
`

Autodesk® Maya®

Render Pass Concepts and
Techniques

A rendering guru’s guide to harnessing the power
of Maya

Who Should Read this Document?

This whitepaper is meant to supplement the Autodesk® Maya® software User Guide for
versions 2009 through 2011. It is not intended to be an exhaustive reference, and it will
not necessarily be updated at each release. The purpose of this document is to provide
information that is beyond the scope of the User Guide on how render passes work and
how they can be used. The target audience is Maya generalists, rendering specialists,
technical directors specialized in rendering, production pipeline engineers, rendering plug-
in developers, and compositing specialists. Unless otherwise stated, all the functionality
described in this document pertains to mental ray® rendering software, versions 3.7 and
later, as integrated in the Autodesk Maya software. The specific integrations provided
for/by other renderers may vary.

It should also be noted that this document does not provide user-interface level
instructions on how to use render passes in Autodesk Maya. That is covered in the Maya
User Guide.

It is assumed that the reader is an intermediate to expert Maya and mental ray user with a
good understanding of fundamental rendering, ray-tracing, and compositing concepts and
techniques.

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Contents
1. What Are Maya Render Passes? ... 5

1.1. Old vs. New Render Passes ... 5

2. Advantages of Using Render Passes .. 5

2.1. Easier Workflow in Maya ... 5

2.2. Interoperability .. 6

2.3. Lower Render Times ... 6

2.4. Reduced Necessity for Custom Shader Development 6

2.5. Faster and Easier Material Shader Authoring ... 6

3. Render Layers vs. Render Passes .. 6

3.1. Reasons to Use Render Layers for Decomposition .. 6

3.1.1. Scene Partitioning for Performance .. 6

3.1.2. Overrides .. 7

3.1.3. Pre and Post Render Scripts .. 7

3.1.4. Camera and Lens Effects ... 7

3.1.5. Global Illumination and Final Gathering ... 7

3.2. Reasons to Use Render Passes for Decomposition ... 7

3.2.1. Performance ... 7

3.2.2. Scene Segmentation with Optical Interactions ... 8

3.2.3. Render Pass Types and Options .. 8

3.2.4. Sample Coherence ... 8

3.3. Grouping Render Passes .. 8

3.3.1. Grouping by Layer .. 8

3.3.2. Grouping by Set ... 9

4. Render Pass Principles.. 9

4.1. Understanding Pass Contribution Maps .. 9

4.2. Dealing with Shadows ... 11

4.3. The Master Beauty .. 11

5. mental ray for Maya Render Pass Fundamentals .. 12

5.1. Custom Frame Buffers .. 12

5.2. Pass Implementation Categories .. 12

5.2.1. Light Loop Material Passes .. 12

5.2.2. Non-Light Loop Material Passes .. 13

5.2.3. Non-Material Passes .. 13

5.2.4. Shading Engine Passes ... 14

5.2.5. Volume Passes .. 15

5.3. Post-Processing Effects .. 15

5.3.1. Glow ... 15

5.4. Complex Shading Networks .. 17

2

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

5.4.1. Combinations of Multiple Shaders .. 17

5.4.2. Chained Material Shaders .. 19

5.4.3. Non-Linear Color Transformations ... 20

5.5. User-Written and Third-Party Shaders .. 20

5.5.1. Passing Through a surfaceShader Node ... 21

5.5.2. Capturing the Shader Output Structure .. 21

5.5.3. Custom Passes .. 21

5.6. Bypassing the Shading Engine ... 22

6. Options for Material Passes ... 22

6.1. Shadows ... 23

6.2. Hidden Geometries Cast Shadows ... 23

6.3. Hold-out .. 24

6.4. Use Transparency ... 24

6.5. Hidden Geometries Visible in Reflections ... 24

6.6. Hidden Geometries Visible in Refractions ... 25

6.7. Hidden Geometries Produce Reflections .. 25

6.8. Hidden Geometries Produce Refractions .. 25

6.9. Minimum Reflection Level ... 26

6.10. Maximum Reflection Level .. 26

6.11. Minimum Refraction Level ... 27

6.12. Maximum Refraction Level .. 27

7. Render Pass Presets ... 28

7.1. Editing Default Values ... 28

7.2. Adding Presets .. 29

8. .mi File Representation .. 29

8.1. File Export Options .. 29

8.2. Render Pass Translation ... 30

8.2.1. The Frame Buffer Data Block ... 30

8.2.2. Pass Contribution Map Encoding ... 31

8.2.3. The Options Block .. 32

8.2.4. Material Definitions ... 32

8.2.5. Shadow Shaders .. 33

8.2.6. The Camera Block .. 33

8.3. Using Render Passes with Render Proxies .. 34

9. Render Pass Naming ... 34

9.1. File Naming Mechanisms .. 34

9.2. Frame Buffer Naming (for OpenEXR® files) .. 35

10. Transparency .. 35

10.1. The Meaning of Premultiplied ... 36

3

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

10.1.1. The Premultiply Rendering Option ... 36

10.2. Alpha Channels of Render Passes ... 36

10.3. Transparency vs. Refraction ... 37

10.4. Applying Transparency to a 3rd Party Shader.. 37

11. Compositing Guidelines ... 39

11.1. Basic Compositing Arithmetic for Combining Passes 39

11.2. Compositing Scene Partitions ... 40

11.2.1. Pre-Matted Compositing ... 40

11.2.2. Standard Matte-Based Compositing ... 42

11.2.3. Un-Pre-Multiplied Matte-Based Compositing.. 42

11.2.4. Shading Decompositions .. 43

11.3. Handling Environments and Backgrounds .. 43

11.4. Dealing with Reflections and Refractions .. 44

11.5. Tone Mapping and Color Correction ... 44

11.6. Using the Shadow Passes .. 45

12. Working with the mia_material Shader .. 45

12.1. Current limitations ... 46

12.2. Extracting reflection and refraction render passes. ... 46

13. Working with the mental images Architectural Sun and Sky Shaders 46

14. Basic Compositing Techniques and Examples .. 47

14.1. Light Tuning .. 47

14.2. Shadow Tuning ... 51

14.2.1. Dialing-in shadows globally .. 51

14.2.2. Dialing-in Shadows per Light Source ... 53

14.2.3. Modifying the Shadow Opacities of Shadow Casters 53

14.2.4. Re-projecting Shadows .. 55

14.3. Managing Lighting with Partitioned Scenes. ... 57

14.3.1. The Combination Matrix ... 57

14.3.2. Reflections and Refractions.. 58

14.3.3. Shadows .. 58

14.3.4. Indirect Illumination .. 58

14.4. Tuning Reflections and Refractions .. 58

14.5. Deferred Motion Blur and Depth of Field ... 59

14.5.1. Image-Based Motion-Blur ... 59

14.5.2. Image-Based Depth of Field ... 62

14.6. The De-comp Re-comp Workflow ... 63

15. The Shader SDK ... 63

Appendix – Flame Compositions .. 64

4

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

1. What Are Maya Render Passes?
In cinematography, the term pass traditionally refers to one of many geometrically
coherent shots taken in motion control photography, which are then optically or digitally
composited to form a visual effects shot. Render passes in Autodesk® Maya® software
are a metaphor for an analogous computer graphics process in which several coherent
shots are produced, and subsequently combined using image compositing tools.
However, the objectives of the two are completely different: motion control passes help
solve the problem of combining images of objects that cannot be filmed simultaneously,
such as multiple copies of the same actor, or physical objects that are at different scales;
on the other hand, Maya render passes are designed to deliberately decompose a
renderable scene into multiple component images that can be altered independently
before recombining them in compositing. Illustrated examples of render pass compositing
techniques are given in section 14 of this document.

The Maya notion of a render pass is not to be confused with the passes used in multi-pass
rendering techniques, which usually consist of rendering the same scene multiple times to
achieve effects that cannot be computed conveniently or efficiently by rendering the scene
only once. Examples of such techniques include glow effects, reflection maps, shadow
maps, and accumulation buffer-based effects (e.g. some motion blur and depth of field
techniques). By contrast, Maya render passes are typically rendered simultaneously,
which helps make it a computationally efficient process.

1.1. Old vs. New Render Passes
In the Maya User Guide, the term multi-render pass is used to refer to the render pass
technology introduced in Maya 2009, which is the object of this document. That term is
used in the guide to avoid confusion with the legacy (pre 2009) render pass feature. In the
present document however, the term render pass is always taken to mean the new render
pass framework, which is supported by mental ray for Maya. The old render pass feature
remains accessible through the render layer attribute editor’s Render Pass Options
section, but it is considered obsolete for mental ray since it is less powerful, less versatile,
and slower. The old render pass feature is still relevant for Maya users who render with
the Maya Software renderer.

2. Advantages of Using Render
Passes

The compositing techniques that can be achieved using render passes were possible in
the past, but may have been prohibitively complex and costly because of render layer
management challenges and, in many cases, the need for user-written shader code.
Render passes were primarily designed to help solve those problems and thus make
advanced compositing workflows accessible and affordable to a larger class of Maya
users.

2.1. Easier Workflow in Maya
The Passes tab in the Render Settings window allows users to create and configure
render passes without any scripting or programming. Furthermore, the render pass
Attribute Editor exposes a series of advanced options to tune the behavior of render pass
extraction without having to get involved with shader code.

5

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

2.2. Interoperability
By using Export for Precompositing in the Render menu, it is more quick and easy to
interchange and synchronize rendered frames between Maya and compositing
applications. The Maya® Composite high-performance compositor (formerly known as
Autodesk® ToxikTM software, and now a feature introduced in Autodesk Maya 2010
software) has built-in support for the .precomp interchange format. This file format is in
fact a self-documented Python® script, making the data more easily interpretable by user-
written scripts and third-party applications. Instructions on using this feature can be found
in the Maya User Guide, under Rendering and Render Setup > Rendering > Rendering
menus > Render > Export Pre-Compositing.

2.3. Lower Render Times
Because multiple render passes can be computed simultaneously, rendering multiple
render passes is usually much faster than rendering the same number of render layers,
which are rendered sequentially. Due to the new Maya shader architecture, it is not
necessary to re-evaluate rays and shaders multiple times for all rendered images.

2.4. Reduced Necessity for Custom Shader
Development

The Maya base shaders have native support for a wide range of built-in render passes,
making it rarely necessary to edit and recompile shaders to extract information useful for
compositing.

2.5. Faster and Easier Material Shader Authoring
Maya 2009 and later comes with a Shader SDK that helps make it more quick and easy to
write new material shaders and light shaders that support the render pass framework.
Furthermore, our C++ template-based architecture helps make it possible to re-use parts
of pre-existing shaders without the need for code duplication or reverse-engineering.

3. Render Layers vs. Render Passes
In Maya, there are two similar but distinct means of producing decomposition images:
passes and layers. Render layers are intended for decomposing scenes at the object level
and for overriding properties, while render passes are intended to decompose data at the
shading level. However, shading decompositions can be achieved with render layers by
using the material override and attribute override mechanisms, and object level
decompositions can be achieved in render passes by using pass contribution maps
(discussed further in section 4.1). The selection of the method for achieving a given
decomposition is situation dependent.

3.1. Reasons to Use Render Layers for
Decomposition

3.1.1. Scene Partitioning for Performance
Very large and complex scenes often test the limits of what a graphics workstation or
render node can handle, especially in terms of RAM capacity. Despite the additional
address space of 64-bit architectures, physical RAM remains limited. A common solution
is to break down the scene into layers that are rendered separately, then composited.
The renderer only needs to process the scene entities present in the layer being rendered,
which makes render layers a good tool for breaking down the computational burden. This
is known as the divide and conquer strategy.

6

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

3.1.2. Overrides
The layer override mechanism is a powerful tool that allows node attribute values and
connections to be different from one layer to another. There is no equivalent for render
passes. However, there are many uses for layer overrides that can be replaced with
alternate pass-based workflows. For example, material overrides with a black surface
shader could be used to perform hold-outs. On the other hand, the same effect can be
achieved by hiding the hold-out object using a pass contribution map, and turning-on the
hold-out option in the pass Attribute Editor. The equivalent pass-based workflow is usually
preferable because it is typically easier to set-up and it is usually faster to render multiple
passes than multiple layers.

3.1.3. Pre and Post Render Scripts
The pre and post render scripts allow for a powerful level of render customization. They
help make it possible, among other things, to temporarily alter a scene for a specific
render layer, and restore the scene when the render is done. This is not possible with
render passes because they are rendered in parallel.

3.1.4. Camera and Lens Effects
Many effects are achieved through the manipulation of eye rays1, which is performed by
the virtual camera or a lens shader. Because render passes that are rendered
simultaneously share the same rays, it is not possible to vary eye ray based effects (e.g.
motion blur, depth of field, lens distortion) on a per-pass basis. Many lens shaders also
apply color transformations such as exposure control and tone mapping, which could, in
theory, be controlled on a per-pass basis, but that feature is not available as of Maya
2011. Currently, Maya lens shaders that apply color transforms will only affect the Master
Beauty pass. This is by design because tone mapping should normally be applied
downstream of compositing since render pass compositing should always be
performed in a linear color representation for reasons of simplicity and correctness.

3.1.5. Global Illumination and Final Gathering
Global illumination and final gathering computations are based on the set of lights and
geometries present in the current render layer. Photon effects and final gathering may not
vary on a per-pass basis because the associated computations are only performed on a
per-layer and per-camera basis. Therefore, render layers can be used to help isolate the
indirect illumination from a specific light or group of lights.

3.2. Reasons to Use Render Passes for
Decomposition

3.2.1. Performance
Because concurrent render passes are computed simultaneously, a lot of ray-tracing and
shading computation duplication can be avoided by using render passes. Render passes
also help avoid the duplication of many preliminary computations such as tessellation, and
the generation of global illumination maps, final gather maps and shadow maps. With a
few exceptions, rendering multiple render passes within the same render layer is much
faster than rendering the same number of single-pass render layers, as long as there is
ample RAM to accommodate the additional buffers required by the render passes.
Another performance benefit of render passes is that the scene needs to be translated
once per render layer; so reducing the number of render layers by using render passes
may decrease translation overhead. Translation is the process of converting the Maya
scene into a data representation understandable by the renderer, which can be a
significant computational burden in many cases.

1 Eye ray: Straight line path from an imaginary observer’s eye (or camera), through a
screen pixel (or sub-pixel sample), into a virtual 3D world. Casting eye rays is a
fundamental part of the ray-tracing rendering technique.

7

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

3.2.2. Scene Segmentation with Optical Interactions
In Maya, there is a node type called passContributionMap, which is used for per-pass
scene partitioning. Scene entities that are excluded by a render layer are bypassed in the
scene translation process, which means the renderer is unaware of their existence at
render time. On the other hand, objects that are present in a render layer, but excluded
from a render pass belonging to that layer, are available to the renderer, and thus may
optionally be used in optical interactions even though the objects are not rendered. For
instance, a render pass may be configured such that hidden objects continue to cast
shadows, be visible in reflections and refractions, or produce hold-out silhouettes.

Light contributions from global illumination and final gathering cannot be controlled per
pass because they are computed only once per render layer. Therefore, excluding an
object at the pass level means that the object still produces indirect illumination effects
(caustics, color bleeding) on surrounding objects. In order to suppress an object along
with its indirect illumination effects, it must be excluded at the layer level.

3.2.3. Render Pass Types and Options
The main objective for using render passes is the functionality of the passes themselves.
The various render pass types are programmed to extract specific decompositions of the
computations made in the material shader, or other shading state information, in a highly
configurable manner without any programming or complex shading network design. Built-
in render pass types are enumerated and described in the Maya 2011 User Guide, under
Rendering and Render Setup > Rendering > mental ray for Maya rendering > Visualize
and render images > Multi-render passes. Some of the render pass configuration options
are explained later in section 6, and they are formally documented in the User Guide,
under Rendering and Render Setup > Rendering > Rendering nodes > Render pass
nodes > Render pass Attribute Editor.

3.2.4. Sample Coherence
Producing many render passes in the same render layer assures that each of those
passes will be constructed from the same set of samples (i.e. from the same eye rays,
secondary rays, and light/shadow rays). On the other hand, the image sampling in
separate render layers may differ because of adaptive sampling or inconsistent pseudo-
random effects. This may result in sub-pixel inconsistencies, which may yield artifacts
when compositing images from different render layers.

For example, if a scene element is submitted to different illumination conditions from one
layer to another, this may affect the adaptive refinement of eye ray and/or shadow ray
sampling, leading to subtle discrepancies between render layers. These discrepancies are
not always noticeable at first, but they sometimes lead to compositing artifacts down the
road.

This problem can be reduced by boosting sampling settings and/or not using adaptive
sampling, at the cost of decreased rendering performance. Alternately, the problem can
be avoided altogether with render passes.

