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A Transversely Isotropic
Viscoelastic Constitutive Equation
for Brainstem Undergoing Finite
Deformation
The objective of this study was to define the constitutive response of brainstem undergo-
ing finite shear deformation. Brainstem was characterized as a transversely isotropic
viscoelastic material and the material model was formulated for numerical implementa-
tion. Model parameters were fit to shear data obtained in porcine brainstem specimens
undergoing finite shear deformation in three directions: parallel, perpendicular, and
cross sectional to axonal fiber orientation and determined using a combined approach of
finite element analysis (FEA) and a genetic algorithm (GA) optimizing method. The
average initial shear modulus of brainstem matrix of 4-week old pigs was 12.7 Pa, and
therefore the brainstem offers little resistance to large shear deformations in the parallel
or perpendicular directions, due to the dominant contribution of the matrix in these
directions. The fiber reinforcement stiffness was 121.2 Pa, indicating that brainstem is
anisotropic and that axonal fibers have an important role in the cross-sectional direction.
The first two leading relative shear relaxation moduli were 0.8973 and 0.0741, respec-
tively, with corresponding characteristic times of 0.0047 and 1.4538 s, respectively, im-
plying rapid relaxation of shear stresses. The developed material model and parameter
estimation technique are likely to find broad applications in neural and orthopaedic
tissues. �DOI: 10.1115/1.2354208�

Keywords: brain tissues, brainstem, shear, large deformation, viscoelastic, hyperelastic,
anisotropic, genetic algorithm, finite element analysis
ntroduction
Each year approximately 1.5 million Americans experience

raumatic brain injury �TBI�, of which 300,000–550,000 die or
equire hospital admission �1,2�. In children, TBI is the most com-
on cause of death with a hospitalization and death rate of over

00 per 100,000 children �3�. Primary traumatic brain injury oc-
urs in regions experiencing large deformations due to applied
orce or acceleration, which may be exacerbated near irregular
oundaries and constitutive property discontinuities �4–9�. For ex-
mple, a TBI occurs when brain is exposed to sudden deceleration
r acceleration, which produces a shear deformation of brain tis-
ues and may lead to microscopic lesions and degeneration of
xonal fibers. The brainstem is a conduit for most cranial nerves
nd contains the primitive and essential centers of the vasomotor,
espiratory, and cardiac systems. Not surprisingly, the brainstem is
nvolved in more than 50% of cases of severe head injuries and

ore than 70% of those with survival times less than 48 h �10�.
lucidating accurate constitutive response of brainstem undergo-

ng large deformation may lead to better understanding of head
njury mechanisms and help establish more effective public safety
tandards and strategies.

The brainstem consists of bundles of axonal fibers distinctly
riented in a longitudinal direction and embedded in a matrix of
xtracellular components and oligodendrocytes. Arbogast and
argulies �11,12� tested brainstem at small shear strain �2.5%�

nd developed a fiber-reinforced composite model based on linear
lastic theory. They found brainstem was transversely isotropic
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viscoelastic at small deformation, but the constitutive response of
brainstem undergoing large deformation, associated with severe
injury conditions, has yet to be investigated.

Few studies developed the constitutive response of brain tissue
undergoing large deformation as an anisotropic, viscoelastic ma-
terial. Previously, brain tissue was modeled as an isotropic vis-
coelastic material �13–17� or an anisotropic, hyperelastic material
�18�. Recently, Prange and Margulies �19� investigated the re-
gional, directional, and age-dependent properties of adult porcine
gray and white matter at large shear deformation using an isotro-
pic, hyper-viscoelastic model. They determined the shear proper-
ties of adult porcine tissues separately in two orthogonal direc-
tions to evaluate the anisotropy. They found that both corona
radiata and corpus callosum demonstrated significant anisotropic
behavior. Like brain white matter, brainstem possesses a trans-
versely isotropic structure and demonstrates anisotropic viscoelas-
tic behaviors at small deformation �12�. Therefore, it is reasonable
to consider anisotropic viscoelastic characteristics for a constitu-
tive model of brainstem at large deformation.

