
 1

AUTODESK MAYA PLUG-IN INTERNATIONALIZATION

WHITE PAPER

This white paper describes the internationalization and localization features
available to programmers developing plug-ins for Autodesk® Maya® software.
The paper describes recommended application programming interface (API)
techniques for operating in localized user environments, in particular those
requiring multi-byte text encodings. It also explains how to adapt plug-ins to
provide their user interface elements in one or more alternate languages.

Contents

CONTENTS .. 1

INTRODUCTION ... 3

OVERVIEW OF THE MAYA API INTERNATIONALIZATION
ARCHITECTURE .. 3

Internationalization and Localization .. 3

Single-binary Strategy .. 3

Locales and Encodings .. 3

Localized Scripts ... 4

Localized Strings ... 4

String Resources... 4

INTERNATIONALIZATION PROCESS .. 4

Assessing Requirements ... 5

Defining and Registering String Resources .. 5
String Resource Keys ... 5
String Resources in C++ .. 5
String Resources in MEL Scripts .. 6
String Resource Registration .. 6

String Handling .. 8
Encoding .. 8
String Length and Position Values ... 8
Formatting Message Strings ... 8

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 2

New MString Methods .. 9

LOCALIZATION PROCESS ... 10

Resource Extraction ... 10

Translation ... 11
Encoding of Resource Files .. 11

Installation of Localized Resources .. 11

Maintenance .. 12

APPENDIX A: EXAMPLE ... 13

closestPointOnCurvePlugin.cpp: .. 13

closestPointOnCurveStrings.h: ... 14

closestPointOnCurveCmd.cpp: ... 14

closestPointOnCurveCmdInitStrings.mel: ... 18

AEclosestPointOnCurveTemplate.mel: ... 19

closestPointOnCurve.pres.mel: .. 19

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 3

Autodesk
®
 Maya

®
 software is an internationalized application. This means that the software

is capable of supporting alternate languages in its user interface and it is compatible with
localized user environments requiring either single-byte or multi-byte text encodings.

Maya runs by default in the English language. When Maya is running in an alternate
language, user messages, menus, labels, and other user interface text are displayed with
translated values in place of the default English values.

This white paper is mainly of interest to software developers who wish to write plug-ins that
are compatible within localized user environments and operate correctly with both single and
multi-byte text encodings. It also explains how to adapt plug-in code and scripts to support
one or more alternate user interface languages.

This section gives an overview of the main concepts and features that provide
Internationalization and Localization support in the Maya application programming interface
(API). Implementation details and examples are found in subsequent sections.

There are two main processes involved in preparing plug-ins to run in alternate languages
and locales; Internationalization and Localization.

Internationalization is the process of changing the executable code and scripts so that they
can be localized. In the context of plug-ins, this mainly involves replacing hard-coded user
interface strings with string resources that can be changed to match the user's language
choice. String handling code may also require changes to work correctly in all language
encodings.

Localization is the process of customizing the plug-in to work in a particular language. For a
plug-in, this will mainly involve translating the user interface strings and installing them
correctly in the plug-in resource path. Once the code is internationalized, it can be localized
for one or more target languages.

The Maya application is internationalized using a single-binary strategy. This means that the
same executable code can support different languages. All data that varies between user
language selections is external to the software itself and is supplied as separate Localization
packages. The software itself does not need to be re-built to support a different user
language or to run under different codepage settings. This philosophy extends to the
Internationalization features provided in the Maya API.

Localized user environments will have different locale and codepage (encoding) settings.
Maya automatically determines the user language preference and the associated locale and
codepage. The manner in which these are determined from user preferences differs across
hardware platforms, and is described in the Maya Documentation.

To see what user interface language and codepage Maya is using, type the following
commands:

about –uiLanguage;

about –codeset;

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 4

To a large extent, proper use of the Maya API classes and methods insulates plug-in code
from the locale settings and their implications. It is important, however, to understand that
these settings affect how string data is interpreted and how external interfaces will behave,
especially when dealing with multi-byte locales.

Maya Embedded Language (MEL) scripts are often provided with a plug-in to create custom
user interfaces.

MEL scripts are simply text files that are interpreted using the code page of the current locale.
They can be edited to use localized string values for user interface (UI) labels, user
messages, etc. In the simplest case, when a plug-in is to be provided in one language only, it
is often possible to provide the custom user interfaces with localized MEL scripts.

If a plug-in is to be localized into multiple languages, the scripts should be adapted to use
String Resources, which can be set to alternate values at run time based on the user's
language choice. String resources are described below.

The Maya API has its own string class, MString, which is used throughout the API to pass
textual data between methods. MString provides methods for manipulating and accessing
the string data, which to a large extent insulate the code from any concern about the
underlying representation of the string.

The application locale affects the behavior of MString methods that accept or return string
data in character (char *) buffers, since the correct data encoding must be used to interpret
the character stream. In some cases adaptations to plug-in code accessing or manipulating
character buffers will be required so that the strings are treated correctly, especially in multi-
byte environments. More information about using MString and its methods in a localized
environment can be found under String Handling below.

The Maya API has been extended to provide a string resource mechanism for plug-ins. This
allows plug-ins to add strings to the Maya String Catalog. Localized values for these strings
can be provided for use when Maya is running in an alternate language.