3.3. Grouping Render Passes
Render passes and render layers are both represented by Maya nodes and links can be
created between layers and passes. These associations are exposed in the Passes tab of
the Render Settings window. For a render pass to be rendered, it needs to be associated
with one or more renderable render layers. When a given render layer is rendered, all of
its associated passes are rendered. Therefore, when a new render pass is created, it can
be set-up to be rendered with any number of render layers in a scene.

3.3.1. Grouping by Layer
In many situations, it is desirable to separate render passes so as to not render them all in
the same render layer. An obvious reason for that is when layer overrides or geometry
exclusions are necessary to set-up the passes correctly. However, there are other

8

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

reasons for organizing a large set of passes into multiple layers, such as performance and
workflow.

Performance wise, it is usually beneficial to group many render passes into a single layer
to have them render simultaneously. However, each additional render pass may increase
the amount of memory consumed by the renderer at render time. Therefore, having too
many render passes in the same layer may result in a slow-down due to virtual memory
swapping, and even out-of-memory errors, especially with 32-bit operating systems. An
interesting solution to avoid running out of memory address space is to use the frame
buffer file feature of mental ray (c.f. mental ray manual). Another trick is to decrease the
number of render threads in order to reduce the mental ray render’s RAM footprint. Using
fewer threads is counter-intuitive, but it often helps increase performance when memory
contention is the main performance bottleneck. Ultimately, one should use a divide and
conquer strategy consisting of breaking down the rendering into several layers, with fewer
passes per layer.

Also, when going through rendering-compositing iterations, it is not always necessary to
re-render all of the passes. For instance, when adjusting light attributes, only the passes
affected by the edited light need to be re-rendered. Therefore, grouping passes into
layers based on their usage can help avoid wasting CPU-time on the render farm. The
alternative is to use the Renderable attribute on render pass nodes.

3.3.2. Grouping by Set
Another means of grouping render passes is through a node type called RenderPassSet.
Render pass sets are hubs for the links between layers and passes. They are intended to
simplify pass management by allowing the user to assign render passes in groups. Sets
can be organized in multi-level hierarchies.

4. Render Pass Principles
4.1. Understanding Pass Contribution Maps
The pass contribution map2 is one of the most fundamental tools for managing render
passes. Nodes of this type act as connection hubs between DAG objects and render
passes. By default, the set of DAG objects belonging to the current render layer are
rendered in a render pass. If one or more pass contribution maps (PCMs) are connected
to a render pass, only the DAG objects of
the current render layer that are
connected to one or many of those PCMs
are rendered. PCMs that are not
connected to the current render layer are
ignored.

Two categories of objects are managed
by PCMs: renderable geometries (e.g.
surfaces, volumes) and light sources.
Geometries are connected via their
transform nodes, and instances with DAG
paths that traverse a transform node
connected to a PCM are considered
members of that PCM. That makes it
possible to connect individual instances
as well as object groups. On the other hand, light sources are connected directly through

Figure 1 A Light Connected to a PCM

2 A PCM, or pass contributions map, is a type of Maya scene node. Instructions on using
PCMs are provided in the User Guide under: Rendering and Render Setup > Rendering >
mental ray for Maya rendering > Visualize and render images > Multi-render passes

9

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

their shape nodes, which is consistent with the policy that light instancing is not officially
supported in Maya. Some light sources, such as area lights, are also renderable
geometries, and can therefore either be connected as a geometry (via a parent transform
node) or as a light (via the shape node). When a light is initially added to a PCM, it is
connected as both a light source and a geometry.

If the desired behavior is for an area or IBL light to contribute only as a light source or only
as a geometry3, then one of the two links must be deleted, which can be done in the
Hypergraph editor or in a Maya Embedded Language (MEL) or Python script. In the case
illustrated above, the light is a point light, so the connection with the transform node
(pointLight1) has no visible effect on the rendered image.

The pass contribution assignment logic is inclusive, which means that a pass connected to
multiple PCMs includes the union of all lights and geometries included by the PCMs. An
additional subtlety is that for a PCM to be active, it must also be connected to the current
render layer. This adds an additional level of control that allows the same render pass
node to be used from one render layer to another, with different pass contribution maps,
without relying on the layer override mechanism.

Figure 2 PCM variants per layer

In the example of figure two, there are two spheres that are members of all layers, and
connected to their respective pass contribution maps. There is also a beauty pass that is
associated with all layers and both pass contribution maps. However, the beauty pass
contains different geometry based on the render layer: the instance of the beauty pass for
defaultRenderLayer contains both spheres because both PCMs are connected to
defaultRenderLayer; the beauty pass for layer1 contains only nurbsSphere2; and the
beauty pass for layer 2 contains only nurbsSphere1. These associations are controlled
through two user interfaces (UIs) in Maya: the Render Layer Editor, and the Passes tab of
the Render Settings window. See the Maya User Guide for more details on how these
interfaces are operated.

Another subtle behavior about PCMs is that if none of the PCMs attached to a given pass
contain any lights, then all lights in the current layer are turned-on. This simply means
that a user who only wants to use PCMs to control geometry contributions does not need
to bother with attaching lights to PCMs. The same is also true for geometries, hence if

3 The ‘geometry’ aspect of rendering a light source refers to the surface representing the
light source being rendered as an emissive (i.e. incandescent) object. This only applies to
area lights and IBL.

10

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

none of the PCMs attached to a given pass contain any geometry, then all geometry in the
current render layer is turned on. To understand this logic, it is important to remember that
by default, lights get connected as both light
sources and geometries. Therefore, the links
to the light transform nodes need to be
removed in order for PCMs to only control
illumination contributions. One way to remove
a light’s transform-to-PCM connection by hand
is to:

Figure 3 Removing the Transform-to-PCM
Connection of a Light

1. select the light in the viewport,
2. display the Hypergraph Connections

window,

3. select and delete the transform-to-
PCM connection.

For example, the transform-to-PCM connection
is the one selected (highlighted in yellow) in
Figure 3.

PCMs and light linking can be used together. For scene geometry to receive illumination
or cast a shadow from a given light source in a given render pass, both the PCM
conditions (specific to the render pass) and the light linking conditions (specific to the
render layer) must be met.

An important limitation of PCMs is that they are based on DAG object connections rather
than objectSets. Maya object sets are capable of component level ownership (individual
faces, edges, vertices), while PCMs are not. Therefore, an individual DAG shape instance
is either completely or not at all a member of a PCM.

4.2. Dealing with Shadows
Pass contribution maps may be used to control not only which objects are visible, but also
which objects cast shadows. Depending on how a render pass is setup (more on pass
options in section 6), objects that are present in the current render layer, but not in the
current render pass, may cast shadows onto objects that are included by the render pass.
This can be very useful for many compositing workflows. However, it should be noted that
this level of control over shadows is only provided for ray-traced shadows.

Shadow maps provide a means to accelerate rendering, but they have the limitation that
they are rendered only once per camera per render layer. Therefore, they cannot capture
per-pass shadow casting differences. The same is also true for global illumination and
final gathering, which may produce indirect shadows.

4.3. The Master Beauty
The Master Beauty is the default pass, and it cannot be controlled explicitly. It helps
provide backwards compatibility with Autodesk® Maya® 2008 software. There is no node
for it, so it cannot be deleted or configured, and it cannot be attached to a pass
contribution map. In the mental ray embodiment of the render pass system, this pass
uses the main RGBA buffer, while all other render passes use custom frame buffers. The
main RGBA buffer is the only buffer in mental ray that cannot be turned off.

11

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

5. mental ray for Maya Render Pass
Fundamentals

5.1. Custom Frame Buffers
By default, mental ray rendering software produces a single result image per render. In
the mental ray documentation, this built-in buffer is referred to as the main RGBA buffer.
In Maya (since version 2009), this buffer is known as the Master Beauty pass. mental ray
allows the user to define additional auxiliary buffers, i.e. custom frame buffers, in order to
store additional results generated during rendering. Writing data to these additional buffers
requires shaders that were purposely designed to do so.

mental ray for Maya uses the custom frame buffer feature of mental ray to render an
arbitrary number of passes simultaneously. In previous versions of Maya (prior to 2009), it
was possible to set-up custom frame buffers to allow user-written or third-party shaders to
produce extra images. In order to prevent conflicts with pre-existing shaders, it is still
possible to manually reserve custom frame buffers for this purpose. This is exposed in the
Attribute Editor of the miDefaultOptions node, under the Extra Attributes tab. That
workflow is deprecated and is maintained solely for backwards compatibility. The
preferred method of implementing custom passes, as of Maya 2009, is to append new
outputs to the output structures of custom shaders. Those new outputs can in turn be
connected to a writeToColorBuffer shader. The writeToColorBuffer shader can then be
associated with a pass of the CustomColor type. This method provides the user with
geometry-wise pass contribution map support for free. Several behaviors of the
writeToColorBuffer shader were improved in Autodesk® Maya® 2010 software, and
performance was improved in Maya 2011. A patch for Maya 2010 with the performance
improvement is available to subscription customers upon request.

5.2. Pass Implementation Categories
In the mental ray for Maya plug-in, not all render passes are implemented the same way.
It is important to understand the subtleties of how passes are implemented in order to
better comprehend how they work.

5.2.1. Light Loop Material Passes
This category of render passes is handled by material shaders inside their respective light
sampling loops. Built-in render pass types that depend on direct illumination are
implemented this way. The render pass types in this category are:

• Ambient (point-light-like part of ambient light contribution)4
• Ambient Irradiance
• Beauty (direct illumination portion)
• Beauty No Shadow (direct illumination portion)
• Diffuse
• Diffuse No Shadow
• Direct Irradiance
• Direct Irradiance No Shadow
• Raw Shadow
• Shadow
• Specular
• Specular No Shadow

4 The Maya ambient light behaves as a combination of a point light (shading contribution
computed in the shader’s light loop) and an omni-directional light (computed outside of the
light loop).

12

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

• Translucence
• Translucence No Shadow

Because the passes are evaluated in the light sampling loop, each pass can have a
different illumination value per sample, allowing pass contribution maps to be taken into
account. For instance, a given light sample may be forced to zero for a given pass if the
sample evaluates a light that is not included in pass contribution maps linked to that pass.
At the same time, other render passes may be receiving light for the same sample. The
same logic also applies for shadow casters, which can be included or excluded on a per-
pass basis using PCMs.

5.2.2. Non-Light Loop Material Passes
Some render pass types are not light-dependent, so they are not in the light loop, but they
are still dependent on data or intermediate results that can only be captured by the
material shader. These pass types are:

• Ambient (omnidirectional portion of ambient light contribution)
• Ambient Material Color
• Beauty (indirect light contributions from GI, FG, scattering, incandescence,

ambient)
• Diffuse Material Color
• Incandescence
• Incidence (Light / Normal)
• Indirect Irradiance
• Glow Source
• Material Normal
• Reflected Material Color
• Reflection
• Refraction
• Refraction Material Color
• Scatter

As a result of not being written from the light loop, none of these pass types are affected
by PCM-based light inclusion/exclusion. Therefore, the scattering, final gathering, and
global illumination contributions take into account lights that belong to the current render
layer, regardless of PCM associations. The main reason for this design is that the
computations involved are too expensive both in terms of CPU-time and memory to be
performed on a per-pass basis.

5.2.3. Non-Material Passes
Non-material passes are passes that are not written by regular material shaders. Instead,
they are written by special-purpose shaders that compute the value to be written to the
pass’s frame buffer directly from the ray state, without dependency on the material
shading network. Although these pass shaders do not render materials, they are
technically material shaders that are rendered sequentially with the shading engine
shader. The shading engine is a special shader that is at the root of surface material
shading networks, and is responsible for several low-level rendering tasks, such as
compositing render pass contributions from child rays (reflections, refractions, and
transparencies). Because the shaders responsible for non-material passes are
independent of the shading engine, they will not be composited the same way material
passes would be. Non-material pass types are:

• 2D Motion Vector
• 3D Motion Vector
• Ambient Occlusion
• Camera Depth
• Coverage
• Normalized 2D Motion Vector

13

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

• Object Incidence (Camera / Normal)
• Object Normal

Some of the advanced compositing options that are available with certain other render
pass types are handled by the shading engine, and are therefore not available for non-
material passes.

The fact that the render pass implementations are in separate shaders has important
implications for the mental ray scene description. It means that the pass shaders need to
be inserted into affected material blocks. For example, a material block with a camera
depth pass would look like this in an .mi file:

material "phong1SG"
"adskMayaShadingEngine" (

"surfaceShader" = "phong1.outColor",
"cutAwayOpacity" 0.,
"customShader" off

)
"adskPassCameraDepth" (

"frameBufferNumber" 0,
"encodingIndex" 0,
"remap" off,
"znear" 0.,
"zfar" 1000.,
"minbuffer" 0.,
"maxbuffer" 1.

)
shadow = "phong1:shadow"

end material

The shader calls to adskMayaShadingEngine and adskPassCameraDepth are untyped,
which means they are considered material shaders by default. mental ray puts both calls
into a linked list, and both shaders are called sequentially. This logic works well when
rendering monolithic scenes. However, getting non-material passes to work using mental
ray assemblies can be tricky because the frame buffers for the render passes are
declared in the camera block, which is usually in the main scene file, while some material
blocks may come from assemblies, which may have been exported with a different render
pass configuration. As of Maya 2011, there is still no fool-proof solution to this problem.
One approach would be to write a script to insert the necessary shader calls to material
blocks in assembly files. To do so, it is necessary to understand many of the details of
how Maya render passes are described in .mi files, which are explained later in section 8.

In a normal setup, all secondary rays are cast from the shading engine or one or many of
its child shaders, which implies that the pass value written by the shallowest surface hit (in
terms of ray recursion) prevails for pass shaders that are called after the shading engine.

5.2.4. Shading Engine Passes
Pass types managed directly by the shading engine are:

• Matte
• Opacity

These pass types are subject to being composited at render time, so they need to be
handled under the shading engine, but their computation is independent of the material,
so they do not need to be handled by individual material shaders. Their behavior is
essentially identical to non-light loop material passes.

14

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

5.2.5. Volume Passes
The volume engine5 takes care of contributing volume rendering results to various render
passes. The pass types that receive contributions from the volume engine are:

• Beauty
• Light Volume
• Object Volume
• Scene Volume

Volume rendering effects contribute to beauty passes. The other volume passes help
isolate specific types of volumetric effects. The Light Volume pass type captures light fog
effects; Scene Volume is for global fog (e.g. atmospheric effects); and Object Volume is
for other volume rendering effects (volume fur, fluids, particles, etc.)

5.3. Post-Processing Effects
With mental ray for Maya, output shaders are used to help produce various post-
processing effects. These effects are not captured by render passes. Maya render
passes were designed to help solve compositing interoperability workflow issues. In a
production pipeline that involves compositing rendered images, it is not usually
appropriate to apply post-processing effects in the rendering stage because then the
effects become baked-in.

5.3.1. Glow
Glow is a good example of a basic post-processing effect that is built-in to Maya. This
effect is provided for convenience to allow users to produce a lens glow effect directly at
render time. Users that use compositing in their production pipeline should not use this
feature because pre-baked glow is notoriously hard to composite correctly. Before
discussing glow workflows any further, the following provides some theory about how glow
works.

5.3.1.1. Real-World Glow
Glowing is a real-world optical phenomenon that causes
cameras and human observers alike to see light halos around
bright objects. The two most common phenomena that cause
glow are: light scattering in a volume surrounding the light
source (like a bolt of lightning in a cloud), and lens flares. The
first type of glow is a rendering effect that can be achieved
through volume rendering. On the other hand, lens flares are
the type of glow that are commonly rendered as a post-
processing effect because they can be accurately simulated on
a projected 2D image without any knowledge of the
composition of the 3D scene.

Figure 4 Example of Lens Flare in a
Photograph 6

Lens flares occur because the light entering a lens does not all
follow the intended refractive path. Some portion of the light
may be reflected, diffracted and/or scattered. The proportion of
light that follows unwanted image formation paths is usually so
small that the effect is not visible in photographs of low dynamic

range (LDR) scenes. The artifacts occur when a particular
object in the scene is much brighter than the rest, such as the
Sun.

5 The volume engine is a built-in shader. It is used by mental ray for Maya for managing
volume rendering effects. Maya base volume shaders are designed to be used in
conjunction with the volume engine.
6 Source: NASA (public domain)

15

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

In the above photograph, the lens flare appears overlaid on top of the foreground objects
despite the fact that the sun, which is causing the flare, is further away. This is because
the physical phenomenon causing the flare occurs in the image formation process, and
not in the scene.

