMessage Listen to messages related to MEL
MCommandResult Result returned from executing a command
MCommonRenderSettings
Data

Container class for common render settings

MCommonSystemUtils Methods for getting and setting environment variables, make
directories etc.

MComputation Interrupt monitor for long computations
MConditionMessage Condition change messages
MCursor Manipulate Cursors (OpenMayaUI)
MDagMessage Dependency graph messages
MDagModifier DAG graph modifier
MDagPath DAG Path
MDagPathArray Indexable array of DAG paths
MDataBlock Dependency node data block
MDataHandle Data handle for information contained in a data block
MDeviceChannel Input device channel (OpenMayaUI)
MDeviceState Input device state (OpenMayaUI)
MDGContext Dependency graph context class
MDGMessage Dependency graph messages
MDGModifier Dependency graph modifier
MDistance Manipulate linear data
MDoubleArray Array of doubles data type
MDrawData Draw data used in the draw methods of MPxSurfaceShapeUI

(OpenMayaUI)
MDrawInfo Drawing state used in the draw methods of

MPxSurfaceShapeUI (OpenMayaUI)

MAYA® API | WHITE PAPER

 19

MDrawProcedureBase Used to create custom hardware shader drawing effects
MDrawRequest A draw request used in the draw methods of

MPxSurfaceShapeUI (OpenMayaUI)
MDrawRequestQueue Drawing queue used in

MPxSurfaceShapeUI::getDrawRequests (OpenMayaUI)
MDrawTraversal Utility class for interactive drawing
MDynamicsUtil Utility methods for working with 2D textures with fluids and

particles
MDynSweptLine Class for evaluating curve segments as lines over time

(OpenMayaFX)
MDynSweptTriangle Class for evaluating surfaces as triangles over time

(OpenMayaFX)
MEulerRotation Euler rotation math
MEvent System event information (OpenMayaUI)
MEventMessage Event messages
MFeedbackLine Feedback line (OpenMayaUI)
MFileIO I/O operations on scene files
MFileObject Manipulate Unix filenames and search paths
MFloatArray Array of floats data type
MFloatMatrix A matrix math class for 4x4 matrices of floats
MFloatPoint Implementation of a point
MFloatPointArray Array of MFloatPoint data type
MFloatVector A vector math class for vectors of floats
MFloatVectorArray Array of MFloatVectors data type
MFn Function set type identifiers
MFnAirField Function set for air fields (OpenMayaFX)
MFnAmbientLight Manage ambient light dependency nodes
MFnAnimCurve Animation curve function set (OpenMayaAnim)
MFnAnisotropy Manage anisotropy shaders
MFnAreaLight Manage area light dependency nodes
MFnArrayAttrsData Function set for multiple arrays of attributes for dependency

node data
MFnAttribute Dependency node attribute function set
MFnBase Function set base class
MFnBlendShapeDeformer Blend shape deformer function set (OpenMayaAnim)
MFnBlinnShader Manage Blinn shaders
MFnCamera Function set for cameras
MFnCharacter Function set for characters
MFnCircleSweepManip Function set for circle sweep manipulator (OpenMayaUI)
MFnClip Clip function set (OpenMayaAnim)
MFnComponent Base class for component function sets
MFnComponentListData Component list function set for dependency node data
MFnCompoundAttribute Compound attribute function set
MFnCurveSegmentManip Function set for curve segment manipulator (OpenMayaUI)
MFnDagNode DAG node function set
MFnData Parent class for dependency graph data function sets

MAYA® API | WHITE PAPER

 20

MFnDependencyNode Dependency node function set
MFnDirectionalLight Manage directional light dependency nodes
MFnDirectionManip Function set for direction manipulator (OpenMayaUI)
MFnDiscManip Function set for disc manipulator (OpenMayaUI)
MFnDistanceManip Function set for distance manipulator (OpenMayaUI)
MFnDoubleArrayData Double array function set for dependency node data
MFnDoubleIndexedCompo
nent

Double indexed component function set

MFnDragField Function set for drag fields (OpenMayaFX)
MFnDynSweptGeometryDa
ta

Swept geometry function set for dependency node data
(OpenMayaFX)

MFnEnumAttribute Enumerated attribute function set
MFnExpression Expression function set
MFnField Function set for dynamic fields (OpenMayaFX)
MFnFluid Function set for fluids(OpenMayaFX)
MFnFreePointTriadMani
p