Plug-in string resources can be used in both C++ code and MEL scripts. The plug-in
resource architecture is designed so that the default (English) string values are specified
directly in the plug-in source code (C++ or script). The default values are "built-in" and are
always available.

Localized resource values are provided in external files that are read and loaded into the
Maya string catalog when the plug-in is loaded. Adding localized resources does not require
rebuilding the plug-in executable.

Localized resources are optional. One advantage to this approach is that plug-ins can be
adapted to use string resources but the Localization (or translation) of the resources can be
deferred until a later time. The localized resources will only be used if they are available and
match the user's language choice. If localized resources are not found for any reason the
plug-in will run as before with the default (built-in) string values.

Internationalization enables the plug-in to support localized strings in its user interface and to
operate correctly in localized environments. The process of localizing the string resources is
a separate set of steps outlined later in this document. Localization can take place any time

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 5

after the plug-in has been Internationalized. The plug-in will continue to work using the
default resource values until translations are available.

The following steps are involved in Internationalization:

1. determine what aspects of the plug-in will require Localization

2. identify the user interface strings that need to change when the plug-in is running in
another language. The strings may be located in C++ code or MEL scripts. Modify
the code and scripts to use string resources in place of hard-coded strings

3. add string registration calls to the plug-in initialization sequence

4. review string handling code and make modifications as required to properly handle
strings in both single and multi-byte encodings

Before doing the work to internationalize a plug-in, it is useful to assess what the actual
requirements are. Not all aspects of plug-in Internationalization may be necessary or
appropriate for each situation.

The most important consideration is to determine the number of target languages the plug-in
needs to support. If a plug-in is only targeted at a single language (e.g., only Japanese) it
may be possible to supply the custom UI for the plug-in as a localized script instead of using
string resources.

String resources are required if the plug-in meets one or more of the following criteria:

 the plug-in is to support more than one user interface language (e.g., English and
Japanese)

 the plug-in issues user messages from C++ code (e.g. calls to displayError())

 the plug-in creates nodes which are to be displayed in the UI with localized node and
attribute name labels

Another consideration is the type of string handling and I/O the plug-in code performs. Plug-
ins with little or no string manipulation or file handling should require few changes, while
others will need to be reviewed to ensure they are dealing properly with multi-byte characters.

This section will discuss how string resources are used in C++ and MEL scripts, and how to
register them during plug-in initialization.

String Resource Keys

Each string resource in the Maya String Catalog is identified by a unique key. For plug-ins,
the key consists of an ordered pair of strings. The first element of the pair is the plug-in
name, which will be the same for all strings used by the plug-in. The second part of the key
is a unique identifier for the string being defined.

For example, string resource keys used by the closestPointOnCurve plug-in will have the
form:

(“closestPointOnCurve”, “stringId1”);

(“closestPointOnCurve”, “stringId2”);

(“closestPointOnCurve”, “stringId3”);

String Resources in C++

The MStringResourceId and MStringResource classes are used to define and access string
resources in the plug-in C++ code.

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 6

The MStringResourceId constructor accepts three arguments, the two elements used to form
the resource key, and the default value of the resource string. In the example below the plug-
in name is “closestPointOnCurve”, and the unique user-defined key being given to this string
is “kNoValidObject”.

MStringResourceId invalidObject(“closestPointOnCurve”, "kNoValidObject",

"A curve or its transform node must be specified as a command argument,

or using your current selection.");

Using #define statements to associate the MStringResourceId with a constant is helpful to
provide a single point of definition for each resource. Typically the MStringResourceId
declarations for the plug-in will be grouped together in a header file that is shared between
the C++ modules that require it.

#define kPluginId "closestPointOnCurve"

#define kNoValidObject MStringResourceId(kPluginId, "kNoValidObject", \

"A curve or its transform node must be specified as a command argument, or

using your current selection.")

The MStringResource::getString method is used to look up the catalog entry when the string
is needed in the code. The catalog lookup will return either the default value or localized
string value (if it is available). Once the string is loaded it can be used like any other
MString.

MStatus stat;

MString msg = MStringResource::getString(kNoValidObject, stat);

displayError(msg);

A string resource cannot be accessed until it has been registered. This is done by calling
MstringResource::registerString. The registration steps are described below under “String
Resource Registration”.

String Resources in MEL Scripts

MEL scripts can use string resources in a similar manner to the C++ code.

To use a string resource, the value is retrieved using the getPluginResource command. The
arguments passed are the two elements of the string resource key.

string $titleStr = getPluginResource("closestPointOnCurve", "kAETitle");

 editorTemplate -beginScrollLayout;

 editorTemplate -beginLayout $titleStr -collapse 0;

MEL resources are registered using the registerPluginResource command. The registration
process is described below.

String Resource Registration

This section describes the process of registering string resources in the plug-in. All string
registration is done during plug-in initialization.

Each string resource must be registered before it can be used. The registration step ensures
that the resource’s default value is loaded into the string catalog. After the default values are
registered the plug-in writer must add a call which will load the localized resource values.
When localized resource values are available for the language Maya is running in, the
localized values will override the default values.

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 7

The main registration method is MFnPlugin::registerUIStrings. A call to this routine is
added to the plug-in’s initializePlugin() function. It should be placed early in the
initialization sequence since the string resources will not be available until it is called, and
some of the other initialization methods may require them.