5.3.1.2. Rendered Glow
The glow pattern around the sun in Figure 4 is caused mostly by scattering, and can easily
be modeled as a stationary impulse response. This is the type of artifact that is modeled
by the camera glow effect in mental ray for Maya. More complex flare patterns caused by
light reflection (typically circles and rings lined-up along an axis) are more difficult to model
because the response varies with the position of the light source.

The reason for computing glow as a post processing effect is that the light from a simple
image sample (eye ray) can affect a large area of the final image, which makes it
impractical to compute the effect during the ray-tracing stage of rendering. It makes more
sense to compute the effect by filtering the rendered image.

In high-dynamic range (HDR) images, a glow effect that accurately models a “scattering”
flare is very simple to produce using a regular discrete convolution filter. However, the
camera glow effect in mental ray for Maya is a little more involved than that because it
was designed to be able to work with low dynamic range image buffers. Because of the
color clamping that occurs when rendering to an LDR image buffer, it is impossible to
determine a posteriori the real brightness of an object that is rendered as full white.
Therefore, it is not possible to accurately determine the intensity of the glow pattern that
would appear within the dynamic range of the image. To overcome this problem, mental
ray for Maya uses a glow buffer to store the intensity of the glow produced by each image
sample. This is a value typically within the dynamic range of the image buffer, and is
stored in a separate image buffer. mental ray for Maya implicitly creates a single glow
buffer that is used to accumulate glow values that are used to modify the Master Beauty
pass as a post processing effect. The glow post process consists of simply applying to the
glow image a convolution filter corresponding to the glow pattern, and adding the result to
the Master Beauty buffer.

5.3.1.3. Producing Near Realistic Glow Effects
With Maya base shaders, glow is controlled by the “glow intensity” attribute on material
shaders. This is a scale factor that is used to multiply the shader’s output color, to produce
the value to be stored in the glow buffer. The glow intensity value should typically be near
zero, to bring the high intensity glow-producing regions of the image into the glow buffer’s
dynamic range. In theory, to mimic the behavior of a real lens, the same glow intensity
value should be systematically applied to all materials in the scene. The main reason this
parameter is a material shader property rather than a camera property in Maya is to
provide artistic freedom to the user, rather than to strictly enforce physical correctness.

5.3.1.4. The Glow Source Render Pass
The output shader that is currently used to process the glow buffer does not interact with
the Maya render pass framework. It only modifies the Master Beauty pass to produce a
baked-in glow effect that is not convenient for downstream compositing. In order to add in
a glow at the compositing stage, there are several possible workflows. When working with
HDR images, most compositing software applications have tools to directly compute glow
or other types of lens flare effects without requiring any additional input. With LDR
images, however, one can reproduce the same technique implemented in the Maya
software’s built-in glow by using a Glow Source render pass. Render passes of this type
are equivalent to the glow buffer described above, with the added flexibility of PCM
support. In order to produce a glow effect from a glow source pass, the image must be
filtered using a filter representative of the desired glow pattern (a blurring filter for
example), before it can be composited additively. This workflow allows the artist to control

16

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

the glow pattern and intensity interactively in the compositing software, without ever
having to re-render the scene.

Alternatively, it is possible to isolate the glow effect as produced by the Maya software’s
built-in camera glow feature in order to apply it in compositing. However, this cannot
currently be achieved by using a render pass. Instead, the user must create a separate
render layer, and use a layer override to turn on the Hide Source option on all materials.
Then, the Master Beauty pass of that render layer will contain only the glow effect.

5.4. Complex Shading Networks
All material passes (light loop and non-light loop) are written to by material shaders. This
can cause conflicts in complex shading networks that contain multiple material shaders or
utility shaders that modify the result of a material shader without modifying render pass
contents. The following subsections illustrate a few challenging cases that require special
attention.

5.4.1. Combinations of Multiple Shaders
The shading network in the following illustration includes four surface shaders, each of
which writes their respective results to render pass frame buffers. The condition1 node
switches between the Anisotropic shader and the Phong shader depending on whether or
not normals are inverted, which produces a two-sided material. The result of that
conditional is then blended with a red Lambert material, and finally a surfaceShader node
is required as an interface between the blend node and the shading engine.

Figure 5 Shading network with blending and condit ional

17

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 6 Rendering Results. Left) Master Beauty Right) Beauty Pass

As demonstrated in Figure 6, the Master Beauty renders as one would expect, but not the
beauty pass, and this is because multiple material shaders are concurrently writing to the
render pass frame buffers. To workaround this, edit the framebuffer write options on each
of the shaders so that the sum of the values contributes to the frame buffer and respects
the logic of the shading network. Naturally, this problem only happens with material
passes (light loop and non-light loop). Let us examine three different ways to approach the
problem.

Solution 1: Let only the surfaceShader1 node contribute. To do this, the frame buffer
contributions made by the three other shaders must be turned off by setting the frame
buffer write operation to “No Operation” in each of the shaders’ attribute editors. This is a
simple solution, but it only works for beauty passes, because beauty is the only render
pass type written to by the surfaceShader node type, since it is just a pass-through
shader. If the goal is to extract diffuse, specular, irradiance, and other material passes,
this solution does not suffice. Another limitation of this method is that pass contribution
maps do not affect lights and shadows because the active light loops are in the upstream
shaders, not in the surfaceShader1 node, from which the contribution is taken. Despite
these drawbacks, this method is still useful for a variety of important applications, such as
geometry-wise partitioning and hold-outs using PCMs, as well as for isolating specific
reflection and refraction trace levels (discussed in section 6).

Solution 2: The frame buffer contributions made by the surfaceShader1 node are turned
off, and frame buffer contributions of the other surface shaders are scaled to match the
effect of the blendColors1 node. In Maya 2011, the scaling is already done automatically
by default (with the Render Pass Mode set to Apply to Render Passes on the BlendColors
shader node). To do the same in Maya 2009 or Maya 2010, the frame buffer contribution
scales of the upstream shaders need to be set manually, and frame buffer contribution
scaling must be turned on.

With Maya 2009 or Maya 2010: In the above Hypershade graph, the lambert2 node is
connected to the first input of the blendColors1 shader, so it has to be scaled by a factor
equal the blender parameter of the blendColors1 shader. On the other hand, the phong1
and the anisotropic1 shaders need to be scaled by 1-blender. There is no need to worry
about the Phong and Anisotropic shaders conflicting in this example because the
condition node only evaluates the input that is selected by the condition, and the other
shader does not even get executed.

With this solution, material render passes produce correct results.

Solution 3 (for Maya 2009 and Maya 2010): Link the blender parameter to the scale
factors. This is equivalent to solution 2 except that the scale factors are kept in synch with
the blender parameter through connections, which makes it convenient to adjust, animate,
or texture-map the blender parameter. A node of type plusMinusAverage can be used to

18

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

compute the 1-blender factor needed for the shader that feeds into the second input of the
blendColors1 shader. The plusMinusAverage node is set to have to 1D inputs and is set to
subtract mode. Input 0 is set to 1, and input 1 is connected to the blender parameter of the
blendColors node.

Figure 7 Shading network for Solution 3

New in Maya 2011: This class of problem has a much simpler solution as of Maya 2011,
because the blendColors shader now has a Render Pass Mode parameter. All standard
Maya shaders that are used for combining or manipulating colors also have this parameter
(i.e. blendColors, layeredShader, remapColor, remapHsv, clamp, contrast,
gammaCorrect, hsvToRgb, rgbToHsv, luminance). The available modes are:

• Pass through: This is equivalent to the Maya 2009/Maya 2010 behavior. The
shader does not affect render passes. Shader operations performed by upstream
shaders are cumulative.

• Apply to Render Passes: This is the default. Whatever color manipulation that is
performed by this node (for the Master Beauty) is also performed on material
render passes.

• No Contribution: Render pass contributions performed by upstream shaders are
discarded.

• Write Shader Result to Beauty Passes: Beauty passes will receive a contribution
corresponding to the shader’s output value, which is normally the value used for
computing the Master Beauty pass.

5.4.2. Chained Material Shaders
In some cases, it may be desirable to feed the result of one surface shader into another in
order to achieve a creative effect. The Ramp Shader, for instance, could be used to
generate values for the color parameter of a second shader in order to achieve a
customized anisotropic coloring effect. This yields the exact same problem as the
previous example because there are several surface shaders in the same network, all
making independent frame buffer contributions. In most cases, the solution is as trivial as
turning off frame buffer contributions on surface shaders, except for the shader at the root

19

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

of the network, which is typically the shader responsible for the actual shading (in the
physical sense of the word) computation.

However, it may sometimes be useful to isolate render pass contributions from several
different surface shaders in the shading network. Unfortunately, this cannot be done on a
per-pass basis. The solution is to create multiple render layers with layer overrides on the
frame buffer write operation attributes to only accept contributions from one of the shaders
at a time. An alternative is to capture intermediate values from the shading network using
the writeToColorBuffer shader for producing custom passes.

5.4.3. Non-Linear Color Transformations
The pass contribution scale factor, discussed previously, is very useful for reproducing the
effect of a linear color operation (e.g. a blend), onto render passes. Unfortunately, a scale
factor method shown in 5.4.1 is useless for handling non-linear color transforms, as in the
shading network illustrated below.

In this case, frame buffer contributions for one
of the two surface shaders must be turned off
in order to avoid a contribution conflict. By
isolating the contributions from the blinn1
shader, passes can be generated without the
effect of the remapColor1 node. In Maya 2011,
the Render Pass Mode of remapColor1 must
be set to Passthrough.

On the other hand, isolating the contributions
from the surfaceShader1 node would not allow
the capture of material passes except for beauty. This may seem like a serious problem,
but it is not really, since extracting other material passes with the effect of remapColor1 is
virtually useless from a compositing correctness stand-point. This is because non-linear
color transforms are not distributive with respect to the decompositions provided by the
other render passes. In other words:

Figure 8 Simple shading network with a non-l inear
color transform

)()()(bTaTbaT +≠+

where a and b are colors, and T is a non-linear color transformation function.

Therefore, there is no easy and practical way to generate a beauty shot equivalent to the
Master Beauty by compositing component passes that have been individually remapped.
The proper workflow for production pipelines that require a decomposition into material
passes, as well as color transforms, is to avoid performing the color transforms in
rendering and to defer them to the compositing stage of the pipeline.

In situations where different color transforms need to be applied to different scene entities,
render passes need to be segmented into one group per color transform, and compositing
needs to be performed in two stages. In the first stage, the beauty for each group is
composited from elementary material passes. Then, the resulting intermediate images
are subjected to separate color transforms. Finally the color-transformed images are
composited together to obtain the desired shot.

5.5. User-Written and Third-Party Shaders
mental ray material shaders that were not written using the API (application programming
interface) provided by the AdskShaderSDK library do not write anything to render pass
frame buffers. The long-term solution is to port those shaders to the SDK, or have them
ported in the case of third-party shaders. However, even if a shader does not comply with
the Maya render pass framework, it does not necessarily mean that there is nothing to be
done with render passes. First of all, all non-material render passes work just fine. Also,
there are several ways to pipe the output of non-compliant shaders into material render
passes. However, because there is no way to intercept intermediate computations that
happen inside a shader’s light loop, it is not be possible to control light-ray-level

20

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

decompositions. That means that controlling lights and shadow caster contributions on a
per-pass basis using PCMs does not work.

5.5.1. Passing Through a surfaceShader Node
A simple way to get a non-compliant shader to contribute to beauty passes is to hook it up
to a surfaceShader node. In most cases, that is already necessary just to make the
shader interface with the shading engine (i.e. the shading group node). This method is
easier to set-up and may help satisfy many compositing use cases. For hold-outs to work
correctly with semi-transparent geometry, it is important to remember to hook-up the
transparency of the surfaceShader node, assuming that the non-compliant shader can be
configured not to cast its own transparency rays, and let the Maya shading engine do the
calculations. This can usually be achieved by specifying the transparency directly on the
surfaceShader node and not on the 3rd party shader. An example of this workflow is given
in section 10.4.

5.5.2. Capturing the Shader Output Structure
In many cases, non-compliant shaders may already be offering a decomposition of the
shading computation in the form of an output structure. It is possible to re-direct these
outputs into material render pass frame buffers, managed by the Maya render pass
framework by connecting them to a special utility shader designed for this purpose. Such
shaders are already in use in Maya for wrapping non-Maya-specific material shaders
provided by mental images. The shader declaration file AdskShaderSDKWrappers.mi
shows examples of phenomena that embody this strategy. Users may write their own
adapter shaders using the shader SDK, or re-purpose the ones that are already provided
with Maya. The provided adapter shaders were designed to serve as companions to
specific material shaders, but nothing prevents them from being used for other purposes.

5.5.3. Custom Passes
Custom passes may be used as an alternative to using adapter shaders. The workflow is
simpler, but there are important limitations. Custom passes are currently only evaluated
on eye rays, and don’t provide all the compositing options available with other pass types.
On the other hand, custom passes require little
effort to set-up.

Figure 9 Shading Network for Writ ing to Custom
Passes

Creating a custom pass is the same as creating
any other pass type using the Passes tab in the
Render Settings dialog. Depending on the type of
data to be stored in the image, one of the four
variants must be chosen (Custom Color, Custom
Depth, Custom Label, or Custom Vector). Writing
data into these buffers is achieved by placing
writeTo*Buffer nodes in the shading network.
For example, to write to a buffer of type Custom
Color, one would use the writeToColorBuffer
shader. In the shader’s Attribute Editor, there is
a field to select the corresponding type of buffer
to be written to, which allows multiple custom
buffers of the same type to co-exist. The resulting
shading network would look something like
Figure 9:

It is important to note that the writeToColorBuffer
nodes are not on the evaluation path that leads to
the shading group node. Therefore, they are not
evaluated under normal circumstances.
However, if the Evaluation Mode parameter of

21

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

each of those shader nodes is set to Always, they are forced to evaluate anyways.

Using the Always mode is convenient, but it may result in significant performance
degradation in Maya 2009 and Maya 2010. In the example of Figure 9, the
mia_material_x1 material is evaluated twice for each hit: once for the regular shading
network path, and once more because it is upstream of nodes that are in Always mode.
This double evaluation is caused by a shader cache management issue, which is resolved
in Maya 2011. With Maya 2009 and Maya 2010, the performance issue can still be
resolved: the writeToColorBuffer nodes need to be chained using their
evaluationPassThrough inputs and outEvaluationPassThrough outputs. They must be
chained in a way that places them on the shading network evaluation path.

Figure 10 Optimized Shading Network for Writ ing to Custom Passes

In the example of Figure 10, the result output of mia_material_x1 is relayed to the
surfaceShader1 node via the evaluationPassThrough connections, which triggers the
evaluation of the writeToColorBuffer nodes. The material transparency is connected
directly. The link to the miMaterialShader input of the shading group was broken to allow
the surfaceShader1 node to be connected, but the connections to miShadowShader and
miPhotonShader remain untouched. Also, the Evaluation Mode must be set to Pass
Through Only. This workaround is obsolete in Maya 2011, but it is still supported for
backwards compatibility.

5.6. Bypassing the Shading Engine
The shading group node has an option to Export with Shading Engine. This option is
turned on by default. This option should only be turned off when using a custom or third
party shader library that is not designed to work with Maya. The shading engine is
required for material render pass contributions to be computed correctly. Without the
shading engine, only the Master Beauty pass, custom passes, and non-material passes
can be expected to render correctly. Also, writeTo*Buffer shaders with an evaluation
mode set to Always will not be evaluated unless the shading engine is present.

6. Options for Material Passes
In the Render Pass Parameters section of the render pass node Attribute Editor, there is a
series of contextual options. The options available depend on the render pass type. This
section of the document looks at options commonly available for most types of material
render passes. In order to illustrate how all of these options work, the following is a simple
test scene that contains many optical effects with a single beauty pass.

22

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 11 Test scene. Left) Master Beauty; Right) Beauty Pass

In the example scene, a pass contribution map was used to exclude the yellow sphere
from the beauty pass. The render pass parameters for the beauty pass were left to their
default values. These parameters may not have the desired effect when using shaders
that are not fully compliant with the Maya render pass framework.

6.1. Shadows
This option indicates whether or not ray-traced shadows are computed for the current
render pass. This is on by default.

Figure 12 Shadows On vs. Off

6.2. Hidden Geometries Cast Shadows
This option indicates whether or not objects excluded by pass contribution maps but
included in the current layer shall cast shadows. By default, this option is on, which
explains why we see the shadow of the yellow sphere even though the yellow sphere is
invisible.

23

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 13 Hidden Geometries Cast Shadows On vs. Off

6.3. Hold-out
The hold-out option indicates whether or not geometries excluded by pass contribution
maps occlude the scene. By default this option is turned on, which causes hidden objects
to produce silhouettes. This option is very useful for compositing a partitioned scene, by
simply adding the images.