Function set for free point triad manipulator (OpenMayaUI)

MFnGenericAttribute Generic attribute function set
MFnGeometryData Geometry data for dependency node data
MFnGeometryFilter Geometry filter function set (OpenMayaAnim)
MFnGravityField Function set for gravity fields (OpenMayaFX)
MFnHikEffector Full body IK end effector function set
MFnIkEffector Inverse kinematics end effector function set (OpenMayaAnim)
MFnIkHandle Function set for inverse kinematics (IK) handles

(OpenMayaAnim)
MFnIkJoint Function set for joints (OpenMayaAnim)
MFnIkSolver Function set for inverse kinematics (IK) solvers (OpenMayaAnim)
MFnInstancer Function set for obtaining read-only information on a particle

instancer node
MFnIntArrayData Integer array function set for dependency node data
MFnKeyframeDelta Base function set for keyframe deltas
MFnKeyframeDeltaAddRe
move

Retrieve info on keyframe adds or removes

MFnKeyframeDeltaBlock
AddRemove

Retrieve info on block keyframe add or removes

MFnKeyframeDeltaBreak
down

Retrieve info on changes to keyframe breakdown

MFnKeyframeDeltaMove Retrieve info on changes to keyframe value or time
MFnKeyframeDeltaScale Retrieve info on changes to keyframe scaling
MFnKeyframeDeltaTange
nt

Retrieve info on changes to keyframe tangent

MFnKeyframeDeltaWeigh
ter

Retrieve info on changes to keyframe weighted state

MFnKeyframeDeltInfTyp
e

Retrieve info on changes to pre/post infinity type

MFnLambertShader Manage Lambert shaders
MFnLattice Lattice function set (OpenMayaAnim)
MFnLatticeData Lattice data dependency graph type
MFnLatticeDeformer FFD lattice deformer function set (OpenMayaAnim)

MAYA® API | WHITE PAPER

 21

MFnLayeredShader Manage layered shaders
MFnLight Manage dependency graph nodes representing lights
MFnLightDataAttribute Light data attribute function set
MFnManip3D 3D manipulator function set (OpenMayaUI)
MFnMatrixAttribute Matrix attribute function set
MFnMatrixData Matrix function set for dependency node data
MFnMesh Polygonal surface function set
MFnMeshData Mesh function set for dependency node data
MFnMessageAttribute Message attribute function set
MFnMotionPath Motion path animation function set (OpenMayaAnim)
MFnNewtonField Function set for Newton Fields (OpenMayaFX)
MFnNObjectData Function set for Nucleus geometry data
MFnNonAmbientLight Manage non-ambient light dependency nodes
MFnNonExtendedLight Manage non-extended light dependency nodes
MFnNumericAttribute Numeric attribute function set
MFnNumericData Numeric data function set
MFnNurbsCurve NURBS curve function set
MFnNurbsCurveData NURBS curve function set for dependency node data
MFnNurbsSurface NURBS surface function set
MFnNurbsSurfaceData NURBS surface function set for dependency node data
MFnParticleSystem Function set for particle information (OpenMayaFX)
MFnPartition Function set for partitions of objects
MFnPfxGeometry Function set for accessing paint effects render line information
MFnPhongEShader Manage PhongE shaders
MFnPhongShader Manage Phong shaders
MFnPlugin Register and deregister plug-in services with Maya
MFnPluginData User defined data function set for dependency node data
MFnPointArrayData Point array function set for dependency node data
MFnPointLight Manage point light dependency nodes
MFnPointOnCurveManip PointOnCurveManip function set (OpenMayaUI)
MFnPointOnSurfaceMani
p

PointOnSurfaceManip function set (OpenMayaUI)

MFnRadialField Function set for radial fields (OpenMayaFX)
MFnReflectShader Manage reflective surface shaders
MFnRendenLayer Manage render layer nodes
MFnRotateManip Function set for rotation manipulator (OpenMayaUI)
MFnScaleManip Function set for scale manipulator (OpenMayaUI)
MFnSet Function set for sets of objects
MFnSingleIndexedCompo
nent

Single indexed component function set

MFnSkinCluster Skin cluster function set (OpenMayaAnim)
MFnSphereData Sphere function set for dependency node data
MFnSpotLight Manage spot light dependency nodes
MFnStateManip StateManip function set (OpenMayaUI)
MFnStringArrayData String array function set for dependency node data