The MFnPlugin::registerUIStrings function takes two arguments. The first argument is the
name of a procedure which will register the strings used in the C++ code. The second
argument is the name of a script that will register the string resources used in MEL scripts.

 // Register string resources used in the code and scripts

 status = plugin.registerUIStrings(registerMStringResources,

"closestPointOnCurveInitStrings");

 if (!status)

 {

 status.perror("registerUIStrings");

 return status;

 }

The C++ routine registerMStringResources referenced in this call registers each
MStringResourceId used by the C++ code.

// Register all strings used by the plugin C++ source

static MStatus registerMStringResources(void)

{

 MStringResource::registerString(kNoValidObject);

 // other resources would go here

 return MS::kSuccess;

}

Note: this example is using a constant previously defined in a header file:

#define kPluginId "closestPointOnCurve"

#define kNoValidObject MStringResourceId(kPluginId, "kNoValidObject", \

"A curve or its transform node must be specified as a command argument, or

using your current selection.")

The second argument is the name of a script which initializes all resources used by the plug-
in’s MEL scripts. Each resource is registered with a call to registerPluginResources.

The initialization script serves a dual purpose. In addition to the MEL resource registration, it
also contains the logic to load language-dependent resources for the plug-in. The routine
loadPluginLanguageResources takes the name of a resource file that will contain the localized
version of the plug-in string resources. More details creating and installing the localized
resource file are found under Localization Process below.

global proc closestPointOnCurveInitStrings()

{

 // Register script resources

 registerPluginResource("closestPointOnCurve", "kAETitle",

 "Closest Point On Curve Attributes");

 registerPluginResource("closestPointOnCurve", "kInputCurve",

 "Input Curve");

 registerPluginResource("closestPointOnCurve", "kResults",

 "Results");

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 8

 // Load any localized resources

 loadPluginLanguageResources("closestPointOnCurve",

"closestPointOnCurve.pres.mel");

}

Once the registration sequence is complete the strings are available in the Maya Catalog and
can be retrieved using MString::getStringResource (C++) or getPluginResource (MEL). If
localized values for the resources were located by loadPluginLanguageResources they will be
returned from the catalog instead of the default values.

Plug-in writers using the MString class are largely insulated from locale-dependent changes,
but some string handling code may require changes to operate correctly in both single and
multi-byte environments. This section mainly focuses on issues as they relate to the use of
MString in a localized environment, but many of the problems described apply in to character
handling in general.

Encoding

The MString class operates under the assumption that by default, character data in char*
form is encoded in the codeset of the locale. This is a natural extension of the existing
functionality of the class and in many cases an existing plug-in will continue to work without
changes in a localized environment. New methods have been added to explicitly assign or
access the string using UTF-8 and wide character formats which are commonly used in
internationalized applications.

String Length and Position Values

The most common problem when dealing with localized text is the correct interpretation of
string length. In multi-byte environments, the character (char *) representation of the string
will use one or more bytes to represent each character in the string. This means that the
string's storage length in bytes does not necessarily correspond to the number of individual
characters in the string and code using this assumption may not behave as expected. For
backwards compatibility, the MString::length method will continue to return the number of
bytes in the character buffer. A new method MString::numChars can be used instead when it
is necessary to determine the number of individual characters in the string.

The interpretation of positional indexes into the string data is similarly problematic in a multi-
byte environment (for example when using the MString::substring method). See the “New
MString Methods” section below for details on what has been added to deal correctly with
multi-byte strings.

Formatting Message Strings

User message strings are often built by concatenating together multiple strings or variables.
This technique is not appropriate for strings that will be localized, since the context and
placement of the strings may need to change for another language.

The MString::format method or MEL format command should be used to format the string.
Format allows positional arguments to be correctly placed in context when the string is
translated.

The following example shows an original block of code which creates an error message string
containing the name of a file using string concatenation:

MString filename;

MString msg;

msg = “The file “;

msg += filename;

msg += “ cannot be opened”;

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 9

displayError(msg);

The following replacement code shows how this would be done correctly in an
internationalized application. The message is being created using a resource string and the
MString::format command:

#define kOpenError MStringResourceId(“myPlugin”, “kOpenError”,

“File ^1s cannot be opened”);

MString filename;

MString msgFmt = MStringResource::getString(kOpenError,status);

MString msg;

msg.format(msgFmt, filename);

displayError(msg);

MEL scripts can make use of the MEL format command in a similar manner.

New MString Methods

The following table lists new methods that have been added to MString to support
Internationalization. See the MString class documentation for more details about each
method, as well as notes about the behavior of existing methods within a localized
environment.

New MString Method Notes

MString::numChars This routine returns the number of characters in the
string. This does not necessarily correspond to the
number of bytes in the string, or the value returned by
MString::length.

MStatus MString::setUTF8(const char *

utf8String)

const char * MString::asUTF8()

const char * MString::asUTF8(int *length)

These methods assign or access the string value as a
UTF-8 encoded character string.