When hold-out is disabled, hidden objects become invisible. In that case, compositing a
segmented scene requires mattes and possibly depth buffers. The advantage of
compositing with hold-out disabled is that occlusions are not baked-in, which allows the
segments to receive independent geometric transforms (e.g. zooming and panning) and
still produce a good composite. Also, turning hold-out off may slightly increase render
time because some additional surfaces, that would otherwise be occluded, need to be
rendered.

6.4. Use Transparency
This option indicates whether or not the scene is rendered with transparency. When
turned off, all geometries are rendered as opaque. With mental ray for Maya, Refractions
are not considered as transparencies. Therefore, refractive objects are not considered
transparent, and continue to be see-through when this option is turned off.

6.5. Hidden Geometries Visible in Reflections
This option indicates whether geometries excluded from the pass by pass contribution
maps, but present in the render layer, are visible indirectly through reflections.

Figure 14 Hidden Geometries Visible in Reflections Off vs. On

24

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

6.6. Hidden Geometries Visible in Refractions
This option indicates whether geometries excluded from the pass by pass contribution
maps, but present in the render layer, are visible indirectly through refractions.

Figure 15 Hidden Geometris Visible in Refractions Off vs. On

6.7. Hidden Geometries Produce Reflections
Turning on this option results in visible geometries being also visible through reflections off
of objects that are excluded by pass contribution maps, but present in the current render
layer. In order to illustrate the feature, the pass contribution map of the example scene
was edited to exclude the gray reflective sphere.

Figure 16 Hidden Geometries Produce Reflections Off vs. On

6.8. Hidden Geometries Produce Refractions
Turning on this option results in visible geometries being also visible through refractions in
objects that are excluded by pass contribution maps, but present in the current render
layer. In order to illustrate the feature, the pass contribution map of the example scene
was edited to exclude the refractive ellipsoid.

25

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 17 Hidden Geometries Produce Refractions Off vs. On

6.9. Minimum Reflection Level
This is the minimum number of reflections a ray needs to have traversed before
contributing to the render pass. A value greater than zero means that no objects are
directly visible to eye rays. This option can be used to help isolate reflections.

Figure 18 Minimum Reflection Level 0 vs. 1

6.10. Maximum Reflection Level
This option has the same effect as the Reflections parameter under the Raytracing section
of the Quality tab of the Render Settings window. The difference is that the global setting
in the Render Setting limits the trace depth, which affects all passes, including the Master
Beauty, which may have a significant impact on render time. On the other hand, the
render pass setting only affects that specific pass, and it does not override the global
setting, so setting the value higher than the global setting has no effect.

26

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 19 Maximum Reflection level 10 vs 0

The right-hand-side images from Figure 18 and Figure 19 are complementary. Adding
them together produces an image similar (up to machine precision) to the original beauty
passes (left-hand side images), that contain all reflection levels.

6.11. Minimum Refraction Level
This is the minimum number of refractions a ray needs to have traversed before
contributing to the render pass. A value greater than zero means that no objects are
directly visible to eye rays. This option can be used to isolate refractions.

Figure 20 Minimum Refraction Level 0 vs. 1

In the bottom and right of the right-hand-side image of Figure 20, there is a faint sliver that
represents a reflection. This is the reflection of refracted light, which technically meets the
criteria of a minimum refraction level of 1. In order to isolate pure refraction, the max
reflection level must be set to 0. Unfortunately, the current framework provides no means
to discriminate between a reflection of a refraction, and a refraction of a reflection, which
would both have a reflection level of 1 and a refraction level of 1.

6.12. Maximum Refraction Level
This option works essentially the same way as the Maximum Reflection Level, but with
refractions.

27

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 21 Maximum Refraction Level 10 vs. 0

Just as in the reflection case, the right-hand-side images from Figure 20 and Figure 21 are
complementary and can be added together to reconstitute a full beauty pass.

7. Render Pass Presets
When creating a render pass with the Passes tab of the Render Settings window, the user
must chose the type of pass from a list box. Each item in that list box is a preset that
comes from a preset file located in maya_install_directory/presets/attrPresets/renderPass.
These files can be edited and new ones can be added in order to provide a customized
render pass palette. It is recommended to backup the contents of this directory before
editing them.

7.1. Editing Default Values
One important advantage of editing render pass presets is that the default settings of
newly created render passes match production requirements. For instance, most render
passes are in 16-bit float format by default. If a project requires 32-bit float renders, then it
may be worthwhile to make that change in the presets to avoid rendering in the wrong
format by error during production. Setting a new default for a parameter is achieved with
the blendAttr mel command. For example, adding the line

blendAttr frameBufferType 512;

The built-in attributes for renderPass nodes that are relevant for presets are: passID
(string), frameBufferType (integer), numChannels (integer), filtering (Boolean),
passGroupName (string). The passID attribute should never be changed directly with
blendAttrString. Instead, the passID must be set using the setRenderPassType
command, which takes care of creating all the dynamic attributes that are relevant for a
given pass type. The preset may then assign default values to the newly created dynamic
attributes.

The frameBufferType attribute is the only one that is not straightforward because the data
types are encoded as integers. The currently accepted values are:

Frame Buffer Data Type Encoding

Type Value
8-bit unsigned integer 1
16-bit unsigned integer 2
32-bit unsigned integer 4

28

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

64-bit unsigned integer 8
8-bit signed integer 16
16-bit signed integer 32
32-bit signed integer 64
64-bit signed integer 128
16-bit floating-point 256
32-bit floating-point 512
64-bit floating-point 1024
1 bit 2048
Other 4096

The formats that are supported may depend on what renderer is being used, what file
format is being rendered to, and the semantic of the render pass type. When an
unsupported value is specified, the format reverts to the default for the given pass type.

7.2. Adding Presets
New render pass presets may be created at will by adding new preset files to the
renderPass preset directory. Changes to the contents of that directory take effect
immediately without restarting Maya.

All new render pass preset files should follow the following format:

startAttrPreset("renderPass");
global string $gAEAttrPresetCurrentTarget;
setRenderPassType -defaultDataType -type "type ID"
$gAEAttrPresetCurrentTarget;
blendAttr statements
endAttrPreset();

The type ID string must be one of the currently supported render pass types, registered
with the render pass registry. A list of available render pass types can be obtained by
typing the following command in MEL:

renderPassRegistry –supportedRenderPasses;

Maya has a number of built-in render pass types, but additional types may be added by 3rd
party renderer plug-ins.

8. .mi File Representation
When rendering with mental ray, scene entities used to describe render pass behavior are
translated into a representation that is understood by the shaders of the Maya base
shader library. This data representation is exposed when the scene is exported to a .mi
file, which allows users to edit the behavior manually with a text editor, or through user-
written scripts.

8.1. File Export Options
It is possible to control which pieces of render pass data gets translated through some
simple export options. When exporting a mental ray assembly, none of the render pass
information is exported.

The first option related to render passes is Export pass contribution maps, which is on by
default. Turning this option off causes the pass contribution maps to be left blank during
translation, which causes all lights and all geometry instances in the current render layer

29

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

to be rendered in all render passes. The pass contribution maps are encoded as a per-
instance parameter in the mental ray scene description language, and refer to user frame
buffers that are specific to the current camera. Therefore, it may be desirable to exclude
pass contribution maps from translation when exporting a scene destined to be merged
with other scenes, which may not have the same render passes defined.

The Export pass user data option determines whether or not the frame buffer data blocks
are exported. They are user data blocks with the “:fbdata” suffix that encode the
configuration of each render pass. There is one frame buffer data block for each
renderable camera in a scene.

8.2. Render Pass Translation
In this context, the term translation refers to the process of converting the Maya scene
representation into the mental ray data model. With mental ray for Maya, there are two
main translation paths: exporting to a .mi file (for use with mental ray standalone), and
translation through the mental ray API (for rendering directly from within Maya, including
batch rendering). The API translation path is of little interest to most users because it is
not accessible to the user. In this section, we shall focus on the .mi file representation,
which can easily be edited by the user if desired. Even for users who do not use mental
ray standalone, exporting .mi files can be very useful for debugging renders that do not
behave as expected. The less technically oriented reader may want skip this entire
section.

Note: The schemas described in this section reflect data representations used in Maya
2009 through Maya 2011. There is no guarantee that future versions of Maya will maintain
compatibility with these schemas. Also, there is no guarantee that future versions of
corresponding data representations will be user-accessible or documented. Therefore,
there is no expectation that user-written software tools or scripts that make use of these
schemas will be forward-compatible or even portable to future versions of Maya.

8.2.1. The Frame Buffer Data Block
All of the parameters specified in Maya render pass nodes result in a frame buffer data
block.

In an exported .mi file, that data block takes the following form:

data "perspShape:fbdata"
"adskFrameBufferData" (
"magic" 1178760550,
"nonMaterialPassFrameBufferNames" [
 (…)
],
"frameBufferInfo" [
 (…)
],
"frameBufferTypeCounts" [
 (…)
]
)

The magic field is used for data structure identification, and must always be set to
1178760550.

The nonMaterialPassFrameBufferNames member is an array of strings which are the
names of the frame buffers to which pass shaders render non-material passes. All pass
shaders (adskPassCameraDepth for example) have an integer parameter named
frameBufferNumber to identify the pass that the shader writes to. This number is in fact
an index into the nonMaterialPassFrameBufferNames array, which is looked-up during
shader initialization. This indirection is necessary because the name of the frame buffer

30

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

that is written to may vary from one camera to another. For example, in the case of stereo
rendering, where both the right and left eye images are stored in the same .exr file, the
two must have distinct buffer names in order to avoid a conflict. The name switching is
handled through the per-camera frame buffer data block.

The frameBufferInfo member is an array of data structures used for describing the
properties of material render passes. The parameters of the data structure are direct
translations of the render pass parameters specified on the Maya renderPass node.

The frameBufferTypeCounts member is an array of integers that specifies the number of
frame buffers that belong to a given material render pass type. The size of the array is
always equal to NUMBER_OF_PASS_TYPES, declared in adskRenderPassTypes.h (in
the shader SDK). The PassTypeID enumerated type provides the index into
frameBufferTypeCounts corresponding to a given pass type.

8.2.2. Pass Contribution Map Encoding
The behavior of pass contribution maps was explained in section 4.1. Now, let us look at
how the pass contribution map connections in the Maya scene are translated for rendering
with mental ray. The Maya scene model is designed to simplify the representation of
DAG-object-to-pass relationships by consolidating them through pass contribution maps.
These relationships are thus broken-down in to two levels: DAG object to PCM, and PCM
to render pass. This design is more scalable (vs. direct DAG object to pass connections)
and simplifies the management of these relationships since it generally requires much
fewer plug connections. The mental ray scene representation, on the other hand, is
designed for rendering performance. During the scene translation process, the pass
contribution maps are resolved in order to obtain the list of passes that receive a
contribution on a per-shape instance basis. This information gets encoded into the mental
ray scene as an instance data parameter. In an exported .mi file, a typical shape instance
with a pass encoding looks like this:

instance "nurbsSphere1" "nurbsSphereShape1"
 light "exclusive" []
 material ["initialShadingGroup"]
 hide off
 shadow 0
 transparency 0
 reflection 0
 refraction 0
 caustic 3
 globillum 3
 transform
 1. -0. 0. -0.
 -0. 1. -0. 0.
 0. -0. 1. -0.
 0.224519 0. 0.102098 1.
 (
 "passEncoding" "173A"
)
end instance

The passEncoding instance data field is a hexadecimal encoding of a bitstream. Each bit
represents the on/off state of the instance for a given render pass. The bit position is the
ordinal position of the corresponding render pass in the frameBufferInfo array of the frame
buffer data block. For example, to determine whether the second render pass described
in the data block receives a contribution from a given instance, one must look at the value
of the second bit of the passEncoding string. If the passEncoding string is not specified,
the instance contributes to all render passes. The hexadecimal string is in big-endian digit
order. In other words, the character position from the beginning of the string for the Nth bit
is given by the integer part of N/4. The passEncoding string can be longer than the

31

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

number render passes in the frameBufferInfo array;the extra bits are used for non-material
render passes. The bit position used for a non-material render pass is specified by the
encodingIndex parameter of the associated pass shader call.

In C++ code, the contributesToPass function from the Shader SDK can be used to
interpret pass encoding strings.

8.2.3. The Options Block
The scene options block does not store any options for the render pass system, but there
are two elements that need to be present in order for render passes to render correctly:
the traversal shader, and the state shader. These are automatically taken care of by the
Maya scene translator when exporting a .mi file, and they must not be removed. The
traversal shader is specified as such:

 traversal adskTraversal

The traversal shader is used for transporting instance parameters during DAG traversal.
Since the mental ray for Maya translator flattens the DAG, this shader does not actually
perform any traversals, but its declaration provides the structure for instance data (the
passEncoding string).

The state shaders should be specified as such:

 state [
 "maya_state" (
)
 ,
 "adskFrameBufferState" (
)
]

The maya_state shader manages general-purpose state used to relay data between light
shaders, material shaders, and the shading engine. It is necessary for using built-in Maya
shaders, even without render passes. The adskFrameBufferState shader manages data
structures that store configuration information, as well as intermediate data used
specifically by the render pass framework. All the function and data structures for
accessing the structures are declared and documented in adskFrameBufferState.h (in the
shader SDK).

Another item in the options block that is important for render passes is:

 "contrast all buffers" on

This option affects the behavior of the contrast criterion for adaptive sampling. Without this
option, mental ray will refine sampling when a sharp contrast between neighboring
samples is detected in the main frame buffer (the Master Beauty pass). This may lead to
poor sampling (i.e. aliasing, jaggies) in other passes, especially when using pass
contribution maps. By turning on this option, mental ray performs the contrast test on
render passes that store color data.

8.2.4. Material Definitions
All material render passes are managed directly by the material shaders, the shading
engine and the state shader, so they have no impact on material definitions. However,
non-material passes are rendered by individual shaders that are executed sequentially,
after the main shading network. This sequence is represented as a material shader list in
the material definition. For example:

material "myShadingGroup"
 "adskMayaShadingEngine" (
 "surfaceShader" = "lambert1.outColor",

32

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

 "cutAwayOpacity" 0.,
 "customShader" off
)

"adskPassCameraDepth" (
 "frameBufferNumber" 2,
 "encodingIndex" 11,
 "holdout" off,
 "useShadingEngineThreshold" off,
 "transparencyThreshold" 0.,
 "remap" off,
 "znear" 0.,
 "zfar" 1000.,
 "minbuffer" 0.,
 "maxbuffer" 1.
)

"adskPassMotionVector2D" (
 "frameBufferNumber" 4,
 "encodingIndex" 13,
 "holdout" off,
 "useShadingEngineThreshold" off,
 "transparencyThreshold" 0.
)

shadow = "lambert1:shadow"
end material

The call order of the pass shaders is not important, as long as they each contribute to
different frame buffers. In order to respect proper compositing order, it is important that the
pass shaders are called after the shading engine, which is responsible for casting
transparency rays.

8.2.5. Shadow Shaders
Because of pass contribution maps, it is possible for an object to cast shadows in some
render passes and not in others. As explained in 3.1.5, this only works with direct
illumination. In order to support independent shadow casting on a per-pass basis,
specially designed shadow shaders are necessary. Two such shaders come with Maya:
adskMayaShadow, and adskMayaFastShadow. The difference between the two shaders
is that adskMayaFastShadow only supports fully opaque shadowing. When translating
built-in base materials, Maya automatically chooses the appropriate shader based on
whether or not the surface is opaque. However, these shadow shaders are only used
automatically with materials from the standard Maya shader library. Therefore, non-Maya
shaders will not produce direct illumination shadows in render passes.

Tip: To workaround this problem so that non-Maya shaders cast direct illumination
shadows in render passes, use the surfaceShader shader as an intermediate between the
material shader and the shading engine. If the material shader is a shader or
phenomenon that has built-in render pass support (mia_material_x_passes, for example),
donot forget to turn off render pass contributions from the surfaceShader shader to avoid
double contribution to beauty passes.

8.2.6. The Camera Block
The camera block contains the frame buffer declarations for each render pass. They are
specified per-camera because that is how the mental ray scene representation works.
However, the Maya data model does not allow the render pass configuration to change
from one camera to another; it can only change between render layers. The only things
that can change between cameras within the same render layer are the output file names
and the frame buffer names. The actual render pass list cannot change, especially
considering the fact that the pass contribution encodings do not differentiate on a per-
camera basis.

33

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

The camera block also contains a reference to its corresponding frame buffer data block.