The overall objective of the present study was to define the
constitutive response of brainstem undergoing finite shear defor-
mation. The brainstem was characterized as a transversely isotro-
pic viscoelastic material and the material model was formulated
for numerical implementation. Model parameters were fit to shear
test data. In these tests, the shear force of 4-week old porcine
brainstem specimens were measured in three directions, each de-
fined tangential to the shearing planes: parallel, perpendicular, and
cross sectional to axonal fiber orientation as illustrated in Fig. 1.
Material parameters were obtained using a novel approach to
combine FEA and a GA optimizing method. The research results
provided information to understand the vulnerability of brainstem

subjected to common rotational loading.
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odel Formulation
Based on its anatomy and on previous published data of small

train response �11,12�, the brainstem was assumed to be trans-
ersely isotropic. Because the brainstem also exhibits time-
ependent behavior like most biological soft tissues, in the present
tudy, a transversely isotropic viscoelastic model was developed
o describe the response of the brainstem at large shear deforma-
ion for numerical implementation. First, we presented the instan-
aneous response of the brainstem as a transversely isotropic hy-
erelastic material �20,21�. A specific strain-energy function was
stablished for the brainstem. Next, the instantaneous response
as incorporated into a viscoelastic material formulation which
as extended from small strains to finite strains using hereditary

ntegrals �22�.

Transversely Isotropic Hyperelastic Response of Brainstem.
specific uncoupled strain-energy density function in the form of

q. �A9� in the Appendix was assumed to depict the individual
ontribution of the isotropic matrix and axonal fibers for the re-
ponse of brainstem. For simplicity, neo-Hookean strain-energy
unction was employed to describe the matrix controlled response
f the brainstem

Wiso�Ĩ1, Ĩ2,J� = C10�Ĩ1 − 3� +
1

D1
�J − 1�2 �1�

here C10 and D1 are coefficients. Neo-Hookean strain-energy
unction is the simplest hyperelastic model and exhibits a constant
hear modulus, which uses only linear terms of the invariants in
he deviatoric strain energy. Physically, the neo-Hookean potential
epresents the Helmholtz free energy of a molecular network with
aussian chain-length distribution �22�.
The initial low strain shear modulus G0 and the bulk modulus

0 only depend on the coefficients of Eq. �1�

G0 = 2C10, K0 =
2

D1
�2�

For the additional contribution of axonal fiber reinforcements, a
uadratic standard reinforcing strain-energy function �23,24� is
sed

Waniso�Ĩ4, Ĩ5� = 1
2��Ĩ4 − 1�2 �3�

here � defines a measure of the strength of fiber reinforcement;
nd the effect of I5 on the strain energy is not considered in the
tudy.

The corresponding deviatoric Cauchy stress and equivalent
ressure in Eq. �A17� for this specific constitutive model are

S =
2

J
�W1B̃ + Ĩ4W4a � a −

1

3
�Ĩ1W1 + Ĩ4W4�I� �4�

p = −
2

J
·

1

3
�Ĩ1W1 + Ĩ4W4� �5�

˜

ig. 1 Schematic diagram of shearing directions relative to
xonal fiber orientations
here W1=C10,W4=��I4−1�.
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Time-Dependent Response to Large Deformation
In the above analysis, the instantaneous nonlinear elastic re-

sponse of the brainstem was established. In nature, the brainstem
tissue is actually viscoelastic. Thus, the strain or stress field of
materials is time dependent. For small deformation, linear isotro-
pic viscoelastic materials may be described using a basic heredi-
tary integral

��t� =�
0

t

2G�t − t��ėdt� + I�
0

t

K�t − t���̇dt� �6�

where ė and �̇ are the mechanical deviatoric and volumetric strain
rate, respectively; K and G are the bulk and shear moduli, respec-
tively, which are the functions of the time t with respect to t�.