Mstring::MString(wchar_t *str)

MString::MString(wchar_ *str, int length)

MStatus MString::setWChar(wchar_t *str, int

length)

MStatus MString::setWChar(wchar_t *str, int

length)

const wchar_t* MString::asWChar()

const wchar_t* MString::asWChar(int length)

These methods allow the string’s value to be set or
accessed using wide character values. Note: the use of
wide character representation is not recommended for
persistent storage; use of a portable format, such as
UTF-8, is recommended instead.

int MString::indexW(char c) const

int MString::indexW(wchar_t c) const

int MString::rindexW(char c) const

int MString::rindexW(wchar_t c) const

These routines are multi-byte compatible versions of
MString::index and MString::rindex
respectively and return character-based position values.
Use of these routines for internationalized plug-ins is
recommended. See also MString::substringW.

MString MString MString::substringW(int

start, int end)

This is a mult-byte compatible version of
MString::substring which accepts character-based
position values (such as those returned by
MString::indexW and MString::rindexW).

MStatus MString::split(wchar_t c,

MStringArray& array) const

This version of MString::split accepts a wide-
character value as the delimiter.

MStatus MString::format(const MString &fmt,

const MString &arg1, const MString &arg2,

... ,const MString &arg10)

This routine provides string formatting capabilities, using
a format specifier and up to 10 positional arguments.

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 10

After the plug-in has been internationalized, string resources can be extracted and sent for
translation. It is important to note that the process of Localization can be deferred. The plug-
in will continue to run with its default resource values if the localized versions are not
available.

Plug-in Localization involves the following steps:

1. Resource Extraction: a master resource file containing all localizable strings from the
plug-in is generated.

2. Translation: a translated version of the strings is prepared.

3. Installation: the translated resource file is installed into the correct language area on
the plug-in resource path.

The utility script pluginResourceUtil is used to generate a master list of all registered
resources for the plug-in.

To run the utility, the name of the plug-in and the name of the output file to generate is
specified. The plug-in must be loaded for the resource extraction process to take place; the
utility will load the plug-in if it is not already loaded. The extraction process must also be
done while Maya is running in the default (English) language. See the Maya documentation
for how to override the Maya language setting.

pluginResourceUtil(“closestPointOnCurve”, “c:/extracted/closestPointOnCurve.pres.mel”);

The output from the resource extraction process is a file containing a list of commands to set
the resources to new values. This master file is not used by the plug-in (the default resource
values contained in this file are already available to the plug-in without it). The file is used as
the master version of the strings that need to be translated. Only the translated versions of
the file are provided with the plug-in.

The complete output file closestPointOnCurve.pres.mel is shown in Appendix A, a portion of
the file is shown below:

// File closestPointOnCurve.pres.mel

// Resources for Plug-in: closestPointOnCurve

//

// ----------------------------

// Registered string resources:

// ----------------------------

setPluginResource("closestPointOnCurve", "kAETitle", "Closest Point On Curve

Attributes");

setPluginResource("closestPointOnCurve", "kInputCurve", "Input Curve");

setPluginResource("closestPointOnCurve", "kInvalidType", "Object ^1s has invalid

type. Only a curve or its transform can be specified.");

setPluginResource("closestPointOnCurve", "kNoQueryFlag", "You must specify AT

LEAST ONE queryable flag in query mode. Use the `help` command to list all

available flags.");

setPluginResource("closestPointOnCurve", "kNoValidObject", "A curve or its

transform node must be specified as a command argument, or using your current

selection.");

setPluginResource("closestPointOnCurve", "kResults", "Results");

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 11

The generated file contains an entry for each string resource registered by the plug-in (both
C++ and MEL resources). Additionally, if the plug-in has registered nodes, entries for the
standardized node and attribute UI display string resources that are used by Maya will be
automatically generated (there is no additional registration required for these resources other
than correctly registering the node).

The master resource file is translated into another language by editing the string values for
each entry in the resource file.

Encoding of Resource Files

Since the resource file is a MEL text file its encoding must be appropriate for the locale and
platform that it will run on. For example, Japanese translations on Windows platforms will
expect CP932, while on Mac OS X they should be UTF-8. Conversion utilities such as iconv
can be used for converting file formats if required.

The translated resource file must be installed in the correct language-dependent location, so
that it will be loaded at runtime.

The resource file will have the same name for each language it is translated to, and the
directory it is located in will determine the language it is associated with. The resource file
name is passed to loadPluginLanguageResources in the string initialization script.

In the example below, the resource file is named closestPointOnCurve.pres.mel.

// Load any localized resources

 loadPluginLanguageResources("closestPointOnCurve",

"closestPointOnCurve.pres.mel");

The loadPluginLanguageResources routine will search for the resource file along the
MAYA_PLUG_IN_RESOURCES_PATH.

Typically plug-ins are installed as modules and their files are installed within a standardized
directory structure along the MAYA_MODULE_PATH. The
MAYA_PLUG_IN_RESOURCES_PATH will be initialized to include language-specific
resource directory entries for each module.

A sample directory hierarchy for a plug-in module is shown below. The resources area
contains subdirectories for each available Localization. The Japanese resources would be
installed into the resources/ja_JP subdirectory. When Maya is running in Japanese this
directory will be added to the MAYA_PLUG_IN_RESOURCES_PATH.

loadPluginLanguageResources will not generate an error at runtime if the resource file is not
found. The plug-in will simply continue to operate with the default resource values.

The example below shows a sample module hierarchy and the location of Japanese
resources for the closestPointOnCurve plug-in.