MAYA® API | WHITE PAPER

 22

MFnStringData String function set for dependency node data
MFnSubd Subdivision surface function set
MFnSubdData NURBS surface function set for dependency node data
MFnSubdNames Manipulate subdivision surface vertex, edge and face ids
MFnToggleManip ToggleManip function set (OpenMayaUI)
MFnTransform Create and access transform nodes
MFnTripleIndexedCompo
nent

Triple indexed component function set

MFnTurbulenceField Function set for turbulence fields (OpenMayaFX)
MFnTypedAttribute Typed attribute function set
MFnUInt64ArrayData MUint64 array function set for dependency node data
MFnUniformField Function set for uniform fields (OpenMayaFX)
MFnUnitAttribute Unit attribute function set
MFnVectorArrayData Integer array function set for dependency node data
MFnVolumeAxisField Function set for volumeAxis fields (OpenMayaFX)
MFnVolumeLight Function set for volume lights
MFnVortexField Function set for vortex Fields (OpenMayaFX)
MFnWeightGeometryFilt
er

Weight geometry filter function set (OpenMayaAnim)

MFnWireDeformer Wire deformer function set (OpenMayaAnim)
MGeometry The set of data elements which represent a Maya surface
MGeometryData Storage class for data that will be used in drawing

(OpenMayaRender)
MGeometryManager Access to the Maya cached renderable geometry
MGeometryPrimitive Describes the topology used for accessing MGeometryData
MGeometryRequirements Provides methods for reading file images stored on disk
MGLFunctionTable Wrapper class for OpenGL API
MGlobal Static class providing common API global functions
MHardwareRenderer Provides access to the hardware renderer (OpenMayaRender)
MHWShaderSwatchGenera
tor

Provides a mechanism for supplying a swatch for a hardware
renderer plug-in (OpenMayaUI)

MHwTextureManager Provides an interface for loading and using hardware textures
MIffFile Provides access to Maya IFF parsing classes
MIffTag Encapsulates IFF's 4 character block structure
MIkHandleGroup IK handle groups (OpenMayaAnim)
MIkSystem Inverse kinematics (IK) system class (OpenMayaAnim)
MImage Image manipulation
MImageFileInfo Provides methods for reading file images stored on disk
MIntArray Array of integers data type
MItCurveCV Iterator for NURBS curve CVs
MItDag DAG Iterator
MItDependencyGraph Dependency graph iterator
MItDependencyNodes Dependency node iterator
MIteratorType Object used for configuring some of the iterators
MItInstancer Iterator class for instancer data
MItKeyframe Keyframe iterator (OpenMayaAnim)

MAYA® API | WHITE PAPER

 23

MItMeshEdge Polygon edge iterator
MItMeshFaceVertex Polygon face vertex iterator
MItMeshPolygon Polygon iterator
MItMeshVertex Polygon vertex iterator
MItSelectionList Iterate over the items in the selection list
MItSubEdge Iterate over subdivision surface edges
MItSubFace Iterate over subdivision surface faces
MItSubVertex Iterate over subdivision surface vertices
MItSurfaceCV NURBS surface CV iterator
MLibrary Standalone API application support class
MLightLinks Provides read only light linking information
MLockMessage Register callbacks for conditional node and plug locking
MManipData Manipulator data (OpenMayaUI)
MMaterial Hardware shading material class used in MPxSurfaceShapeUI

(OpenMayaUI)
MMatrix A matrix math class for 4x4 matrices of doubles
MMatrixArray Implements an array of MMatrix data type
MMessage Message base class
MModelMessage Scene messages
MnCloth Wrapper for N Cloth object that is used by Nucleus solver
MNodeMessage Dependency node messages
MObject Generic class for accessing internal Maya objects
MObjectArray Array of MObjects data type
MObjectHandle Wrapper for MObjects which contain validity information
MObjectSetMessage Message class used to listen to changes to set membership
MPlug Create and access dependency node plugs
MPlugArray Array of MPlugs data type
MPoint Implementation of a point
MPointArray Array of MPoint data type
MPolyMessage Message class used to listen to component ID changes
MProgressWindow Class that provides access to progress window functionality
MPsdUtilities Conversion and post render operation functionality
MPx3dModelView Class for creating custom model views (OpenMayaUI)
MPxBakeEngine For users to provide their own baking engine to bake advanced

shading properties into a texture
MPxCommand Base class for user commands
MPxComponentShape High level interface for creating surface shapes with

components
MPxContext Base class for user defined contexts (OpenMayaUI)
MPxContextCommand Base class for context creation commands (OpenMayaUI)
MPxControlCommand Used for creating proxy UI control
MPxData Base class for user-defined dependency graph data types
MPxDeformerNode Base class for user defined deformers (OpenMayaAnim)
MPxDragAndDropBehavio
r