8.3. Using Render Passes with Render Proxies7
The use of render proxies is great for improving viewport performance, scene translation
time, render time, and memory consumption with complex scenes. Unfortunately the use
of render proxies imposes a translation barrier between the contents of the proxy and the
rest of the scene, since the proxy is a pre-translated entity. In practice, this means that it is
impossible to obtain any interaction between proxy contents and elements of the parent
scene that would require any type of explicit connection, such as light linking, and material
assignment. As far as render passes are concerned, material render passes defined in the
parent scene are picked-up by the shaders in the render proxy because they do not
require any explicit connections. On the other hand, non-material passes are problematic
because they affect the translation of material definitions. The problem is that the pass
shaders for the non-material passes defined in the parent scene cannot be tagged-on to
the material definitions in the render proxy.

Also, pass contribution maps are ignored during render proxy export. There is no
guarantee that the render pass configuration in the parent scene will be consistent with
the render pass configuration of the scene from which the proxy was exported. Therefore
importing render pass encodings would be unreliable, which is why PCMs are not
supported with render proxies. However, the placeholder geometry in the parent scene
may be associated to pass contribution maps. The PCM memberships of the
placeholder geometry will propagate to the contents of the render proxy.

9. Render Pass Naming
The render passes are named according to their node names. Their names may be used
in the construction of file names and frame buffer names.

9.1. File Naming Mechanisms
In the Common tab of the Render Settings window, the File name prefix field specifies the
string format used for constructing the first part of image file names (excluding the frame
number and format extension). Special tokens can be used in order to insert render pass
information strings into the file naming scheme:

• <RenderPass>: The name of the render pass node. If this token is omitted in a
scene that renders multiple render passes per layer and per camera, then Maya
automatically creates a separate subdirectory for each render pass to avoid file
name clashes

• <RenderPassType>: This is a unique identifier that identifies the render pass
type. This token can be very useful for setting-up pipeline automation scripts that
may perform different tasks depending on render pass type, which may be
identifiable from the file name.

• <RenderPassFileGroup>: Render pass nodes have a Pass Group Name
attribute, which specifies the value for this token. This is a custom identifier,
which, unlike the render pass name, is not necessarily unique in the scene. The
token is meant to be used for grouping purposes. For example, the following file
name prefix would group render passes into subdirectories according to their
group name: <RenderPassFileGroup>/<RenderPass>

7 Render Proxy is a renderer-neutral term used in Maya to refer to mental ray
“assemblies”, or an equivalent technology in a different renderer. In the current context,
render proxy and mental ray assembly can be used interchangeably.

34

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

9.2. Frame Buffer Naming (for OpenEXR® files)
In the Common tab of the Render Settings Window, the Frame buffer naming options are
grayed-out unless a multi-channel file format, such as OpenEXR, is selected. Frame
buffer names are generated during scene translation, and used as identifiers for frame
buffers. mental ray uses the frame buffer names as channel names for storing multiple
images in the same .exr file.

The standard rendered file naming logic in Maya automatically creates subdirectories to
help resolve file name conflicts. When rendering to .exr, these subdirectories are only
created to help resolve clashes between render layers. Image name differentiation based
on cameras and render passes is enforced in the frame buffer naming. When Frame
Buffer Naming is set to Automatic, the following default format is used:

<RenderPassType>:<RenderPass>.<Camera>

When Frame Buffer Naming is set to Custom, and the Custom Naming String does not
contain the <Camera> and <RenderPass> tokens, Maya may automatically override the
Custom Naming String in order to help resolve name clashes. For separating groups of
render passes into different .exr files, the <RenderPassFileGroup> token should be used
in the file name prefix.

The current version of OpenEXR (1.6.1) limits channel names to 31 characters. Because
of this limitation, frame buffer names often need to be truncated. A simple truncation is not
sufficient to ensure that names remain unique (in order to avoid clashes). To help resolve
the problem, Maya creates truncated names that end with a CRC-32 hash of the un-
truncated string. This is not ideal because the name becomes unintuitive. In extremely
rare circumstances, this mechanism may still fail to produce a unique name, which may
lead bad or missing buffers. This problem can be avoided by using short camera and
render pass names. Exporting a .precomp file (using the Export Pre-Compositing item in
the Render menu) can help sort-out truncated channel names. The precomp file is a
simple Python module that defines, among other things, the hierarchy of cameras, layers
and render passes, and provides the image file and image buffer names for all rendered
image streams.

10. Transparency
This chapter is a primer for further discussions on compositing. For a long time, computer
graphics practitioners have been using alpha compositing to achieve image combination
effects. The best-known combination operation is the alpha-blending equation (also
known as the Norm n ial ble d ng mode):

ݐ݈ݑݏܴ݁ ൌ ሺ1 െ ௕௔௖௞௚௥௢௨௡ௗ݁ݑሻܸ݈ܽߙ ൅ ߙ · ݑ݈ܸܽ ௙݁௢௥௘௚௥௢௨௡ௗ

This equation is commonly used in 2D image compositing for applying mattes, where the
alpha value represents the pixel coverage fraction of the foreground layer.

Because it is convenient and compact, alpha-blending has also been widely used to
produce transparency effects. However a single alpha channel is not a very good model
for representing real-world transparency phenomena. In the real world, transparent
objects transmit different light wavelengths in varying proportions. Therefore, it is more
appropriate to model transparency on a per-color channel basis. A very common model
used in computer graphics today is one alpha value per color channel. This model is
usually referred-to as a transparency color. This is the model used in the Maya base
surface shaders. In Maya, colors have no alpha component, which avoids confusion
between actual transparency and coverage masks.

Transparency represents the fraction of light that is transmitted through the surface. This
is given by 1-alpha, where alpha represents opacity, or the fraction of light that is occluded
by the surface. In the alpha blending equation, the foreground is multiplied by opacity,

35

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

which is not a physically correct way to model most types of semi-transparent surfaces.
This problem is elaborated later in this chapter.

10.1. The Meaning of Premultiplied
In digital compositing lingo, the term premultiplied is used to designate graphics images
that have already been multiplied by their alpha values (i.e. already masked by their
mattes). This mean g equatio es: s that the alpha blendin n becom

ݐ݈ݑݏܴ݁ ൌ ሺ1 െ ௕௔௖௞௚௥௢௨௡ௗ݁ݑሻܸ݈ܽߙ ൅ ݑ݈ܸܽ ௙݁௢௥௘௚௥௢௨௡ௗ

Maya renders premultiplied images. Technically speaking, the rendered pixel values are
never actually premultiplied per se. The baked-in alpha multiplication is actually a result of
sample filtering, which is necessary for producing anti-aliased images. Many compositors
that are used to working with live-action footage tend to assume that if an image is
premultpilied, it must be because someone premultiplied it, which is a logical assumption,
but it is actually often not the case with computer generated images, since they can be
rendered with no background (i.e. pre-matted). This is not a problem since most
compositing applications have built-in functionality (options, tools, or special blending
modes) for dealing with premultiplied images.

Furthermore, real-world tinted transparent objects cannot be modeled by the first equation
(where the foreground is multiplied by alpha) because it implies that the surface’s
reflectance (diffuse and/or specular) is capped by its opacity, which is incorrect. For
example, according to alpha-blending logic, if a surface only transmits red light, its RGB
opacity could be (0,1,1), meaning that the surface could only reflect green and blue. Many
physical materials disprove this model, such as glossy light-filtering materials. Therefore,
compositors need to break away from the concept of multiplying foreground layers by
opacity (or alpha), because that paradigm cannot always yield a physically-correct
simulation of transparent objects. Any attenuation of the foreground color due to
transparency should normally be baked-in to the rendered result by the surface shader.

The implications of premultiplication in compositing are explained in greater detail in 11.2.

10.1.1. The Premultiply Rendering Option
mental ray for Maya has a Premultiply option in the Framebuffer section of the Quality tab
of the render settings. This option is not truly a premultiplication option, it should be
interpreted as: “do not postdivide”. When the option is turned off, all frame buffer color
values are divided by their respective alpha values. This option must be used with caution
since the alpha channel may not always be right for expressing transparency, as
explained above.

Also, turning off the premultiply option may generate artifacts if the background is anything
but pure black. Another inconvenience is that this is a global mental ray setting, so it
always applies to all render passes. It can, however, be turned on and off on a per-layer
basis using the render layer override mechanism. When in doubt, it is best to have the
option turned on, which is its default state. There are always alternate ways of dealing
with this issue properly in compositing.

One noteworthy case where it is useful to turn off Premultiply is for rendering images that
are intended to be used directly as textures (e.g. texture baking), without any intermediate
compositing.

10.2. Alpha Channels of Render Passes
In the mental ray for Maya render pass system, the notions of transparency and coverage
are kept separate: the alpha channel is generally used for storing coverage masks, while
physical opacity is expressed by the Opacity render pass type. Material opacities (or

36

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

transparencies8) cannot be rendered to an alpha channel since they require three
channels in order to be fully represented. In traditional compositing workflows, the alpha
channel is usually used as the compositing matte, which works fine for opaque objects
since there is no real distinction between coverage and opacity in this case. However, the
composition of light filtering materials requires an opacity matte. The alpha channel of
render passes is not affected by transparency, except for the Master Beauty (for
backwards compatibility). This disconnect is sometimes perceived as a bug by Maya
users because the transparency inputs of material shaders are often used to receive the
coverage mask (alpha channel). This is a valid workflow, but it does not always generate
the matte that the user expects in the render pass alpha channel. The transparent areas
of the texture are rendered with alpha values of 1.0 (fully opaque). This is expected
because the texture’s alpha, although it originally represented a coverage mask, was
reinterpreted by the surface shader as an opacity mask. The Opacity render pass type
helps produce the desired matte in such cases.

10.3. Transparency vs. Refraction
The real-world phenomena of transparency and refraction are almost the same; the
nuance is that the term refraction implies that light rays are bent. In mental ray,
transparency and refraction are treated very differently because there are important
implications. Transparency is the special case of refraction where the refracted ray is the
continuation of the incident ray. Because the transmitted ray is perfectly aligned with the
incident ray, it is easier to re-create the phenomenon in compositing using an opacity
matte. On the other hand, the bending of rays that happens in refraction is nearly
impossible to recreate accurately in compositing because doing so requires knowledge of
three-dimensional aspects of the scene. For this reason, refractive surfaces are
represented as fully opaque in the opacity render pass.

Also, in the mental ray for Maya shader ecosystem, refraction rays are cast by the surface
shaders, while transparency rays are cast by the shading engine. This may seem like an
insignificant implementation detail, but it has important repercussions. The shading
engine needs to take control of transparency casting in order to apply the transparency
threshold criterion, compute cumulative mattes, and force transparency rays that are
required for render passes (due to PCMs). This will cause problems with certain third-
party or user-written shaders that were not necessarily designed to work with the Maya
shader framework. Such shaders typically cast their own transparency rays. In that case,
the material is treated as opaque by the shading engine. This scenario prevents the
shading engine from producing correct transparency mattes, and it is not-optimal because
the shading engine may still cast the same transparency ray in order to satisfy render
pass visibility considerations expressed by PCMs.

10.4. Applying Transparency to a 3rd Party Shader
Although generic mental ray shaders don’t comply with the Maya shading framework, they
can still be used to produce transparencies in a Maya-friendly way by bootstrapping them
to a surfaceShader shader. The idea is to let the surfaceShader node manage the
transparency. This method can even be used to apply transparency to shaders that
otherwise don’t even support transparency, like the mib_illum_* shaders9.

The following example shows how to apply a texture as an alpha transparency map to a
shader from the mib library.

8 Transparency and opacity are intrinsically linked because they are complements of each
other.
9 The mib_illum_* shaders are the surface shaders of the mental image base shader
library. These shaders and their source code are distributed with Maya, but they do not
strictly comply with the Maya shading framework.

37

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 22 Applying Transparency with surfaceShader

The outValue of the bulge shader is connected to the outTransparency of surfaceShader1,
while the complement is used to modulate the result of mib_illum_phong1, which is
equivalent to an alpha blend with the background. This shading network allows the
shading engine to produce an opacity render pass that represents the material’s opacity.

Figure 23 Master Beauty (left) and Opacity (r ight)

In Maya 2009 and 2010, the opacity of superposed objects was not composited between
superposed surfaces in Opacity passes. The above images were rendered with Maya
2011, which was improved to perform opacity compositing.

According to the principles explained in 10.1, we have just committed heresy with the
above example by multiplying the foreground by the opacity value. This would have been
fine had the transparency texture represented a coverage mask. For argument’s sake, let
us assume that the rendered surface is in fact semi-transparent. In order to obtain a result
that is more physically plausible, let us assume the hypothesis that the material we are
modeling is clear semi-glossy plastic, injected with red pigment that is responsible for the
bulk of the diffuse reflection and occlusion. The transparency mask represents pigment
density. This material could be modeled as follows.

38

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 24 Semi-transparent Surface Using mib_il lum_phong

The swatch for surfaceShader1 shows a corrupted image in
this specific case, but the scene still renders fine. The output of
multiplyDivide1 is connected to the diffuse input of
mib_illum_phong1. The secondary input of multiplyDivide1 is
set to dark red, which is the pigment color. The outputs of
bulge1 and mib_illum_phong1 are respectively connected to
outTransparency and outColor of surfaceShader1.

This example shows the specular highlight having an additive
effect with the background seen through the transparent
portions of the cone’s surface, as should be the case. This
result is similar to the behavior of Maya’s Phong material
shader. The opacity remains unchanged from Figure 24,
since the specular highlight is non-occluding. This example
supports the case made in 10.1 about the necessity of having
the effect of transparency pre-baked into the render for
compositing purposes. If that were not the case, the compositor would have no way of
masking the diffuse color without also masking the non-occluding glossy reflections –
unless of course the diffuse and specular passes were both rendered, but why do more
work than necessary?

Figure 25 Semi-transparent Surface
Render Result

11. Compositing Guidelines
11.1. Basic Compositing Arithmetic for Combining

Passes
Many of the material pass types consist of components of the overall BRDFF

10. These
passes can be used as a decomposition in order to tweak material properties at the
compositing stage. The base material shaders all use the same basic compositing
equation:

ݕݐݑܽ݁ܤ ൌ ሺ݁ݏݑ݂݂݅ܦ ൅ ݁ܿ݊݁ܿݑ݈ݏ݊ܽݎܶ ൅ ݎ݁ݐݐܽܿܵ ൅ ሻݐܿ݁ݎ݅݀݊ܫ · ሺܹ݄݅݁ݐ െ ሻݕܿ݊݁ݎܽ݌ݏ݊ܽݎܶ
൅ ݎ݈ܽݑܿ݁݌ܵ ൅ ݊݋݅ݐ݈݂ܴܿ݁݁ ൅ ݊݋݅ݐܿܽݎ݂ܴ݁ ൅ ݁ܿ݊݁ܿݏ݁݀݊ܽܿ݊ܫ ൅ ݐܾ݊݁݅݉ܣ

Re-composing a layer from component passes can be useful for balancing a material’s
BRDF in a compositing software application, for example, applying a color-correction to
the diffuse color of an object, without affecting reflections, and without having to re-render.

10 A BRDF, or Bidirectional Reflectance Distribution Function, is a mathematical function
that defines how light is reflected by a surface. The Maya base shaders implement
analytical BRDF models that are based on a set of standard components. The
components represent various optical phenomena, as well as different computational
variants of optical phenomena (e.g. direct vs. global illumination).

39

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Some shaders may add some effects that are not accounted for in any component
passes. Such effects are only visible in beauty passes. For example, this is the case of
the foam effect in the ocean shader. It is possible to isolate custom effects by subtracting
the computed recomposition from a beauty pass.

It is also possible to use an even deeper decomposition than the above equation by
applying the followi :ng identity

݁ݏݑ݂݂݅ܦ ൌ ݎ݋݈݋ܥ݈ܽ݅ݎ݁ݐܽܯ݁ݏݑ݂݂݅ܦ · ݁ܿ݊ܽ݅݀ܽݎݎܫݐܿ݁ݎ݅ܦ

The Shadow pass type represents the difference in color values with and without shadow
computations. Shadow passes are only capable of representing direct illumination
shadows (ray-traced or depth map shadows). Indirect shadows from global illumination or
final gathering are implicitly expressed in the Indirect pass and cannot be separated out.
There are two types of shadow pass: raw and regular. The raw shadow represents the
difference in direct irradiance, while the regular shadow is the difference in the final
shading result.