/SampleModule

/SampleModule/data

/SampleModule/docs

/SampleModule/icons

/SampleModule//modules

/SampleModule/plug-ins

 /SampleModule/python

/SampleModule/resources

/SampleModule/resources/ja_JP

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 12

/SampleModule/resources/ja_JP/closestPointOnCurve.pres.mel

/SampleModule/scripts

The resource file extraction, translation and installation steps will need to be repeated if the
plug-in string resources are modified, to keep the localized versions synchronized with the
master versions.

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 13

The following source code taken from the closestPointOnCurve plug-in demonstrates how it
was modified to support localized user interface strings. Relevant changes have been
highlighted. The complete set of source code for this plug-in is available as part of the Maya
Bonus Tools.

When the plug-in is initialized, a call to MfnPlugin::registerUIStrings is made to register the
strings used by the C++ code, and to invoke the MEL command
closestPointOnCurveInitStrings which registers MEL string resources and loads localized
values. The closestPointOnCurveStrings.h header file was created to provide a single point
of definition for the C++ string resources used by the plug-in.

// File: closestPointOnCurveStrings.cpp

// HEADER FILES:

#include "closestPointOnCurveCmd.h"

#include "closestPointOnCurveNode.h"

#include "closestPointOnCurveStrings.h"

#include <maya/MFnPlugin.h>

// Register all strings used by the plugin C++ source

static MStatus registerMStringResources(void)

{

 MStringResource::registerString(kNoValidObject);

 MStringResource::registerString(kInvalidType);

 MStringResource::registerString(kNoQueryFlag);

 return MS::kSuccess;

}

// INITIALIZES THE PLUGIN BY REGISTERING COMMAND AND NODE:

MStatus initializePlugin(MObject obj)

{

 MStatus status;

 MFnPlugin plugin(obj, PLUGIN_COMPANY, "4.0", "Any");

 // Register string resources used in the code and scripts

 // This is done first, so the strings are available.

 status = plugin.registerUIStrings(registerMStringResources,

"closestPointOnCurveInitStrings");

 if (!status)

 {

 status.perror("registerUIStrings");

 return status;

 }

 status = plugin.registerCommand("closestPointOnCurve",

closestPointOnCurveCommand::creator, closestPointOnCurveCommand::newSyntax);

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 14

 if (!status)

 {

 status.perror("registerCommand");

 return status;

 }

 status = plugin.registerNode("closestPointOnCurve",

closestPointOnCurveNode::id, closestPointOnCurveNode::creator,

closestPointOnCurveNode::initialize);

 if (!status)

 {

 status.perror("registerNode");

 return status;

 }

 return status;

}

This header file was added to define the string resources used in the plug-in’s C++ modules.
When the resources are accessed in more than one source file this type of approach is
recommended for providing a common set of definitions for the MStringResourceId values.

// File: closestPointOnCurveStrings.h

// MAYA HEADER FILES:

#include <maya/MStringResource.h>

#include <maya/MStringResourceId.h>

// MStringResourceIds contain plugin id, unique resource id for

// each string and the default value for the string.

#define kPluginId "closestPointOnCurve"

#define kNoValidObject MStringResourceId(kPluginId, "kNoValidObject", \

"A curve or its transform node must be specified as a command argument, or using

your current selection.")

#define kInvalidType MStringResourceId(kPluginId, "kInvalidType", \

"Object ^1s has invalid type. Only a curve or its transform can be specified.")

#define kNoQueryFlag MStringResourceId(kPluginId, "kNoQueryFlag", \

"You must specify AT LEAST ONE queryable flag in query mode. Use the `help`

command to list all available flags.")

This file previously used hard-coded strings to display error messages. The hard-coded
strings were redefined as MStringResourceId objects in closestPointOnCurveStrings.h. To
use the string resources, a call to MStringResource::getString is made to retrieve the
current value of the resource.

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 15

This code also illustrates the use of the MString::format method for inserting variable
arguments into message strings. Using format for constructing message strings is
recommended for internationalized code instead of string concatenation. Formatted strings
allow positional arguments to be correctly placed in the correct context and position when the
string is translated to another language.

// FILE: closestPointOnCurveCmd.cpp

// HEADER FILES:

#include "closestPointOnCurveCmd.h"

#include "closestTangentUAndDistance.h"

#include "closestPointOnCurveStrings.h"

// COMPUTING THE OUTPUT VALUES FOR THE CLOSEST POSITION, NORMAL, TANGENT,

// PARAMETER-U AND DISTANCE, OR CREATING A "closestPointOnCurve" NODE:

MStatus closestPointOnCurveCommand::redoIt()

{

 // DOUBLE-CHECK TO MAKE SURE THERE'S A SPECIFIED OBJECT TO EVALUATE ON:

 if (sList.length() == 0)

 {

 MStatus stat;

 MString msg = MStringResource::getString(kNoValidObject, stat);

displayError(msg);

 return MStatus::kFailure;

 }

 // RETRIEVE THE SPECIFIED OBJECT AS A DAGPATH:

 MDagPath curveDagPath;

 sList.getDagPath(0, curveDagPath);