Base class for user defined drag and drop behavior

MPxEmitterNode Base class for user defined particle emitters (OpenMayaFX)

MAYA® API | WHITE PAPER

 24

MPxFieldNode Base class for user defined fields (OpenMayaFX)
MPxFileTranslator Base class for creating Maya file translators
MPxFluidEmitterNode Based class for user defined fluid emitters
MPxGeometryData Base class for user-defined dependency graph geometry data

types
MPxGeometryIterator Base class for user defined geometry iterators
MPxGlBuffer Base class for user defined GL buffers (OpenMayaUI)
MPxHwShaderNode Base class for user defined hardware shaders (OpenMayaUI)
MPxIkSolver OBSOLETE CLASS: Base class for user defined IK solvers

(OpenMayaAnim)
MPxIkSolverNode Base class for user defined IK solvers (OpenMayaAnim)
MPxImageFile Allows support of new fixed and floating point image file formats

in Maya
MPxImagePlane Allows support for custom types of image planes in Maya
MPxLocatorNode Base class for user defined locators (OpenMayaUI)
MPxManipContainer Base class for user defined manipulator containers

(OpenMayaUI)
MPxMaterialInformatio
n

Changes value for the Phong shader

MPxMayaAsciiFilter Output filtered Maya ASCII files
MPxMayaAsciiFilterOut
put

Writes buffer to the output stream of MPxMayaAsciiFilter

MPxMidiInputDevice Midi input device (OpenMayaUI)
MPxModelEditorCommand Base class for editor creation commands (OpenMayaUI)
MPxNode Base class for user defined dependency nodes
MPxObjectSet Base class for user defined object sets
MPxParticleAttributeM
apperNode

Parent class of all user defined per particle attribute mapping
nodes

MPxPolyTrg Base class for user defined face triangulation of polygons
MPxPolyTweakUVCommand Base class used for moving polygon UVs
MPxSelectionContext Base class for interative selection tools (OpenMayaUI)
MPxSpringNode Base class for user defined spring law (OpenMayaFX)
MPxSurfaceShape Parent class of all user defined shapes
MPxSurfaceShapeUI Drawing and selection for user defined shapes (OpenMayaUI)
MPxToolCommand Base class for interactive tool commands (OpenMayaUI)
MPxTransform Base class for user defined transformations
MPxTransformationMatr
ix

Base class for all user defined transformation matrices

MPxUIControl Base class for control creation
MPxUITableControl Base class for creating spreadsheet controls
MQuaternion Quaternion math
MRampAttribute Wrapper class for ramp data attributes
MRenderCallback Rendering callbacks (OpenMayaRender)
MRenderData Access rendering data (OpenMayaRender)
MRenderingInfo Holds information about rendering into hardware render targets
MRenderLine Retrieve information from a paint effects render line
MRenderLineArray.h Retrieve an array of paint effects render line information

MAYA® API | WHITE PAPER

 25

MRenderShadowData Access rendering shadow map data (OpenMayaRender)
MRenderTarget Contains information about a render target
MRenderUtil Static class providing common API rendering functions

(OpenMayaRender)
MRenderView Static class providing access to Maya Render View functionality
MSceneMessage Scene messages callbacks such as File New, File Open
MScriptUtil Wrapper class for working with basic types in script
MSelectInfo Selection state information used in

MPxSurfaceShapeUI::select (OpenMayaUI)
MSelectionList A list of MObjects
MSelectionMask Manage what is selectable in Maya
MStatus Manipulate Maya API status codes
MStreamUtils Wrapper class that provides iostream functionality in script
MString Manipulate strings
MStringArray Array of MStrings data type
MStringResource Wrapper class for string look up in localized plug-ins
MStringResourceId Wrapper class the provides a unique for a string resource
MSwatchRenderBase Base class for plug-ins wanting to provide swatch images