A suitable generalization to finite strain of the hereditary inte-
gral formulation is obtained as follows �22�:

��t� = �0�t� + SYM��
0

t

Ft
−1�t − t�� · � Ġ�t��

G0
�0

D�t − t��

+
K̇�t��

K0
�0

H�t − t��	 · Ft�t − t��dt�� �7�

where � is the Kirchhoff stress; SYM indicates the symmetrical
part of the matrix; Ft�t− t�� is the deformation gradient of the state
at t− t� relative to the state at t. It is assumed that the instanta-
neous response of the material follows from the hyperelastic con-
stitutive equations. �0

D and �0
H are the deviatoric and the hydro-

static parts of the instantaneous Kirchhoff stress �0, respectively.
The shear and bulk moduli may be expressed in terms of the

time domain Prony series

G�t� = G0
g� + �
i=1

NG

gie
−t/�i

G� �8�

K�t� = K0
k� + �
i=1

Nk

kie
−t/�i

K� �9�

where gi and ki are the relative shear and bulk relaxation moduli
of term i, respectively; g�+�i=1

NGgi=k�+�i=1
Nk ki=1; it is assumed

that the relaxation times �i=�i
K=�i

G. Besides, just two terms in the
Prony series were considered in the present model. Therefore,
there were only two characteristic time parameters: �1 and �2.

Combining Eqs. �7�–�9�, the deviatoric and volumetric parts of
the time-dependent stress response of the brainstem can be further
separated into two hereditary integrals

�H�t� = �0
D�t� − SYM��

i

2 �
0

t
gi

�i
Ft

−1�t − t�� · �0
D�t − t�� · Ft�t

− t��e−t�/�idt�	 �10�

�H�t� = �0
H�t� − �

i

2 �
0

t
ki

�i
�0

H�t − t��e−t�/�idt� �11�

To implement Eqs. �4�, �5�, �10�, and �11� for a transversely
isotropic hyper-viscoelastic material, Kirchhoff stress is trans-
formed to Cauchy stress using the relations below

S�t� = �D�t�/J�t� �12�

p�t� = − 1
3I:�H�t�/J�t� �13�

The developed material model was programmed and imple-
mented as a subroutine of commercial ABAQUS software/Standard

6.3 �HKS Inc., Pawtucket, RI�. The model contained nine material
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arameters, i.e., C10�=G0 /2�, D1�=2/K0�, g1, g2, k1, k2, �, �1, and

2. Like most soft tissues, the brainstem is nearly incompressible.
he material bulk modulus is very high and nearly constant over

ime �25�. For shear deformation, the volume does not change, J
1 and the deformation is isochoric. Values of bulk modulus had

ittle effect on the finite shear deformation. In the present study,
ulk modulus K0 was set to be 2 GPa �25�, and relative relaxation
ulk moduli k1=k2=0. Thus, the developed transversely isotropic,
nite-viscoelastic model was fit to experimental data to determine

he six remaining independent parameters: C10�=G0 /2�, g1, g2, �,

1, and �2.

xperiment

Specimen Preparation. Rectangular brainstem specimens
roughly, 10�5�1 mm� were harvested from 4-week old piglets
n=15�, in a protocol approved by the University of Pennsylvania
nstitutional Animal Care and Use Committee. Because shear
tress relaxation tests were performed in the three principal shear-
ng directions, three specimens were prepared from each pig. The
hree shearing directions were parallel, perpendicular, and cross
ectional to the axonal fiber orientation �Fig. 1�. The specimens
ere excised from the pons of brainstem and their anatomical

ocations are illustrated in Fig. 2. All specimens were immediately
ransported in 4°C mock cerebral spinal fluid solution and tested
ithin 5 h postmortem. Before shear testing, the dimensions

length, width, and thickness� of each specimen were measured in
riplicate with a digital caliper and then averaged.