ݓ݋݄݀ܽܵ ൌ ݓ݋݄݀ܽܵ݋ܰݕݐݑܽ݁ܤ െ ݕݐݑܽ݁ܤ

ݓ݋݄݀ܽܵݓܴܽ ൌ ݓ݋݄݀ܽܵ݋ܰ݁ܿ݊ܽ݅݀ܽݎݎܫݐܿ݁ݎ݅ܦ െ ݁ܿ݊ܽ݅݀ܽݎݎܫݐܿ݁ݎ݅ܦ

׵ ݁ݏݑ݂݂݅ܦ ൌ ݎ݋݈݋ܥ݈ܽ݅ݎ݁ݐܽܯ݁ݏݑ݂݂݅ܦ · ሺݓ݋݄݀ܽܵ݋ܰ݁ܿ݊ܽ݅݀ܽݎݎܫݐܿ݁ݎ݅ܦ െ ሻݓ݋݄݀ܽܵݓܴܽ

11.2. Compositing Scene Partitions
It is a common practice to decompose a scene in different groups of objects that are
rendered separately and recombined in compositing. This allows the compositing artist to
manipulate different partitions of the scene independently. This section discusses the
problems encountered during the process of recombining the partitions, and in particular
dealing with semi-transparent, reflective, and refractive scene elements, which can be
tricky.

Traditional 2D image compositing usually uses alpha blending, or another form of blending
to combine a foreground image with a background image, weighted according to an
opacity mask. Such operations can be performed sequentially to composite a stack of
image segments. As demonstrated in section 10, it can sometimes be challenging to
generate transparency mattes that accurately represents the transparency modeled by the
shader, especially with non-Maya-compliant shaders. Depending on the production
application, different compositing strategies may be appropriate.

11.2.1. Pre-Matted Compositing
The basic premise of pre-matted compositing is to have the
occlusion mask baked-in to the pixel color value. In other
words, each image in the compositing stack is premultiplied.
This way, no mattes are required and the compositing
operation is no more than a simple addition.

Figure 26 Buoy and Ocean Master
Beauty Pass

Producing a compositing stack for a pre-matted scene
decompositionis as simple as creating an array of beauty
passes with associated PCMs that represent the scene
partitions for each pass. To make the image pre-occluded, the
Hold-out option must be turned on for all passes. In order to
capture all the reflections and refractions between objects in
different partitions, it is important to either:

a) turn on hidden objects visible in reflections and
hidden objects visible in refractions, or

b) turn on hidden objects produce reflections and
hidden objects produce refractions.

Option a) is good for manipulating a scene partition along with the reflections and
refractions that are cast by the objects in that partition. Option b) allows the user to

40

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

manipulate a partition along with the reflections and refractions of the objects in that
partition cast by objects in other partitions. Using b) may sound less intuitive, but it actually
has very practical use cases, such as re-coloring. For example, take a simple scene of a
buoy floating in the ocean and its partitions:

Figure 27 Buoy and Ocean Partit ioned with Method a)

Figure 28 Buoy and Ocean Partit ioned with Method b)

With both methods a) and b), the Master Beauty is equal (up to machine precision) to the
sum of the partition images.

In the case where the buoy is to be re-colored in the compositing stage, the color of the
buoy’s reflection in the water would need to follow suit. With method b), achieving that is
very simple. It is just a matter of color correcting the buoy image and adding the result to
the ocean image. Also, it should be noted that the reflection of the ocean in the buoy
would not be affected by the re-coloring.

Another interesting advantage of pre-matted compositing is that image addition is
commutative. In other words, the order in which the images are added together is not
important. On the other hand, matte-based compositing requires the image to be
composited in depth order. The problem of depth-sorting scene partitions is often trivial,
but there are cases where it is not possible. An example of a problematic case is with
volume rendering when a semi-transparent solid object is inside a semi-transparent
volume. Depth-based compositing of the solid object with the volume would be
problematic because each partition is an occluder of the other. The commutative property
of pre-matted compositing avoids this problem entirely.

The main limitation of pre-matted compositing is that, because the occlusions are baked-
in, the relative disposition of the scene partitions is not allowed to change. The reason is

41

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

that the images need to remain perfectly lined-up for the occlusions to match the positions
of their respective occluders.

Another important limitation is that this technique is only convenient to use for compositing
images that were rendered from the same virtual scene; otherwise it may be difficult to
pre-occlude the different scene partitions. For compositing over live-action footage, one
possible solution for pre-occluding the footage is to load the footage as a camera
background image plane in Maya. With pre-matted compositing however, the back plate
needs to be rendered in a separate render layer to avoid interfering with the other image
partitions.

11.2.2. Standard Matte-Based Compositing
Using a matte means that occlusions are applied in compositing, which offers a higher
level of editorial freedom to the compositing artist. The different partitions can be
geometrically transformed in compositing, and still recombined correctly. To generate
material render passes that are appropriate for matte-based compositing, one must turn
off the hold-out option, and turn on hidden objects visible in reflections and hidden objects
visible in refractions. If none of the objects in the scene have transparency, then the alpha
channels of the render passes can be used as mattes. Otherwise, opacity passes should
be used to generate correct transparency mattes. The mattes should also be rendered
with the hold-out option turned off.

This editorial freedom comes at a cost though. If the different partitions are transformed
relative to each other, then many optical interactions between objects in different partitions
(i.e. shadows, reflections, refractions, caustics, color bleeding, etc.) may be invalidated.
The only optical effect that can be easily correctly reconstructed is straight-line
transparency. However, it is possible to manipulate shadows, reflections and other optical
effects by rendering them-out to separate render passes. This gives the compositor a
chance to make-up for changes in object disposition in order to obtain seemingly correct
results without having to re-render the scene. This process can be somewhat laborious.
Also, it is typically less physically accurate than re-rendering, but it is often good enough
to trick the audience.

Also, in conventional matte-based compositing, the partitions need to be composited in
correct depth order. This requires some extra logistics. Sometimes, rendering a depth
buffer per partition can be used to help resolve the problem and obtain correct results
even with partitions composited in any order. This requires a compositing application that
has three-dimensional capabilities (a.k.a. 2.5-D). Even so, anti-aliased edges and semi-
transparent surfaces may not render correctly, depending on the rendering technique
used by the compositing application. Autodesk® Flame® 2011 software, for example, uses
a hardware rendering technique that, in most cases, requires layers to be composited in
depth order to avoid edge aliasing and transparency artifacts.

11.2.3. Un-Pre-Multiplied Matte-Based Compositing
Compositing with un-pre-multiplied images provides an additional level of control to the
compositor. Because the matte’s masking is not baked-in, it becomes simple to produce
additional effects in compositing: editing object transparencies, controlling edge
feathering, adding extrusions. As explained in section 10.1, mental ray for Maya produces
pre-multiplied images. A quick approach to getting un-pre-multiplied images is to divide
them by their mattes. Compositing applications usually have a tool for performing this
operation. Composite has the Unpremultiply tool, and Autodesk Flame has a divide option
on layers in the Action module. The division approach has numerical stability problems
when dealing with near-zero areas of the matte, especially when dealing with low dynamic
range (non-HDR) integer-encoded images. Furthermore, it is impossible to recover the un-
pre-multiplied color for completely masked (matte = 0) areas of the image.

An alternative method is to work with both a coverage matte and a transparency matte.
The coverage matte is simply the render pass’s alpha channel. The coverage matte can
be used to un-pre-multiply an image that was rendered without transparency. This way,

42

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

the compositing artist can work with an un-pre-multiplied image that does not have any
“transparency holes” in it. Rendering a render pass without transparency is as simple as
disabling the Use Transparency option of the render pass. A downside of this approach is
that rendering with transparencies disabled inevitably means that scene partitions with
superposed semi-transparent objects may be problematic because of occlusions.

11.2.4. Shading Decompositions
An important detail to remember when tweaking transparency mattes is that physical
transparency does not usually impact glossy reflections, including surface specularity.
Therefore, when dealing with highly reflective materials, it can be appropriate to work with
shading decompositions instead of beauty passes. A realistic material appearance can be
reconstructed using the arithmetic from section 11.1. This way, if the compositing artist
edits the opacity matte of a scene partition, the specularity and reflection components
(which do not need to be un-pre-multiplied), would not be affected by the change in
transparency.

11.3. Handling Environments and Backgrounds
The only render passes that capture environment color are beauty passes. The way to
obtain a pure environment pass is to create an empty beauty pass. That sounds easy
enough except that associating a render pass with an empty PCM has no effect because
empty PCMs are ignored. There are two easy ways to get around this:

a) Create dummy object that is either completely transparent or outside of the
camera’s viewing frustum, and use a PCM that contains only that object. Attach a
beauty pass to the new PCM and turn off the pass’s hold-out option to reveal the
environment without any occlusions.

b) Create a separate empty render layer.

Solution b) is cleaner from a workflow perspective, but it adds a lot of processing
overhead associated with having an additional render layer. In most cases a) will result in
better overall render-time.

Being able to produce an occluded background image is important for pre-matted
compositing. There are render-pass-based and render-layer-based methods for achieving
this. The traditional layer-based hold-out method (pre-Maya 2009) consists of creating a
new render layer with a global material override to render objects as black occluders. This
can be done using the surfaceShader shader. Dealing with transparency maps may
require a little additional wizardry. The render-pass-based approach is much simpler. It is
just a matter of replicating method a) except that the hold-out option is left on. This may
correctly handle transparencies with no additional work.

It is best to resist the temptation to mask-out foreground objects from a beauty pass by
using a scene matte. That method is more easier, but it handles transparencies
incorrectly. Even if the scene only contains opaque objects, anti-aliased edges may have
artifacts unless an advanced keying tool is used to apply the matte. Advanced keyers
were designed to help solve the matting process for live-action footage, where it is not
possible to “render” the background and foreground separately. In CGI we have the luxury
of being able to isolate scene elements at the rendering stage. There is no excuse not to.
It is futile to try to help compositors by rendering CG characters in front of “green screen”
backgrounds.

Another related problem is that of producing a beauty pass with no background. Creating
a separate render layer with the environment (or camera image plane) turned off works if
the background is just a back plate. However, that solution is not acceptable if the
environment has optical interactions with the contents of the scene, such as IBL. Objects
in a scene with IBL are expected to have environment reflections, and environment
lighting. An easier way to achieve the desired result is to render an occluded background
image using one of the two hold-out methods described above, and to subtract that image

43

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

from the Master Beauty pass. This helps handle transparencies and anti-aliased edges
correctly, and preserves optical interactions with the environment.

11.4. Dealing with Reflections and Refractions
Reflections and refractions are treated very similarly in rendering, and therefore can be
composited using the same techniques. A simple way to isolate reflections and refraction
is to render a beauty pass, and to set the minimum and maximum reflection and refraction
levels in order to extract the desired trace recursion levels. The dedicated Reflection
and Refraction render pass types should be avoided in most cases because they
extract the reflection and refraction captured by the surface shader’s BRDF, which is
independent of PCMs. Using specially configured beauty passes to isolate reflections and
refractions is better because they are sensitive to object and light visibility, as dictated by
the PCM logic. One particular case where it is desirable to use the Reflection and
Refraction pass types is with surface shaders that do not completely support the render
pass framework, such as mia_material_x_passes (c.f. section 12).

The behavior of the Reflection and Refraction render pass presets can be changed by
setting the beautyPassTypeReflRefr option variable. When this variable is set to 1, The
Reflection preset creates a Beauty pass with the minimum reflection level set to 1, rather
than a regular Reflection pass. This variable also has a similar effect on the Refraction
preset. This option is off by default. Because it is an option variable, the setting will
persist from one project to another (stored as a user preference). The following MEL
command turns on the option:

optionVar -iv "beautyPassTypeReflRefrac" 1;

The following turns the option off:

optionVar -iv "beautyPassTypeReflRefrac" 0;

Reflections and refractions are composited back into a scene through simple addition (like
pre-matted compositing). This process is a little bit different from pre-matted compositing
of scene partitions because it does not require any actual pre-matting, since reflections
and refractions are non-occluding phenomena. Therefore, it is possible for the compositor
to apply geometric transformations to reflections and refractions without worrying about
the occlusion hole problem. However, in some cases, it may be necessary to apply the
coverage mask of the reflecting object to the transformed reflection in order to limit the
reflection region to the domain of the reflective object.

11.5. Tone Mapping and Color Correction
Non-linear color transforms such as tone-mapping operators and color corrections are
problematic for re-composing scenes from elementary render passes. This is because of
the non-distributive nature of these transforms, as explained in section 5.4.3. The
compositing logic discussed in this document assumes a linear color representation.
Even when rendering to file formats that imply standard gamma correction, it is assumed
that the compositing application internally converts the images to a linear color
representation for the purposes of pixel arithmetic. Many non-linear color-manipulation
facilities exist in mental ray. They usually take the form of utility shader nodes (for use in
surface/volume shading networks), lens shaders, and output shaders. These
functionalities are very convenient for obtaining finished results directly out of Maya.
However, they should be avoided in a production pipeline that includes a compositing
and/or color grading stage. Non-linear color transformations should be deferred down-
stream. Otherwise, the compositing arithmetic is compromised.

If a particular mental ray lens shader or output shader provides a desirable color
transform, it is still possible to use it as a post-compositing image processing step. One
possible method is to render an empty scene with the image to be processed used as the
camera background image plane. Using Maya and mental ray for image processing may

44

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

sound excessive; but it can save the trouble of reverse-engineering a desired tone-
mapping function that is built-in to a proprietary shader.

Deferring the color transformation down-stream can have the undesirable effect of biasing
creative compositing decisions because the images are not manipulated in their final
appearance. This is a human visual feedback problem. To help solve this, several
compositing applications allow the user to specify a tone map or color correction profile for
on-screen display of images. Such a feature can be used to view intermediate images
and compositing results alike in their tone-mapped or color-corrected form, while the
underlying working data uses a linear color profile. In the Maya® Composite 2011 tool, this
feature is known as a display modifier.

11.6. Using the Shadow Passes
Similar to transparencies, many traditional compositing workflows use single-channel
shadow masks. These fail to capture shadow tinting, which may result from tinted shadow
casters and colored lights. With mental ray for Maya, the shadow pass is an RGB image
representing the difference in shading with and without shadows. This is equivalent to
rendering a beauty pass with shadows enabled, a beauty pass with shadows disabled,
and taking the difference between the two.

Shadows have a subtractive effect on the image. In order for the shadow image to be
within standard viewing range, Maya stores the shadow images as positive, rather than
negative values. Beca h by subtraction: use of t is, shadow compositing is performed

ݕݐݑܽ݁ܤ ൌ ݓ݋݄݀ܽܵݐݑ݋݄ݐܹ݅ݕݐݑܽ݁ܤ െ ݓ݋݄݀ܽܵ

There is another related render pass type called the raw shadow pass. This is similar to
the shadow pass except that it represents the difference in direct irradiance caused by
shadows. This makes it possible to apply the shadow to objects that are re-colored or re-
textured in compositing, since the raw shadow has the surface shading abstracted out.
An important limitation is that only diffuse reflection can be accurately reproduced from
direct irradiance information. The arithmetic for reconstructing a diffuse pass using a raw
shadow is as follows:

݁ݏݑ݂݂݅ܦ ൌ ݎ݋݈݋ܥ݈ܽ݅ݎ݁ݐܽܯ݁ݏݑ݂݂݅ܦ · ሺݓ݋݄݀ܽܵݐݑ݋݄ݐܹ݅݁ܿ݊ܽ݅݀ܽݎݎܫݐܿ݁ݎ݅ܦ െ ሻݓ݋݄݀ܽܵݓܴܽ

This equation gives the compositing artist the freedom to adjust shadows, illumination and
material color/texture, and recompose a correct diffuse component.

An alternate approach is to reconstruct a shadow pass from a raw shadow and the non-
diffuse components of the shadow. The first step is to isolate the non-diffuse components
of shadow ss using existing render pass type :

ݓ݋݄݀ܽܵ݁ݏݑ݂݂݅ܦ݊݋ܰ ൌ ݓ݋݄݀ܽܵ െ ݎ݋݈݋ܥ݈ܽ݅ݎ݁ݐܽܯ݁ݏݑ݂݂݅ܦ · ݓ݋݄݀ܽܵݓܴܽ

The non-diffuse shadow image represents the effect of shadow-casting on shading
components other than diffuse reflections; for example, specular spots affected by
shadows, shadows seen through reflections, translucence shadows, etc. The compositing
equation for re-applying the full shadow with a decomposition that uses the raw shadow
pass is:

ݕݐݑܽ݁ܤ ൌ ݓ݋݄݀ܽܵݐݑ݋݄ݐܹ݅ݕݐݑܽ݁ܤ െ ݎ݋݈݋ܥ݈ܽ݅ݎ݁ݐܽܯ݁ݏݑ݂݂݅ܦ · ݓ݋݄݀ܽܵݓܴܽ
െ ݓ݋݄݀ܽܵ݁ݏݑ݂݂݅ܦ݊݋ܰ

12. Working with the mia_material
Shader

The mia_material shader is of great significance to many Maya users since it implements
a very versatile physics based shading model. The multi-output variant of the shader,

45

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

mia_material_x, is very useful for extracting elements of the BRDF computation. In Maya
2009, mia_material_x was conveniently wrapped into a render-pass-enabled material
called mia_material_x_passes that wires the outputs of mia_material_x into standard
Maya render passes. The mia_material_x_passes material was greatly improved in Maya
2011 to perform better compositing in render passes and to support PCM based light
contribution control.