(OpenMayaRender)
MSwatchRenderRegister Provides registering and unregistering of swatch rendering

functions (OpenMayaRender)
MSyntax Syntax for commands
MTesselationParams Tessellation parameters
MTime Set and retrieve animation time values
MTimeArray Array of MTime data type
MTimer Used for measuring time. Similar to MEL timerX command
MTimerMessage Register messages based on a fixed time interval
MToolsInfo Tool information (OpenMayaUI)
MTransformationMatrix Transformation matrix
MTrimBoundary Container class that holds MObjects which describe a trim

boundary
MTypeId Manage Maya object type identifiers
MUiMessage UI messages (OpenMayaUI)
MUint64Array Array of MUint64 data type
MUintArray Array of unsigned int data type
MUserEvenMessage Message class used for creating, posting and listening to user

defined messages
MVector A vector math class for vectors of doubles
MVectorArray Array of MVectors data type
MViewportRenderer Represents a hardware viewport renderer

Appedix B: Maya API Class Hierarchy
The following list illustrates class hierarchy of the Maya 8.5 API.

MAYA® API | WHITE PAPER

 26

MAnimMessage < MMessage
MArgDatabase < MArgParser
MArgParser
MClothConstraintCmd < MClothConstraint
MClothConstraint
MCommandMessage < Mmessage
MCommonSystemUtils
MConditionMessage < MMessage
MDagMessage < MMessage
MDagModifier < MDGModifier
MDGMessage < MMessage
MDGModifier
MDrawInfo
MDrawTraversal
MDynamicsUtil
MEventMessage < MMessage
MFnAirField < MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnAmbientLight < MFnLight < MFnDagNode < MFnDependencyNode < MFnBase
MFnAnimCurve < MFnDependencyNode < MFnBase
MFnAnisotropyShader < MFnDependencyNode < MFnBase
MFnAreaLight < MFnNonExtendedLight < MFnNonAmbientLight < MFnLight <
MFnDagNode < MFnDependencyNode < MFnBase
MFnArrayAttrsData < MFnData < MFnBase
MFnAttribute < MFnBase
MFnBase
MFnBlendShapeDeformer < MFnDependencyNode < MFnBase
MFnBlinnShader < MFnReflectShader < MFnLambertShader < MFnDependencyNode
< MFnBase
MFnCamera < MFnDagNode < MFnDependencyNode < MFnBase
MFnCharacter < MFnSet < MFnDependencyNode < MFnBase
MFnCircleSweepManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnClip < MFnDependencyNode < MFnBase
MFnComponent < MFnBase
MFnComponentListData < MFnData < MFnBase
MFnCompoundAttribute < MFnAttribute < MFnBase
MFnCurveSegmentManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnDagNode < MFnDependencyNode < MFnBase
MFnData < MFnBase
MFnDependencyNode < MFnBase
MFnDirectionalLight < MFnNonExtendedLight < MFnNonAmbientLight <
MFnLight < MFnDagNode < MFnDependencyNode < MFnBase
MFnDirectionManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnDiscManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnDistanceManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnDoubleArrayData < MFnData < MFnBase
MFnDoubleIndexedComponent < MFnComponent < MFnBase
MFnDragField < MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnDynSweptGeometryData < MFnData < MFnBase
MFnEnumAttribute < MFnAttribute < MFnBase
MFnExpression < MFnDependencyNode < MFnBase
MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnFluid < MFnDagNode < MFnDependencyNode < MFnBase
MFnFreePointTriadManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase

MAYA® API | WHITE PAPER

 27

MFnGenericAttribute < MFnAttribute < MFnBase
MFnGeometryData < MFnData < MFnBase
MFnGeometryFilter < MFnDependencyNode < MFnBase
MFnGravityField < MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnHikEffector < MFnTransform < MFnDagNode < MFnDependencyNode < MFnBase
MFnIkEffector < MFnTransform < MFnDagNode < MFnDependencyNode < MFnBase
MFnIkHandle < MFnTransform < MFnDagNode < MFnDependencyNode < MFnBase
MFnIkJoint < MFnTransform < MFnDagNode < MFnDependencyNode < MFnBase
MFnIkSolver < MFnDependencyNode < MFnBase
MFnIntArrayData < MFnData < MFnBase
MFnKeyframeDeltaAddRemove < MFnKeyframeDelta < MFnBase
MFnKeyframeDeltaBlockAddRemove < MFnKeyframeDelta < MFnBase
MFnKeyframeDeltaBreakdown < MFnKeyframeDelta < MFnBase
MFnKeyframeDelta < MFnBase
MFnKeyframeDeltaInfType < MFnKeyframeDelta < MFnBase
MFnKeyframeDeltaMove < MFnKeyframeDelta < MFnBase
MFnKeyframeDeltaScale < MFnKeyframeDelta < MFnBase
MFnKeyframeDeltaTangent < MFnKeyframeDelta < MFnBase
MFnKeyframeDeltaWeighted < MFnKeyframeDelta < MFnBase
MFnLambertShader < MFnDependencyNode < MFnBase
MFnLatticeData < MFnGeometryData < MFnData < MFnBase
MFnLatticeDeformer < MFnDependencyNode < MFnBase
MFnLattice < MFnDagNode < MFnDependencyNode < MFnBase
MFnLayeredShader < MFnDependencyNode < MFnBase
MFnLightDataAttribute < MFnAttribute < MFnBase
MFnLight < MFnDagNode < MFnDependencyNode < MFnBase
MFnManip3D < MFnTransform < MFnDagNode < MFnDependencyNode < MFnBase
MFnMatrixAttribute < MFnAttribute < MFnBase
MFnMatrixData < MFnData < MFnBase
MFnMeshData < MFnGeometryData < MFnData < MFnBase
MFnMesh < MFnDagNode < MFnDependencyNode < MFnBase
MFnMessageAttribute < MFnAttribute < MFnBase
MFnMotionPath < MFnDependencyNode < MFnBase
MFnNObjectData < MFnData < MFnBase
MFnNewtonField < MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnNonAmbientLight < MFnLight < MFnDagNode < MFnDependencyNode < MFnBase
MFnNonExtendedLight < MFnNonAmbientLight < MFnLight < MFnDagNode <
MFnDependencyNode < MFnBase
MFnNumericAttribute < MFnAttribute < MFnBase
MFnNumericData < MFnData < MFnBase
MFnNurbsCurveData < MFnGeometryData < MFnData < MFnBase
MFnNurbsCurve < MFnDagNode < MFnDependencyNode < MFnBase
MFnNurbsSurfaceData < MFnGeometryData < MFnData < MFnBase
MFnNurbsSurface < MFnDagNode < MFnDependencyNode < MfnBase
MFnInstancer < MFnDagNode < MFnDependencyNode < MFnBase
MFnParticleSystem < MFnDagNode < MFnDependencyNode < MFnBase
MFnPartition < MFnDependencyNode < MFnBase
MFnPfxGeometry < MFnDagNode < MFnDependencyNode < MFnBase
MFnPhongEShader < MFnDependencyNode < MFnBase
MFnPhongShader < MFnReflectShader < MFnLambertShader < MFnDependencyNode
< MFnBase
MFnPluginData < MFnData < MFnBase
MFnPlugin < MFnBase
MFnPointArrayData < MFnData < MFnBase
MFnPointLight < MFnNonExtendedLight < MFnNonAmbientLight < MFnLight <
MFnDagNode < MFnDependencyNode < MFnBase
MFnPointOnCurveManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase

MAYA® API | WHITE PAPER

 28

MFnPointOnSurfaceManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnRadialField < MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnReflectShader < MFnLambertShader < MFnDependencyNode < MFnBase
MFnRenderLayer < MFnBase
MFnRotateManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnScaleManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnSet < MFnDependencyNode < MFnBase
MFnSingleIndexedComponent < MFnComponent < MFnBase
MFnSkinCluster < MFnGeometryFilter < MFnDependencyNode < MFnBase
MFnSphereData < MFnData < MFnBase
MFnSpotLight < MFnNonExtendedLight < MFnNonAmbientLight < MFnLight <
MFnDagNode < MFnDependencyNode < MFnBase
MFnStateManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnStringArrayData < MFnData < MFnBase
MFnStringData < MFnData < MFnBase
MFnSubdData < MFnGeometryData < MFnData < MFnBase
MFnSubd < MFnDagNode < MFnDependencyNode < MFnBase
MFnToggleManip < MFnManip3D < MFnTransform < MFnDagNode <
MFnDependencyNode < MFnBase
MFnTransform < MFnDagNode < MFnDependencyNode < MFnBase
MFnTripleIndexedComponent < MFnComponent < MFnBase
MFnTurbulenceField < MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnTypedAttribute < MFnAttribute < MFnBase
MFnUInt64ArrayData < MFnData < MFnBase
MFnUniformField < MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnUnitAttribute < MFnAttribute < MFnBase
MFnVectorArrayData < MFnData < MFnBase
MFnVolumeAxisField < MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnVolumeLight < MFnPointLight < MFnNonExtendedLight <
MFnNonAmbientLight < MFnLight < MFnDagNode < MFnDependencyNode < MFnBase
MFnVortexField < MFnField < MFnDagNode < MFnDependencyNode < MFnBase
MFnWeightGeometryFilter < MFnGeometryFilter < MFnDependencyNode <
MFnBase
MFnWireDeformer < MFnDependencyNode < MfnBase
MGeometry
MGeometryManager
MGeometryRequirements
MGeometryPrimitive
MGLFunctionTable
MHWShaderSwatchGenerator < MswatchRenderBase
MHwTextureManager
MIffFile
MiffTag
MImageFileInfo
MLockMessage < Mmessage
MMatrixArray
MMessage
MModelMessage < MMessage
MnCloth
MNodeMessage < MMessage
MObjectSetMessage < MMessage
MPolyMessage < Mmessage
MPxBakeEngine
MPxCommand
MPxComponentShape < MPxSurfaceShape < MPxNode

MAYA® API | WHITE PAPER

 29

MpxContext
MPxControlCommand
MPxData
MPxDeformerNode < MPxNode
MPxEmitterNode < MPxNode
MPxFieldNode < MPxNode
MPxFluidEmitterNode < MPxEmitterNode < MPxNode
MPxGeometryData < MPxData
MPxHwShaderNode < MPxNode
MPxIkSolverNode < MPxNode
MPxImageFile < MPxNode
MPxLocatorNode < MPxNode
MPxManipContainer < MPxNode
MPxMaterialInformation
MPxMayaAsciiFilter < MPxFileTranslator
MPxMayaAsciiFilterOutput
MPxNode
MPxObjectSet < MPxNode
MPxParticleAttributeMapperNode < MPxNode
MPxPolyTrg < MPxNode
MPxPolyTweakUVCommand < MPxCommand
MPxSelectionContext < MPxContext
MPxSpringNode < MPxNode
MPxSurfaceShape < MPxNode
MPxToolCommand < MPxCommand
MPxTransform < MPxNode
MPxUIControl
MPxUITableControl < MPxUIControl
MRenderTarget
MRenderingInfo
MSceneMessage < MMessage
MSelectInfo < MDrawInfo
MSimple < MPxCommand
MScriptUtil
MStreamUtils
MStringResource
MStringResourceId
MString
MSwatchRenderBase
MTimerMessage < MMessage
MViewportRenderer
MUiMessage < MMessage
MUserEventMessage < Mmessage

Appendix C: Selected list of sample plug-ins
The following is a list of selected sample plug-ins in our developer kit. A general description
of what the sample does is also provided. This list is provided as an aid for learning different
aspects of the Maya API and Maya Python API.

Description Name
Simple plug-in helloWorld.cpp | helloWorld.py

MAYA® API | WHITE PAPER

 30

Simple dependency node plug-in sineNode.cpp | sineNode.py

Simple MEL command plug-in whatisCmd.cpp | whatisCmd.pyq

Software shader plug-in lambertShader.cpp | slopeShader.py

Hardware shader plug-in hwUnlitShader.cpp

Translator plug-in maTranslator.cpp

Picking whatisCmd.cpp | whatisCmd.py

Particles ownerEmitter.cpp and
particleSystemInfoCmd.cpp

Meshes polyWriter.cpp and shellNode.cpp |
splitUVCmd.py

UVs flipUVCmd.cpp

Messages dagMessageCmd.cpp and
nodeMessageCmd.cpp |
parentAddedMsgCmd.py

Surface shapes apiMesh*.cpp (there is more than one file)

Autodesk, Maya, and Sparks are registered trademarks or trademarks of
Autodesk, Inc., in the USA and/or other countries. Python is a registered
trademark of Python Software Foundation. All other brand names, product
names, or trademarks belong to their respective holders. Autodesk
reserves the right to alter product offerings and specifications at any time
without notice, and is not responsible for typographical or graphical errors
that may appear in this document.

© 2007 Autodesk, Inc. All rights reserved.