Shear Testing. The shear test was done using a custom de-
igned, humidified, parallel-plate shear testing device �26�. The
oft, tacky specimen was held in place between two glass plates
ithout adhesive and with negligible precompression. In the test,

he shear displacement and force were measured during rapid
tress relaxation tests.

For each shearing direction, one specimen was tested at seven
ifferent strain levels in the following sequence: 50%, 40%, 30%,
0%, 10%, 5%, and 2.5%. The strain level was defined as u /2h
u was the relative displacement between the two parallel plates; h
as the distance between the two plates or the specimen thick-
ess�. In order to verify reproducibility, the specimen was tested
n eighth time at the strain level of 50% again.

For each strain level, two preconditioning runs were performed
o reduce hysteresis, and the third run was recorded as data �1 kHz
ampling rate�. In each run, one plate was displaced parallel to the
ther plate with a ramp time of about 40 ms and then held for
0 s. Steady state was verified at 60 s to ensure less than a 0.5%
hange in stress over the last 5 s. After each run, the specimen
as allowed to relax for additional 60 s. For each specimen, force

nd displacement time histories at each strain level were stored on
omputer for further numerical analysis.

Experimental Data Quality Assessment. In order to minimize
he experimental error, two quality control criteria were estab-

ig. 2 Anatomic locations of specimens of 4-week old pig
rainstem for three shearing directions
ished to screen the experiments from 15 animals. Each experi-
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ment consisted of three sets of test data for the three test directions
and was required to pass both quality control criteria simulta-
neously in all three test directions.

First, test reproducibility was verified by comparing the first
and second 50% shear force measurement in each of the three test
directions to ensure no slip between the specimens and glass
plates during the measurement at different strain levels. If the
second measurement was different from the first, it indicated that
the boundary condition of the specimens had been changed by the
testing. Specifically, we defined the reproducibility criterion “Ra-
tio” in terms of the mean value of the sum of the normalized
cross-variance between two measurements

Ratio =
4

Nt
�
i=1

Nt 
Fi
1st − Fi

2nd

Fi
1st + Fi

2nd�2

�14�

where subscript i represented the ith time point in the force-time
history; Nt was the total number of the time points of the time
history; F was the experimental shear force; and superscripts 1st
and 2nd represented the first and the second results, respectively.
Reproducibility was assessed using every time point over the in-
terval including the end of the ramp displacement and beginning
of the hold period, when force monotonically increased to the
peak force value and then monotonically decreased. To compare
Fi

1st and Fi
2nd, we must verify similar input displacement for the

two measurements. In our tests, the input plate displacement of
the second 50% strain level was always within 10% of the first
50% run, averaging 2.3% ±2.53% �mean±SD�.

If Ratio exceeded 0.05 for any of three directions, indicating the
difference between the two force measurements was beyond 20%,
none of this animal’s data were included for analysis.

Second, the shear test results in the parallel and perpendicular
directions were examined for the remaining experiments. Because
the brainstem structurally demonstrated transverse isotropy, theo-
retically at the same strain level the experimental shear stress in
the parallel and perpendicular directions should be equal. We used
a relation similar to Eq. �14� to evaluate the difference between
the test results in the parallel and perpendicular directions. In Eq.
�14�, shear stress, equal to recorded F divided by the measured
area �specimen length�width�, was substituted for shear force F.

Parameter Estimation
Since the parameters had to be simultaneously fit to three inde-

pendent shear test data sets obtained in the three shear orienta-
tions, common parameter optimizing routines might become stuck
at a local minimum that best fits one or two directions. Besides,
the material coefficients were implicitly contained in the closed-
form expressions of Eqs. �10� and �11�. Thus, numerical solutions
were employed to fit material parameters in an iterative process
that combined a GA optimizing method with finite element
analysis.