 // CHECK FOR INVALID NODE-TYPE INPUT WHEN SPECIFIED/SELECTED

 // NODE IS *NOT* A "CURVE" NOR "CURVE TRANSFORM":

 if (!curveDagPath.node().hasFn(MFn::kNurbsCurve) &&

 !(curveDagPath.node().hasFn(MFn::kTransform)

 && curveDagPath.hasFn(MFn::kNurbsCurve)))

 {

 MStatus stat;

 MString msg;

// Use format to place variable string into message

MString msgFmt = MStringResource::getString(kInvalidType, stat);

 MStringArray selectionStrings;

 sList.getSelectionStrings(0, selectionStrings);

 msg.format(msgFmt, selectionStrings[0]);

displayError(msg);

 return MStatus::kFailure;

 }

 // WHEN COMMAND *NOT* IN "QUERY MODE" (I.E. "CREATION MODE"), CREATE AND

 // CONNECT A "closestPointOnCurve" NODE AND RETURN ITS NODE NAME:

 if (!queryFlagSet)

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 16

 {

 // CREATE THE NODE:

 MFnDependencyNode depNodeFn;

 if (closestPointOnCurveNodeName == "")

 depNodeFn.create("closestPointOnCurve");

 else

 depNodeFn.create("closestPointOnCurve", closestPointOnCurveNodeName);

 closestPointOnCurveNodeName = depNodeFn.name();

 // SET THE ".inPosition" ATTRIBUTE, IF SPECIFIED IN THE COMMAND:

 if (inPositionFlagSet)

 {

 MPlug inPositionXPlug = depNodeFn.findPlug("inPositionX");

 inPositionXPlug.setValue(inPosition.x);

 MPlug inPositionYPlug = depNodeFn.findPlug("inPositionY");

 inPositionYPlug.setValue(inPosition.y);

 MPlug inPositionZPlug = depNodeFn.findPlug("inPositionZ");

 inPositionZPlug.setValue(inPosition.z);

 }

 // MAKE SOME ADJUSTMENTS WHEN THE SPECIFIED NODE IS A

 // "TRANSFORM" OF A CURVE SHAPE:

 unsigned instanceNumber=0;

 if (curveDagPath.node().hasFn(MFn::kTransform))

 {

 // EXTEND THE DAGPATH TO ITS CURVE "SHAPE" NODE:

 curveDagPath.extendToShape();

 // TRANSFORMS ARE *NOT* NECESSARILY THE "FIRST" INSTANCE

 // TRANSFORM OF A CURVE SHAPE:

 instanceNumber = curveDagPath.instanceNumber();

 }

 // CONNECT THE NODES:

 MPlug worldCurvePlug, inCurvePlug;

 inCurvePlug = depNodeFn.findPlug("inCurve");

 depNodeFn.setObject(curveDagPath.node());

 worldCurvePlug = depNodeFn.findPlug("worldSpace");

 worldCurvePlug = worldCurvePlug.elementByLogicalIndex(instanceNumber);

 MDGModifier dgModifier;

 dgModifier.connect(worldCurvePlug, inCurvePlug);

 dgModifier.doIt();

 // SET COMMAND RESULT TO BE NEW NODE'S NAME, AND RETURN:

 setResult(closestPointOnCurveNodeName);

 return MStatus::kSuccess;

 }

 // OTHERWISE, WE'RE IN THE COMMAND'S "QUERY MODE":

 else

 {

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 17

 // COMPUTE THE CLOSEST POSITION, NORMAL, TANGENT, PARAMETER-U

// AND DISTANCE, USING THE *FIRST* INSTANCE TRANSFORM WHEN CURVE

// IS SPECIFIED AS A "SHAPE":

 MPoint position;

 MVector normal, tangent;

 double paramU, distance;

 closestTangentUAndDistance(curveDagPath, inPosition, position,

normal, tangent, paramU, distance);

 // WHEN NO QUERYABLE FLAG IS SPECIFIED, INDICATE AN ERROR:

 if (!positionFlagSet && !normalFlagSet && !tangentFlagSet && !paramUFlagSet

&& !distanceFlagSet)

 {

 MStatus stat;

 MString msg = MStringResource::getString(kNoQueryFlag, stat);

displayError(msg);

 return MStatus::kFailure;

 }

 // WHEN JUST THE "DISTANCE" IS QUERIED, RETURN A SINGLE

 // "FLOAT" INSTEAD OF AN ENTIRE FLOAT ARRAY FROM THE COMMAND:

 else if (distanceFlagSet && !(positionFlagSet || normalFlagSet ||

tangentFlagSet || paramUFlagSet))

 setResult(distance);

 // WHEN JUST THE "PARAMETER-U" IS QUERIED, RETURN A

 // SINGLE "FLOAT" INSTEAD OF AN ENTIRE FLOAT ARRAY FROM THE COMMAND:

 else if (paramUFlagSet && !(positionFlagSet || normalFlagSet ||

tangentFlagSet || distanceFlagSet))

 setResult(paramU);

 // OTHERWISE, SET THE RETURN VALUE OF THE COMMAND'S RESULT TO

 // A "COMPOSITE ARRAY OF FLOATS":

 else

 {

 // HOLDS FLOAT ARRAY RESULT:

 MDoubleArray floatArrayResult;

 // APPEND THE RESULTS OF THE CLOSEST POSITION, NORMAL,

 // TANGENT, PARAMETER-U AND DISTANCE VALUES TO THE FLOAT ARRAY RESULT:

 if (positionFlagSet)