12.1. Current limitations
As of Maya 2011, mia_material_x_passes is very close to having feature parity with Maya
base shaders, with respect to the Maya render pass system. One of the main remaining
limitations is that refraction and reflection rays cast by the material are bypassing the
render pass framework. This means that render pass options for controlling min/max ray
recursion levels are not respected.

Also, other useful surface shaders were wrapped into materials with the ‘_passes’ suffix,
indicating that the outputs of the original material shader are being redirected to standard
render passes. A complete list of render passes written to by the *_passes family of
shading nodes is given in the Maya User Guide, Rendering and Render Setup > Shading
> Shading Nodes > mental ray for Maya shaders > mental ray for Maya nodes.

12.2. Extracting reflection and refraction render
passes.

In section 11.4, it was stated that specially configured beauty passes are the preferable
way of extracting reflections and refractions. That method does not work with
mia_material_x_passes because of the limitation described above. This is also true for
other non-render-pass-compliant shaders.

The alternative is to use the regular Reflection pass type to render reflections (i.e. the
default behavior of the Reflection preset, with the beautyPassTypeReflRefr option turned
off). This renders reflections correctly with mia_material_x_passes and the other *_passes
materials, except that it outputs the reflections as produced for the Master Beauty pass.
This means that the contents visible through the reflection are not subject to PCMs or
other render pass settings. The same workflow also works for refractions, with the same
limitations.

13. Working with the mental images
Architectural Sun and Sky
Shaders

There is a common complaint from users that use the physical sun and sky in conjunction
with render passes: “Why are my render passes all blown-out?”. This is not a bug with
render passes. The problem is that the physical sun and sky is embodied by a small eco-
system of shaders that includes a lens shader used for exposure control. This is the
mia_exposure_simple shader, which is basically a tone-mapping operator. This tone-
mapping is necessary for rendering to low dynamic range image formats. Because
mia_exposure_simple is not render-pass-compliant, it only operates on the Master
Beauty, and not on auxiliary render passes.

At first glance, this can be seen as a crippling limitation, but it actually isn’t. The exposure
shader applies a non-linear color transform, which invalidates simple linear compositing
algebra that is used throughout this document, so that shader should be avoided in the
first place. The most straight-forward solution is to work with non-tone-mapped or linearly

46

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

re-mapped images through the compositing pipeline, and to apply the final non-linear
exposure control down-stream of compositing. The motivations and methods for this were
explained in section 11.5.

14. Basic Compositing Techniques
and Examples

This chapter exposes a few compositing techniques that show how to harness the power
of render passes. The compositing screenshots are from Maya Composite 2011. These
techniques use combinations of principles that were explained in earlier chapters, put into
more holistic production-like contexts, although the scenes are simplistic for the purpose
of demonstration. The scene files for the examples in this chapter are distributed with this
document. Files are in Maya 2011 ASCII (.ma) format.

The techniques covered in this chapter suggest certain workflows, but there are usually
many different alternatives to accomplish the same task. The intent of this chapter is not
to cover all permutations and use cases exhaustively, but rather to provide a few initial
sparks that computer graphics professionals can carry further.

14.1. Light Tuning
Balancing the lighting in a scene is a task that can easily be deferred to compositing, and
is logical because it allows the artist to adjust the lighting interactively without having to re-
render the scene. The scene file used for this example is LightTuningExample.ma. This
scene has three sources of illumination: a lamp post, a mia_physicalsun, and a
mia_physicalsky. The scene is rendered with final gathering enabled in order to get IBL
illumination from the environment (sky). Render passes were set-up to isolate the different
illumination components. The render passes are set to produce 3-component 32-bit
floating-point images in OpenEXR file format. Colors are linearly encoded with Rec709
primaries. Here are the render results, with adequately adjusted gamma and exposure:

Figure 29 Incandescence

Figure 30 Environment

47

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 31 Sun Beauty

Figure 32 Lamp Beauty

Figure 33 Indirect I l lumination (sun and lamp)

Below is a description of the render passes, and explanations on how they were created.
Additional details on the scene configuration can be found by consulting the scene file.

• Incandescence: A default incandescence pass, with no PCM.
• Environment: Beauty pass generated using PCM that excludes all lights in the

scene except for a dummy point light that has an intensity of 0. The result is a
beauty pass that contains direct light contributions from only the sky, and indirect
light from all sources.

From an extra render layer with environment disabled:

• Sun Beauty: Beauty pass with a PCM that includes everything in the scene
except for the lamp area light

• Lamp Beauty: Beauty pass with a PCM that includes everything in the scene
except for the sun directional light

• Indirect Illumination: A default indirect illumination pass, with no PCM.

With minimal cleanup, recomposing the original image from its lighting components is as
simple as adding them all together. The first step is to eliminate redundancies. The sun
beauty and lamp beauty passes contain more than just the result of direct illumination
from the sun and lamp. They contain the lamp incandescence, as well as the effect of
indirect illumination. Therefore, an important preliminary step is to clean-up the beauty
passes to isolate the direct illumination, which can be done by simple subtraction. The
environment pass also needs to be cleaned-up by subtracting incandescence and indirect
illumination from the lights. The following Composition does the trick:

48

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 34 Composit ion for I l lumination Recombination

The above compositing tree screenshot is from Maya Composite 2011, but it can be easily
recreated in any other compositing software. The Add Stack node is an instance of the
Reaction tool of the Maya Composite functionality. Reaction is a multi-layer compositing
tool. In this case, the Reaction tool was simply configured to use the Add blending mode
on all layers. The contribution amount of each layer can be adjusted by changing the
Multiplier attribute of each layer in the Reaction tool. The glow tool is used to generate an
artificial blooming effect around the lamp. The Sub and Add nodes are instances of the
MathOps tool, set to Subtract or Add.

Just by tuning the multiplier values for each layer, it is possible to change the appearance
of the scene to show what it would look like at dusk. To do so, the following factors were
used on each layer:

• Environment: 0.065 (this controls the luminosity of the sky as well as indirect
illumination from the sky

• Lamp: 1.0
• Sun: 0.0
• Glow+Incandescence: 1.0
• Indirect: 0.0 (most of the illumination in the indirect layer is from the sun)

49

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 35 Original Render Result vs. Composited Result

The two images above are shown at different exposure levels because of the difference in
illumination. The exposure of the composited result is 2.8 f-stops higher with no non-
linear tone mapping, while the original render result has a default mia_exposure_simple
lens shader applied to it.

By adding a color correction to the environment, it is possible to create the effect of an
overcast sky. The idea is to decrease the color saturation of the sky, decrease the
intensity of the sun, and increase the illumination from the sky, in order to simulate the
dispersion of sun rays in the clouds.

This way of compositing an over cast day is not totally correct because although the sky is
desaturated, as it should be, the indirect illumination from the sky IBL should not be as
desaturated as the sky because the diffuse reflectivity of the objects in the scene is
physically downstream of the clouds (as far as the physical light path is concerned). As a
result, the scene may not be quite as colorful as it should be in reality. Instead, it is
appropriate to separate the environment into two passes: the sky, and the scene lit by the
sky. To do so, let us add a new render pass to our stack. The sky pass represents direct
environment ray hits, and can be produced using method a) from section 11.3, but with
hold-out enabled in order to obtain a pre-occluded sky for pre-matted compositing.

50

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 36 Composit ion for Overcast Day Effect

Figure 37 Gray Sky Effect

The saturation level set of the CC Sky node was set to 0.2.
The CCEnvIllum node is a color correction node that adjusts
the color balance of the environment illumination to neutralize
the hue of the sky’s illumination. The multiplication factors of
the Add Stack node were set as follows:

• Environment: 1.0
• Sky: 1.0
• Lamp: 0.0 (lamp turned off)
• Sun: 0.25 (light cloud cover, sun still visible)
• Incandescence/Glow: 0.0 (lamp turned off)
• Indirect: 0.25

14.2. Shadow Tuning
The examples from the previous section included shadows, and they show that balancing
the lights in the scene will balance the shadows proportionally, since the illumination
component images were rendered with shadows. On the other hand, editing shadows
without changing the illumination or vice versa is not usually a physically correct effect, but
it is often performed as a compositing short-cut, or for artistic reasons. This can be
achieved in compositing by applying a color-correction to a shadow pass or by blending-in
shadow passes. This section examines the problems of dialing-in/out shadows, as well as
the problem of modeling shadow caster opacity in compositing. The first examples in the
section are based on sample scene ShadowTuningExample.ma. This is a very simple
scene with two light sources and two shadow casters. For pedagogical reasons, the two
lights have different hues and there are shadow intersections, and soft edges, which
make it very clear how shadow formation behaves in the examples.

14.2.1. Dialing-in shadows globally
A simple and straight-forward way of controlling shadow intensity globally in the scene is
to render the scene with and without shadows and to blend the two images in
compositing. The blend factor will affect global shadow intensity. This is easy to setup

51

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

with two beauty render passes, one having shadows turned on, the other with shadows
turned off.

Figure 38 Beauty Passes with and without Shadows

Figure 39 Shadow Blend-in Composit ion

There is, however, an interesting alternative: using a beauty pass and a shadow pass.
This makes shadow editing more flexible while still remaining intuitive. The method
consists of rendering a regular beauty pass without shadows enabled and a regular
shadow pass. The shadow is applied by subtracting the shadow pass from the beauty
pass. The advantage of this method is that interesting effects can be achieved by
applying simple modifications to the shadow pass, such as a color correction node.

Figure 40 Color-corrected Shadow Composit ion

The CC Basics tool has a Gain parameter that can be used to adjust shadow intensity.
Other creative effects can be achieved with this composition. For example, the tint of the
shadows can be modified by adjusting the color balance in the CC node. Another
interesting effect is to apply a gamma curve to the shadow pass. This affects shadow
edge softness and fading.

52

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Gamma = 0.57

Gain = 0.56

Gamma = 1.5
Gain = 0.75

Figure 41 Shadow Tuning with a Color Correction Node

14.2.2. Dialing-in Shadows per Light Source
The methods of 14.2.1 can be further ramified in order to break-down shadows on a per
light basis, in order to control them independently. It makes sense to combine this
approach with an illumination composition in order to perform light tuning and shadow
tuning simultaneously.

Figure 42 Light and Shadow Tuning Composit ion

As before, all layers of the reaction node use planes with the Add blend mode.

14.2.3. Modifying the Shadow Opacities of Shadow Casters
The shadow opacity of a surface is defined as the fraction of a shadow ray that is
occluded by a surface. In most mental ray materials, this is usually related to the
“transparency color” attribute of the surface shader. It may, however, be controlled by a
separate parameter to distinguish between eye-ray transparency and shadow ray
transparency; or, it can be controlled completely independently by a shadow shader.
Controlling shadow opacity can also be done in compositing.

The first step is to render the shadows that are projected by each shadow-casting object
of interest. The naïve way of isolating these shadows is to use PCMs to remove objects
that we do not want to get shadows from. This method breaks down in the presence of
overlapping shadows, or when an object that we don’t want shadows from is a shadow
receiver. Take the following example of three superposed planes.

53

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 43 Cascading Shadows

A simple way to isolate the shadows cast by the top plane is to create an additional render
layer and to use layer overrides to prevent all other objects from casting shadows. This
behavior is controlled by the Casts Shadows attribute on the shape node. The scene file
ShadowTuningExample2.ma is set-up to produce the following passes.

Figure 44 Beauty without Shadows

Figure 45 Shadows Cast by Top Plane

Figure 46 Shadow Cast by Middle Plane

54

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

A noteworthy detail is that there is an area of overlap in the 2 shadows. This will make it
trickier to combine the two shadows in compositing. The following compositing graph
performs the proper accumulation of the two modified shadows:

Figure 47 Composit ion for Combining Shadows

The two CC Basics nodes serve as shadow modifiers. The rest of the graph is for
recombining the shadows. The Divide nodes (actually MathOps nodes that were renamed)
are used to compute the fraction of scene illumination blocked by the individual shadows.
The Invert nodes compute the fraction of illumination not
blocked by the shadows. The Multiply1 node combines the
shadow transmittance fractions, which are then used to
modulate the un-shadowed image with the Multiply2 node.

Figure 48 Attenuated Shadow Opacity

The following image was produced by setting the Gain to
0.5 on both CCBasics nodes, which corresponds to
reducing the shadow opacity of both planes by 50%.

The example above is somewhat simplified because it
operates under the assumption that the entirety of the
shading in the un-shadowed beauty pass is a result of
direct illumination. A more general solution would involve
factoring-out components that are not results of direct
illumination, and processing each reflection and refraction
trace level independently.

14.2.4. Re-projecting Shadows
A very important application for shadow passes is the application of rendered shadows
onto live-action footage or CG content that was rendered separately. The usual method
for creating the shadow passes involves setting up stand-in surfaces that act as shadow
receptor proxies for the geometry in the scene that receivesreceive the composited
shadows. With live action footage, this task is often accomplished using a technique
called match-moving.

This compositing technique can be illustrated using the ShadowTuningExample2.ma
scene, also referred to in the previous section. An additional beauty pass was added to
the masterLayer with a pass contribution map that captures the top and middle planes.
This new pass is generated with an alpha channel (coverage mask), which is necessary
later for use as a compositing matte. This pass has the content that we want to composite
onto an alternate background.

The bottom plane is the proxy shadow receiver. The shadows are captured using two
direct irradiance passes, one with shadows enabled, the other with shadows disabled.
The direct irradiance passes are rendered un-occluded by using a PCM to exclude the
foreground objects, and the hold-out option is disabled.

55

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 49 Direct Irradiance Without Shadows

Figure 50 Direct Irradiance With Shadows

Using these two images, computing the shadow transmittance fraction is a trivial division
operation. Just as in 14.2.3, applying the shadow is a matter of multiplying the shadow
receiver image by the shadow transmittance fraction.

Figure 51 Composit ion for Shadow Re-Projection

The back plate is simply a new ground plane with lighting conditions identical to the
original scene. The Reaction node uses a plane for the foreground layer, which is
composited using the Normal blend mode (which uses the alpha channel as a matte). It is
important not to forget the Unpremultiply node, which is necessary to prevent dark
artifacts along the anti-aliased edges of the foreground layer.

56

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 52 Shadow Re-Projection Result

14.3. Managing Lighting with Partitioned Scenes.
The shadow and light tuning methods shown in the previous section can get very complex
very easily when combined with scene partitioning. The difficulty added by scene
partitions is that of combinatory coverage. When decomposing a scene into geometry
partitions and light partition, it is important to make sure that no light emitter/receiver pair
is left-out or duplicated.

14.3.1. The Combination Matrix
The principles of scene partitioning are not exactly rocket science, so it may be tempting
to “wing it”, which is a good way to get into trouble. Constructing a combination matrix is a
simple —and not very time consuming— method for obtaining complete and non-
redundant coverage of all direct illumination interactions in a scene. The idea is to
construct a table where there is one row for each partition of renderable geometries in the
scene (surfaces and volumes), and one column for each light partition. The matrix cells
must be filled-in with the render pass identifiers (numbers, names, colors, whatever). The
idea is to fill-in the matrix. Ideally, the matrix should be full, with no overlaps.

Here is an example of a matrix for a scene with four scene partitions, corresponding to 4
non-intersecting PCMs, and the union of which covers the entire scene. There are also
four illuminant groups.

Combination Matrix Example

 Sun Sky Key Light Ambient Light
Ground A A B B
Set C C D D
Character E F G H
Props C C I J

Obviously, we could have just assigned a different render pass to each cell in the matrix,
but that can lead to a compositing set-up that is heavier than necessary. In the case
above, we decided to group together elements that are to be re-lit together. For example,
pass C contains both the set and the props as lit by the sun and the sky. The decisions as
to which partitions are to be grouped together don’t necessarily need to be made at
rendering time. Rendering a finer grained set of passes (like one for each cell) leads to
more flexibility in compositing, because nothing prevents passes from being added and
subtracted from each-other to re-combine partitions in an intermediate step. The
recombined (intermediate) passes can then be used to fill-in the matrix.

57

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

It is not always necessary to fill the matrix completely when certain objects are known not
to be lit by certain lights (e.g. when using light linking).

14.3.2. Reflections and Refractions
Scene partitioning has important implications for reflections and refractions because
scenes from different partitions can cast reflections and refractions of each other. This is
resolved using either of the methods proposed in section 11.2.1. These solutions make
optical interaction problems easier to resolve when renders are partitioned using render
passes (as opposed to render layers).