Finite Element Model of Brainstem. 3D finite element models
were created for each specimen. In each model, the element and
node number was the same. The meshing of a specimen was 10
�5�5 elements in the directions of length�width�height, re-
spectively, using C3D8 solid elements. A typical 3D finite element
model is shown in Fig. 3. All the translational degrees of freedom
at each node of the bottom plane were constrained to represent a
no-slip boundary between the specimen and the stationary lower
plate. On the top plane, the nodes were allowed to move only in
the direction of length, simulating a no-slip boundary at the top
plate as it was displaced tangentially to the shearing plane. The
recorded displacement time histories of the top plate were input to
the finite element model as loading conditions.

Genetic Algorithm Method. In numerical methods, GA has
been found to be an efficient global optimizing approach based on
the principles of “survival of the fittest” and pseudorandom infor-

mation exchanges �27�. It demonstrates robustness and flexibility

DECEMBER 2006, Vol. 128 / 927
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o solve the problems with discontinuities or local minima en-
ountered in the current study. In fitting the brainstem parameters,
ur goal is to fit parameters simultaneously to three independent
hear test data sets obtained in the three shearing directions. How-
ver, common optimizing routines might become stuck at a local
inimum that best fits only one or two directions. The genetic

lgorithm optimizing method is capable of circumventing such
ifficulties via a set of operations of evaluation, selection, muta-
ion, and crossover.

In the present study, a differential evolution �DE� algorithm
27� was adopted and combined with finite element simulation of
he shear tests. A DE, one of the most efficient types of genetic
lgorithms, is a stochastic, population-based optimization algo-
ithm. Compared with other evolutionary algorithms that typically
se mutation for parameter vectors �chromosomes or genomes�
hemselves, the DE uses the mutations of the differences of the
arameter vectors. The DE algorithm requires the user to specify a
ange encompassing the possible optimal parameters. To ensure
hat the true optimal value would be in the range specified, ample
pace surrounding published values in the literature was used. The
redefined parameter spaces were: C10� �0.001 10.0� �kPa�, �g1
g2�� �0.0 0.999�, g1 / �g1+g2�� �0.75 0.99�, �1� �0.001 1.0� �s�,

2� �0.01 10.0� �s�, and �� �0.01 10.0� �kPa�. In our optimal pro-
ram, GA searches the values of g1+g2 and g1 / �g1+g2� and then
btains g1 and g2, because in this way it is convenient to apply the
onstraint condition: g1+g2�1.

Numerical Implementation. The transversely isotropic vis-
oelastic material model was programmed and incorporated into
BAQUS/Standard using its user subroutine interface UMAT. In the
rogram, the material parameters and the initial material orienta-
ions in the reference configuration were defined as the input vari-
bles. In the program, the formulations of the deformation gradi-
nt left Cauchy–Green tensor and Cauchy stress can be used
irectly. The elastic tensors were then extended to finite viscoelas-
icity by introducing the modulus relaxation function. An explicit
ntegration scheme was used for incremental equations.

A detailed flowchart provides an overview �Fig. 4� of the nu-
erical implementation of the DE genetic algorithm optimization

nd FEA method to fit the shear test data.
In the first run, the GA randomly assigned a finite number of

nitial sets of material parameter values �solution populations�
rom the search space as input to the FEA model for simulation of
set of shear tests from one animal. The quality of fit of each set
f parameters was evaluated based on an objective or cost func-
ion to compare the measured force and the FEA predicted solu-
ion. The objective function, Oj, was defined in terms of the sum
f the squared residuals between the experimental and predicted

Fig. 3 3D finite element model of brainstem specimen
hear forces for three test directions:

28 / Vol. 128, DECEMBER 2006
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Oj = �
d=1

3

�
i=1

Ndt

�Fdi
fea − Fdi

exp�2 �15�

where O indicated cost function; j was the generation number, for
the initial populations, j=1; superscripts fea and exp represent
finite element analysis and experimental results, respectively. For
each set of parameters, three finite element models corresponding
to the three shearing directions were run independently. Thus, d
indicated one of the three principal shearing directions. Ndt was
the total number of the time points of experimental data for the d
shearing direction.