 {

 floatArrayResult.append(position.x);

 floatArrayResult.append(position.y);

 floatArrayResult.append(position.z);

 }

 if (normalFlagSet)

 {

 floatArrayResult.append(normal.x);

 floatArrayResult.append(normal.y);

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 18

 floatArrayResult.append(normal.z);

 }

 if (tangentFlagSet)

 {

 floatArrayResult.append(tangent.x);

 floatArrayResult.append(tangent.y);

 floatArrayResult.append(tangent.z);

 }

 if (paramUFlagSet)

 floatArrayResult.append(paramU);

 if (distanceFlagSet)

 floatArrayResult.append(distance);

 // FINALLY, SET THE COMMAND'S RESULT:

 setResult(floatArrayResult);

 }

 return MStatus::kSuccess;

 }

}

This file is the string initialization script referenced in the call to
MfnPlugin::registerStringResources. It has a dual purpose:

1. It registers any string resources used by the plug-in MEL scripts. The strings
registered in this example are used in AEclosestPointOnCurveTemplate.mel.

2. It calls loadPluginLanguageResources with the name of the file containing the
localized string values for this plug-in. In this example, a file named
closestPointOnCurve.pres.mel will be loaded if it is located in the appropriate
language-specific location expected by loadPluginLanguageResources.

// FILE: closestPointOnCurveInitStrings.mel

// DESCRIPTION: Register script resources and load localized resources

// for the "closestPointOnCurve" plugin

global proc closestPointOnCurveInitStrings()

{

 // Register script resources

 registerPluginResource("closestPointOnCurve", "kAETitle",

 "Closest Point On Curve Attributes");

 registerPluginResource("closestPointOnCurve", "kInputCurve",

 "Input Curve");

 registerPluginResource("closestPointOnCurve", "kResults",

 "Results");

 // Load any localized resources

 loadPluginLanguageResources("closestPointOnCurve",

"closestPointOnCurve.pres.mel");

}

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 19

This file defines the custom attribute editor setup for the closestPointOnCurve node which is
created by this plug-in. The code has been modified to use string resources in place of hard-
coded strings for the attribute editor labels.

Note: the attribute names themselves can also be displayed in translated form, but the
programmer does not need to designate string resources manually for each attribute. All
attributes defined by the plug-in will have attributeNiceName resources automatically
generated in the extracted resource file.

// FILE: AEclosestPointOnCurveTemplate.mel

global proc AEclosestPointOnCurveTemplate(string $nodeName)

{

string $titleStr = getPluginResource("closestPointOnCurve", "kAETitle");

string $inputCurveLabel = getPluginResource("closestPointOnCurve",

"kInputCurve");

string $resultLabel = getPluginResource("closestPointOnCurve", "kResults");

 editorTemplate -beginScrollLayout;

 editorTemplate -beginLayout $titleStr -collapse 0;

 editorTemplate -callCustom ("AEinputNew \""+ $inputCurveLabel +"\"")

("AEinputReplace \"" + $inputCurveLabel + "\"")

"inCurve";

 editorTemplate -addControl "inPosition";

 editorTemplate -beginLayout $resultLabel;

 editorTemplate -addControl "position";

 editorTemplate -addControl "normal";

 editorTemplate -addControl "tangent";

 editorTemplate -addControl "paramU";

 editorTemplate -addControl "distance";

 editorTemplate -endLayout;

 editorTemplate -endLayout;

 editorTemplate -suppress "inCurve";

 AEabstractBaseCreateTemplate $nodeName;

 editorTemplate -addExtraControls;

 editorTemplate -endScrollLayout;

}

This file contains the extracted string resources for the closestPointOnCurve plug-in. It was
generated using the utility script pluginResourceUtil. All registered strings from the C++
code and MEL scripts are extracted to the file along with their default values. Also included
are node and attribute nice name values for each node registered by the plug-in, which are
generated automatically by the utility; (there is no manual registration required for these node
and attribute resources).

It is important to note that this original extracted file containing the default values is not
required by the plug-in when it is running in English. All string resources have their default
value built directly into the plug-in itself. The extracted file is used as the master list of
resources that are to be translated into other languages. When the translated versions are
available, the files are placed in the appropriate language-specific resources sub-directory
along the MAYA_PLUG_IN_RESOURCE_PATH.

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 20

// File closestPointOnCurve.pres.mel

// Resources for Plug-in: closestPointOnCurve

//

// ----------------------------

// Registered string resources:

// ----------------------------

setPluginResource("closestPointOnCurve", "kAETitle", "Closest Point On Curve

Attributes");

setPluginResource("closestPointOnCurve", "kInputCurve", "Input Curve");

setPluginResource("closestPointOnCurve", "kInvalidType", "Object ^1s has invalid

type. Only a curve or its transform can be specified.");

setPluginResource("closestPointOnCurve", "kNoQueryFlag", "You must specify AT

LEAST ONE queryable flag in query mode. Use the `help` command to list all

available flags.");

setPluginResource("closestPointOnCurve", "kNoValidObject", "A curve or its

transform node must be specified as a command argument, or using your current

selection.");

setPluginResource("closestPointOnCurve", "kResults", "Results");

//

// --------------------------

// Registered node resources:

// --------------------------

//

// Node: closestPointOnCurve

//

setNodeNiceNameResource("closestPointOnCurve", "Closest Point On Curve");

setAttrNiceNameResource("closestPointOnCurve", "ic", "In Curve");

setAttrNiceNameResource("closestPointOnCurve", "ip", "In Position");

setAttrNiceNameResource("closestPointOnCurve", "ipx", "In Position X");

setAttrNiceNameResource("closestPointOnCurve", "ipy", "In Position Y");

setAttrNiceNameResource("closestPointOnCurve", "ipz", "In Position Z");

setAttrNiceNameResource("closestPointOnCurve", "p", "Position");

setAttrNiceNameResource("closestPointOnCurve", "px", "Position X");

setAttrNiceNameResource("closestPointOnCurve", "py", "Position Y");

setAttrNiceNameResource("closestPointOnCurve", "pz", "Position Z");

setAttrNiceNameResource("closestPointOnCurve", "n", "Normal");

setAttrNiceNameResource("closestPointOnCurve", "nx", "Normal X");

setAttrNiceNameResource("closestPointOnCurve", "ny", "Normal Y");

setAttrNiceNameResource("closestPointOnCurve", "nz", "Normal Z");

setAttrNiceNameResource("closestPointOnCurve", "t", "Tangent");

setAttrNiceNameResource("closestPointOnCurve", "tx", "Tangent X");

setAttrNiceNameResource("closestPointOnCurve", "ty", "Tangent Y");

setAttrNiceNameResource("closestPointOnCurve", "tz", "Tangent Z");

setAttrNiceNameResource("closestPointOnCurve", "u", "Param U");

setAttrNiceNameResource("closestPointOnCurve", "d", "Distance");

The translated version of the resource file for Japanese is shown below. The
closestPointOnCurve plug-in is a plug-in module, which is installed within a standard module
directory structure defined along the MAYA_MODULE_PATH. The Japanese version of the
closestPointOnCurve.pres.mel file is placed in the resources/ja_JP directory.

// Resources for Plug-in: closestPointOnCurve

//

// ----------------------------

MAYA PLUG-IN INTERNATIONALIZATION | WHITE PAPER

 21

// Registered string resources:

// ----------------------------

setPluginResource("closestPointOnCurve", "kAETitle", "カーブ上の最近接ポイント

アトリビュート");

setPluginResource("closestPointOnCurve", "kInputCurve", "入力カーブ");

setPluginResource("closestPointOnCurve", "kInvalidType", "オブジェクト ^1s

は無効なタイプです。 カーブまたはトランスフォームのみ指定できます。");

setPluginResource("closestPointOnCurve", "kNoQueryFlag", "最低 1

つの照会可能なフラグまたは照会モードを指定する必要があります。 help

コマンドを使用して利用可能なすべてのフラグをリストします。");

setPluginResource("closestPointOnCurve", "kNoValidObject", "1

つのカーブまたはトランスフォーム

ノードをコマンド引数として、またはカレントの選択項目を使用して指定する必要があります。");

setPluginResource("closestPointOnCurve", "kResults", "結果");

//

// --------------------------

// Registered node resources:

// --------------------------

//

// Node: closestPointOnCurve

//

setNodeNiceNameResource("closestPointOnCurve", "カーブ上の最近接ポイント");

setAttrNiceNameResource("closestPointOnCurve", "ic", "入力カーブ");

setAttrNiceNameResource("closestPointOnCurve", "ip", "入力位置");

setAttrNiceNameResource("closestPointOnCurve", "ipx", "入力位置 X");

setAttrNiceNameResource("closestPointOnCurve", "ipy", "入力位置 Y");

setAttrNiceNameResource("closestPointOnCurve", "ipz", "入力位置 Z");

setAttrNiceNameResource("closestPointOnCurve", "p", "位置");

setAttrNiceNameResource("closestPointOnCurve", "px", "位置 X");

setAttrNiceNameResource("closestPointOnCurve", "py", "位置 Y");

setAttrNiceNameResource("closestPointOnCurve", "pz", "位置 Z");

setAttrNiceNameResource("closestPointOnCurve", "n", "法線");

setAttrNiceNameResource("closestPointOnCurve", "nx", "法線 X");

setAttrNiceNameResource("closestPointOnCurve", "ny", "法線 Y");

setAttrNiceNameResource("closestPointOnCurve", "nz", "法線 Z");

setAttrNiceNameResource("closestPointOnCurve", "t", "接線");

setAttrNiceNameResource("closestPointOnCurve", "tx", "接線 X");

setAttrNiceNameResource("closestPointOnCurve", "ty", "接線 Y");

setAttrNiceNameResource("closestPointOnCurve", "tz", "接線 Z");

setAttrNiceNameResource("closestPointOnCurve", "u", "パラメータ U");

setAttrNiceNameResource("closestPointOnCurve", "d", "距離");

Autodesk and Maya areregistered trademarks or trademarks of Autodesk, Inc., in
the USA and/or other countries. All other brand names, product names, or
trademarks belong to their respective holders. Autodesk reserves the right to
alter product offerings and specifications at any time without notice, and is not
responsible for typographical or graphical errors that may appear in this
document.

© 2007 Autodesk, Inc. All rights reserved.