14.3.3. Shadows
Shadows add an additional level of difficulty because the combination space that needs to
be covered is three-dimensional (light source, shadow caster, and shadow receiver). A
matrix approach can still be used, but may be excessive. There typically aren’t as many
shadows in the scene as there are possible light/caster/receiver combinations, so it is
usually worth taking the time to manually identify the shadows that need to be isolated by
manually inspecting the Master Beauty pass.

14.3.4. Indirect Illumination
Indirect illumination (i.e. final gathering or global illumination) is a tricky case because it is
computed globally, and not on a per-render pass basis. The example in section 14.1
showed that the indirect illumination from various light sources was not dissociable at the
compositing stage within a given render layer. The trick to overcome this while resolving
the reflection/refraction visibility issue (inherent to partitioning) is to leverage render layers
and passes simultaneously. Render layer memberships can be used to control light
source contributions, while PCMs are used to control the contributions of scene’s
geometric entities. For example, to render pass “C” from the above matrix, one would use
a render layer that contains the entire scene except for the key light and the ambient light,
and a PCM that contains the Set and Prop objects. The result would be a beauty pass
that combines both the direct and indirect illumination from just the sun and the sky on the
set and prop objects, while still being able apply the methods of section 11.2.1.

14.4. Tuning Reflections and Refractions
Using the minimum and maximum reflection and refraction level parameters, it becomes
possible to decompose renders into specific trace levels that can be recomposed by
addition. This decomposition method poses a combinatorial problem very similar to that of
decomposing lighting with scene partitions (c.f. section 14.3). In this case, what is sought
is a complete and non-redundant coverage of all reflection and refraction level
combinations. This problem can be modeled very simply, using a similar matrix method to
represent reflection level versus refraction level. For example, suppose we want to be able
to tune based on four passes: direct eye rays, first level reflection, first level refractions,
and everything else. The question is: what exactly is “everything else”, and how is the
image of that obtained? The matrix representation helps visualize the problem.

Trace-Level Coverage Matrix: Example of incomplete coverage

 Reflection Level
0 1 2…N

Refraction
Level

0 A B
1 C
2…N

Unfortunately, because of the nature of the parameterization (min/max), a render pass can
only cover a rectangular region of the matrix. In this example, the remaining areas can be

58

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

covered using three render passes, which can be added together later to form an
intermediate “everything else” pass.

Completed Trace-Level Coverage Matrix

 Reflection Level
0 1 2…N

Refraction
Level

0 A B E
1 C F F
2…N D F F

Passes D, E and F simply need to be added together to form the remainder image. When
using this systematic approach correctly, no trace recursion levels are left-out or
duplicated in the final composition.

14.5. Deferred Motion Blur and Depth of Field
Motion blur and depth of field are two very important effects that replicate physical
phenomena that occur in cameras. These effects are very important in cinematography in
general, and not just in rendering. Most commercial
renderers, including mental ray, are capable of rendering
these effects in a physically-based fashion, but the
computational cost is often very high. An alternative is to
use image-based algorithms for approximating these
effects with compositing software. The image-based
approach has the advantages of allowing the effect to be
adjusted interactively without having to re-render the 3D
scene, and significantly cutting-down on rendering time.
However, the results are usually not quite physically
correct; although, in many cases, they are a good enough
approximation.

14.5.1. Image-Based Motion-Blur

A motion blur effect can be added in compositing by simply
rendering a motion vector pass and feeding it into a blur
tool. In the Maya Composite 2011 feature, the blur tool has
a forward vector input slot that was
specifically designed to generate motion blur
from motion vectors. Sample scene
MotionExample.ma illustrates how to set-up
an animated scene to produce a 2D motion
vector pass that can be used for this
purpose. It is really important to use the 2D
Motion vector pass type, and not the X and
Y components of a 3D motion vector pass.
These are very different. The 2D motion
vectors are in screen-space coordinates
(perspective projection). The example scene

was also specially designed to demonstrate
several shortcomings of this method.

Figure 53 Motion-Blur Composit ion

Figure 54 Beauty with Pass Motion Vectors
Overlaid

59

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 55 Rendered Motion-Blur

Figure 56 Vector-Based 2D Motion-Blur

There are several problems with vector-based motion-blur generation. The most obvious
one is the poor handling of discontinuities in the vector field, leading to the improperly
blurred edges of the sphere. The other predominant problem is that motion vectors only
represent the motion for primary ray hits. Therefore reflections, refractions and shadows
are not blurred. A more subtle discrepancy is the blur filter profile. The blur tool in the
Maya Composite 2011 feature applies a Gaussian blur, which does not match the camera
shutter profile used by mental ray, which explains why the blurred grid texture on the ball
does not look exactly the same in the two images.

The Maya Composite 2011 system has a built-in mechanism for resolving the edge issue
by using the Extend Alpha option on the Blur tool. This option grows the motion vector
field to cover the area occupied by the moving object’s edges. Good results can be
obtained with this method by partitioning the scene into object groups with continuous
motion vector fields.

Figure 57 Motion-Blur Composit ion using Extend Alpha

60

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 58 Composited Motion-Blur using Extend Alpha

This is a good improvement over the result of Figure 56 but the motion-blur effect is still
not complete. One way of faking motion-blur on shadows, reflections and refractions is to
decompose the image into components that can be blurred individually. With this method,
the blurring of secondary optical effects does not use motion vectors and it requires quite
a bit of manual tweaking.

Figure 59 Composit ion for Faking Motion-Blur by Component

In the above composition, the shading of the plane had to be

n

d

l

Figure 60 Result of Faking Motion-
Blur on the Reflection and Shadow

decomposed into its ambient, diffuse and specular components.
This is simply because of the presence of an ambient light in the
scene, and the fact that the re-application of the blurred shadow
must not affect the ambient shading component. The Reaction
node composites the three bottom layers additively (pre-matted
compositing), while the sphere layer is composited with a matte i
order to get correct occlusion with the blurred edges. The three
Blur nodes in the composition give separate control over the
directional blurs that are applied to the shadow, reflection, and
direct image of the sphere. Although this method yields a more
complete effect, it is still less accurate than what can be achieve
by a renderer, in part because the method uses uniform blurs on
the secondary optical interactions. Real motion-blur is rarely
perfectly uniform because of perspective projections, rotationa

61

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

motion, local deformations, etc. For simple cases, however, results are often acceptable.

14.5.2. Image-Based Depth of Field
s very similar to adding motion-blur. The

 is

Figure 61 Composition for Depth-Based Blur Modulation

The Rewire node is necessary because the Maya Composite 2011 feature interprets the

es.

Adding a depth of field effect in compositing i
difference is that a Camera Depth render pass is used to modulate the blur. One of the
difficulties, however, is converting the depth pass into a map that is adequate for blur
modulation. Raw physical depth does not produce a compelling result. One approach
to take 1/depth, as in the following example.

Z-channel as alpha, and this node is set-up to rewire alpha into the color channels. The
Remap Color node only performs a input range adjustment to bring the inverse depth
values into the [0,1] range. The blur node uses the Extend Alpha feature to handle edg

Figure 62 Depth of Field Rendered with menta

Figure 63 Composited Depth of Field Effect

This use case has much of the same pitfalls as vector-based 2D motion-blur. Many of the

s

rled (front and

l
ray

same solutions can be used to help resolve the problem. Artifacts around edges can be
partially resolved by partitioning the scene and blurring by partition. As far as reflections
and refractions are concerned, faking it (snake-oil-style) may be attempted by manually
blurring the reflection and refraction component images, but getting near-correct results i
a lot trickier than with motion-blur. For shadows, nothing special needs to be done, as long
as the depth of field effect is applied to the shadow receiving objects.

Figure 63 also shows that edges at high viewing angles appear to be cu
back edges of the checkered plane). This is simply a side effect of isotropic blurring,
combined with the fact that the Extend Alpha feature does not do any extrapolation. These
limitations prevent simple blur modulation from accurately representing the depth of field
phenomenon. Nonetheless, in many less extreme situations, this method is adequate for
rendering a convincing effect at a fraction of the cost in rendering time (because rendering
DOF requires high sampling levels to get smooth results).

62

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

14.6. The De-comp Re-comp Workflow
Planning a complete re-composition from a vast set of elementary passes can be
extremely challenging, especially when combining multiple types of decompositions
(scene partitioning, illumination decomposition, BRDF decomposition, shadow
decomposition, reflection and refraction-level decomposition, etc.) If the render passes
and the compositing tree are not configured meticulously, there can be elements that are
either missing or applied multiple times in the final composite.

The de-comp re-comp workflow requires less planning. The compositing process is ad-
hoc in the sense that the artist decides on-the-fly which components need to be factored-
out and retouched independently.

The basic idea is to start with a global beauty pass as an initial canvas. Then, any
component that needs to be re-touched is subtracted-out, modified independently, and
added back in to the final result. This method is not fool-proof, however. Incoherent
results may occur when overlapping components are retouched independently. For
example, if a given object’s diffuse color is changed, and later, a shadow that is cast onto
the same object needs to be edited, then there is a problem. The process of subtracting-
out the shadow is difficult because the rendered shadow pass does not respect the new
diffuse color of the object.

It is also possible to execute a hybrid workflow, where the de-comp re-comp method is
used on individual branches of the global compositing tree, e.g., scene partitions.

15. The Shader SDK
The render pass system in mental ray for Maya is a powerful tool, but one of its main
caveats is that it does not work completely with regular mental ray shaders. For some
features to work correctly, it is necessary to use shaders that were specifically designed to
support render passes. In order to help shader developers produce mental ray shaders
that are render pass compliant, there is a shader SDK. Shader writing is beyond the
scope of this document. Reference documentation on the SDK is embedded in the SDK
header files. The SDK files are located in:

<Maya Install Directory>/devkit/adskShaderSDK

Unlike the mental ray shader API, this SDK is not in standard C. It is in C++ and uses
many C++-specific language constructs, which may be foreign to some mental ray shader
writers. The implementation patterns used in the SDK are also somewhat non-traditional
for shader writing. To help users understand the implementation patterns, two sample
shader implementations are provided with the SDK. These examples show two different
ways of implementing a simple Phong surface shader.

As of Maya 2011, there are no published examples for writing other types of shaders that
also need to be render-pass compliant: light shaders, volume shaders, shadow shaders,
shading graph utility shaders, lens shaders and output shaders. Additional assistance can
be obtained on-demand through the Autodesk Developer Network.

63

http://www.autodesk.com/adn

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Appendix – Flame Compositions
The following screenshots illustrate how to build compositions similar to those in section
14 using Autodesk Flame 2011 software. The compositing results may be slightly
different since Flame and the Maya Composite feature use different implementations and
algorithms. In particular, the blur tools are very different.

Figure 64 I l lumination Recombination

64

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 65 Overcast Day Effect

Figure 66 Shadow Blend-In

Figure 67 Color-Corrected Shadow

65

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 68 Light and Shadow Tuning

Figure 69 Combining Shadows

66

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

Figure 70 Shadow Re-Projection

Figure 71 Simple Vector-Based 2D Montion-Blur

Figure 72 Vector-Based 2D Motion-Blur with Clean Edges

67

AUTODESK MAYA: RENDER PASS CONCEPTS AND TECHNIQUES

68

Figure 73 Faking Motion Blur by Component

Figure 74 Depth-Based Blur Modulation

Autodesk and Maya are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or
affiliates in the USA and/or other countries. mental ray is a registered trademark of mental images GmbH licensed
for use by Autodesk, Inc. Python is a registered trademark of Python Software Foundation. All other brand names,
product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and
services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical
or graphical errors that may appear in this document.

© 2010 Autodesk, Inc. All rights reserved.

	1. What Are Maya Render Passes?
	1.1. Old vs. New Render Passes

	2. Advantages of Using Render Passes
	2.1. Easier Workflow in Maya
	2.2. Interoperability
	2.3. Lower Render Times
	2.4. Reduced Necessity for Custom Shader Development
	2.5. Faster and Easier Material Shader Authoring

	3. Render Layers vs. Render Passes
	3.1. Reasons to Use Render Layers for Decomposition
	3.1.1. Scene Partitioning for Performance
	3.1.2. Overrides
	3.1.3. Pre and Post Render Scripts
	3.1.4. Camera and Lens Effects
	3.1.5. Global Illumination and Final Gathering

	3.2. Reasons to Use Render Passes for Decomposition
	3.2.1. Performance
	3.2.2. Scene Segmentation with Optical Interactions
	3.2.3. Render Pass Types and Options
	3.2.4. Sample Coherence

	3.3. Grouping Render Passes
	3.3.1. Grouping by Layer
	3.3.2. Grouping by Set

	4. Render Pass Principles
	4.1. Understanding Pass Contribution Maps
	4.2. Dealing with Shadows
	4.3. The Master Beauty

	5. mental ray for Maya Render Pass Fundamentals
	5.1. Custom Frame Buffers
	5.2. Pass Implementation Categories
	5.2.1. Light Loop Material Passes
	5.2.2. Non-Light Loop Material Passes
	5.2.3. Non-Material Passes
	5.2.4. Shading Engine Passes
	5.2.5. Volume Passes

	5.3. Post-Processing Effects
	5.3.1. Glow
	5.3.1.1. Real-World Glow
	5.3.1.2. Rendered Glow
	5.3.1.3. Producing Near Realistic Glow Effects
	5.3.1.4. The Glow Source Render Pass

	5.4. Complex Shading Networks
	5.4.1. Combinations of Multiple Shaders
	5.4.2. Chained Material Shaders
	5.4.3. Non-Linear Color Transformations

	5.5. User-Written and Third-Party Shaders
	5.5.1. Passing Through a surfaceShader Node
	5.5.2. Capturing the Shader Output Structure
	5.5.3. Custom Passes

	5.6. Bypassing the Shading Engine

	6. Options for Material Passes
	6.1. Shadows
	6.2. Hidden Geometries Cast Shadows
	6.3. Hold-out
	6.4. Use Transparency
	6.5. Hidden Geometries Visible in Reflections
	6.6. Hidden Geometries Visible in Refractions
	6.7. Hidden Geometries Produce Reflections
	6.8. Hidden Geometries Produce Refractions
	6.9. Minimum Reflection Level
	6.10. Maximum Reflection Level
	6.11. Minimum Refraction Level
	6.12. Maximum Refraction Level

	7. Render Pass Presets
	7.1. Editing Default Values
	7.2. Adding Presets

	8. .mi File Representation
	8.1. File Export Options
	8.2. Render Pass Translation
	8.2.1. The Frame Buffer Data Block
	8.2.2. Pass Contribution Map Encoding
	8.2.3. The Options Block
	8.2.4. Material Definitions
	8.2.5. Shadow Shaders
	8.2.6. The Camera Block

	8.3. Using Render Passes with Render Proxies

	9. Render Pass Naming
	9.1. File Naming Mechanisms
	9.2. Frame Buffer Naming (for OpenEXR® files)

	10. Transparency
	10.1. The Meaning of Premultiplied
	10.1.1. The Premultiply Rendering Option

	10.2. Alpha Channels of Render Passes
	10.3. Transparency vs. Refraction
	10.4. Applying Transparency to a 3rd Party Shader

	11. Compositing Guidelines
	11.1. Basic Compositing Arithmetic for Combining Passes
	11.2. Compositing Scene Partitions
	11.2.1. Pre-Matted Compositing
	11.2.2. Standard Matte-Based Compositing
	11.2.3. Un-Pre-Multiplied Matte-Based Compositing
	11.2.4. Shading Decompositions

	11.3. Handling Environments and Backgrounds
	11.4. Dealing with Reflections and Refractions
	11.5. Tone Mapping and Color Correction
	11.6. Using the Shadow Passes

	12. Working with the mia_material Shader
	12.1. Current limitations
	12.2. Extracting reflection and refraction render passes.

	13. Working with the mental images Architectural Sun and Sky Shaders
	14. Basic Compositing Techniques and Examples
	14.1. Light Tuning
	14.2. Shadow Tuning
	14.2.1. Dialing-in shadows globally
	14.2.2. Dialing-in Shadows per Light Source
	14.2.3. Modifying the Shadow Opacities of Shadow Casters
	14.2.4. Re-projecting Shadows

	14.3. Managing Lighting with Partitioned Scenes.
	14.3.1. The Combination Matrix
	14.3.2. Reflections and Refractions
	14.3.3. Shadows
	14.3.4. Indirect Illumination

	14.4. Tuning Reflections and Refractions
	14.5. Deferred Motion Blur and Depth of Field
	14.5.1. Image-Based Motion-Blur
	14.5.2. Image-Based Depth of Field

	14.6. The De-comp Re-comp Workflow

	15. The Shader SDK
	Appendix – Flame Compositions