The running process was stopped when the objective function
satisfied the following criterion for four consecutive generations:


Oj+1 − Oj
 � 	, j = m, m + 1, m + 2, m + 3 �16�

where 	 was a prescribed specific limit value for the convergence.
The optimal material parameters were defined only after satisfying
the objective function criterion for four consecutive generations
because the process might be trapped at a local minimum for a
couple of generations, and a global optimal solution might be
missed.

If the convergence criterion for a generation of parameters was
not met, the genetic algorithm would iterate to the next generation
and create the next solution populations or trial sets of material
coefficients via a series of operations. First, values of cost func-
tion �fitness� for each parameter set were determined according to
Eq. �15� and then used to create offspring. In order to ensure the
diversity of the population and reduce the risk of finding local
minima, the best solutions of each parameter were modified ran-
domly �mutation�. Subsequently, two or more parent individuals
were recombined �crossover� for producing one or more descen-
dants. This new generation of parameter sets was used in a finite
element model simulation of the same shear test data set. The
objective function �Eq. �15�� was evaluated, and the iterative pro-
cess was automatically repeated until the termination criterion
�Eq. �16�� was met.

To accelerate the optimizing computation, a two-step strategy
was implemented. First, the numerical program was only fit to the

Fig. 4 Flowchart to identify optimal material parameters—a
combined approach of finite element analysis and genetic
algorithm optimizing method
parallel and perpendicular directions to determine five of the six
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ptimal parameters, C10, g1, g2, �1, and �2, because the fiber rein-
orcement does not contribute to the response in the parallel or
erpendicular shearing directions. Second, the program was fit to
ll three directions to determine the optimal value of parameter �
n Eq. �3�. For the first step, the number of parents �number of
opulation� was set to 100 for the five unknown parameters, and
et to 20 parents for the one parameter in the second step. In both
teps, the crossover factor or probability was set to 1.0, which
ndicated all offspring were made by crossover. Usually, the cross-
ver factor is given a value between 0 and 1. A higher crossover
actor may yield a faster convergence, if convergence occurs.

The total computation time included the genetic algorithm to
valuate, operate, and generate the material parameters and the
nite element analysis simulations. For the present problems, the
enetic algorithm portion was fast. Because the recorded displace-
ent was input in the FEA model and contained a lot of noise, the
EA simulation frequently met difficulties in convergence, and the

ncremental time step size had to be reduced. However, using raw
isplacement data helped the FEA simulation capture the actual
ariation of shear force more accurately. Depending on the con-
ergence speed of finite element simulation, it took 10–15 days to
terate to a set of parameters that satisfied Eq. �16� on a Sun Blade
000 workstation �Solaris 9, dual 900 MHz UltraSPARC III Cu
rocessor, with 6 GB memory� in single CPU mode.

esults

Quality Control Assessment of Test Data. In all, experiments
n three shearing directions were performed on each of 15 brain-
tems. Based on the first rigorous quality control criterion of in-
erfacial testing conditions, Eq. �14�, 10 of the 15 experiments
ere eliminated, which highlighted the experimental challenges of

he test protocol.
For the remaining five experiments, the difference between the

arallel direction and the perpendicular were assessed. As a result,
hree of the five remaining experiments were eliminated. Only two
xperiments, designated A and B, passed both demanding criteria.
he geometrical dimensions of the specimens in experiments A
nd B are provided in Table 1.

Finite Shear Properties. The finite shear properties of 4-week
ld porcine brainstem were determined using finite element analy-
is and genetic algorithm method. The experimental data of tests

and B at the strain of 50% in the three shearing directions were
sed in fitting the transversely isotropic viscoelastic model. The
umerical implementation demonstrated good convergence with
he increase of generation number �Fig. 5�. The specific limit
alue for convergence, 	, was set to be 1.0. This value indicated
hat the relative variation of the cost function was less than 0.2%.
n the first optimizing step, the five optimal parameters of

Table 2 The material pa

Exp. G0 �Pa� g1

A 14.1 0.8634 0
B 11.2 0.9313 0

Average 12.7 0.8973 0

Table 1 The geometrical dimension of specimens

xp. Specimens Length �mm� Width �mm� Height �mm�

A Parallel 10.04 7.74 1.1
Perpendicular 12.44 5.84 1.55

Cross sectional 7.71 5.69 1.85
B Parallel 10.13 5.5 0.99

Perpendicular 13.41 6.49 1.05
Cross sectional 6.8 5.36 2.0
ournal of Biomechanical Engineering
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C10�=G0 /2�, g1, g2, �1, and �2 were obtained at generation 33 and
24 for experiments A and B, respectively. The parameter of � was
optimized in the second step and obtained within five generations
for both experiments. The optimal material parameters for each
experiment are provided in Table 2.

The average initial shear modulus of brainstem matrix of
4-week old pigs, G0, was 12.7 Pa. Therefore we concluded that
the brainstem offers little resistance to large shear deformations in
the parallel or perpendicular directions, due to the dominant con-
tribution of the matrix in these directions. In contrast, the fiber
reinforcement stiffness was 121.2 Pa, nearly ten times that of ma-
trix. The viscoelastic characteristics of brainstem were represented
using a two-term Prony series �Eqs. �8� and �9��. This form was
adopted in order to express short or long relaxation processes. As
pointed out by Lanczos �28�, this is not a unique representation.
The average relative shear relaxation moduli g1 and g2 were
0.8973 and 0.0741, respectively. The average characteristic time
�1 and �2 were 0.0047 and 1.4538 s, respectively. The viscoelastic
characteristics showed that the shear stress relaxed very rapidly
early in the 60 s hold period. In summary, the brainstem is highly
anisotropic and viscoelastic, and the axonal fibers have an impor-
tant role in the tissue response in the cross-sectional shearing di-
rection �Fig. 1�.

Predictive Capability of Model. The optimal material param-
eters were obtained using the genetic algorithm to minimize the
error between FEA estimates of shear force at the strain level of
50% and measured values. As expected, for each set of optimal
parameters, the FEA estimates of shear force agreed qualitatively
with the experimental measurements of shear force obtained at a
strain of 50% �Fig. 6�. To quantify the agreement, a linear regres-
sion was performed between the experimental shear force and the
FEA estimate of force. Finite element simulations correlated with
experimental results well in all three shearing directions at 50%
�Table 3�. Specifically, in the parallel and perpendicular directions,
all coefficients of determination were above 0.91. In the cross-
sectional direction, the coefficients of determination were 0.79
and 0.74 for experiments A and B, respectively.

The predictive capability of the developed model was evaluated
by comparing the experimental shear force and FEA solutions.
Using the optimal material parameters determined at 50% strain
�Table 2�, the finite element model was used to simulate all other

eters of the brainstem

�1 �s� �2 �s� � �Pa�

66 0.0062 0.6207 128.8
17 0.0033 2.2868 113.6
41 0.0047 1.4538 121.2

Fig. 5 Variation of cost function with the increase of genera-
tion number at the first optimizing step
ram
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hear experiments at strain levels 2.5%, 5%, 10%, 20%, 30%, and
0%. The coefficients of determination were all above 71% �Table
�, indicating good predictive capability of the parameter at
maller strains given raw experimental data for comparison.

iscussion
The objective of the current research was to investigate the

nite shear properties of the brainstem undergoing large deforma-
ion. Shear deformation is associated with the rotational loading
ue to abrupt deceleration or acceleration of brain, which may
ead to diffuse axonal injury, a predominant mechanism of brain
njury. If axonal injury occurs in the brainstem, a post-traumatic

Fig. 6 Fitting results at the strain leve

Table 3 Coefficients of determination „R 2
… o

shear force and FEA simulated results at strain
para „parallel…, perp „perpendicular…, c-s „cros

Exp. Specimens 2.5% 5%

A para 0.83 0.85
perp 0.86 0.86
c-s 0.74 0.83

B para 0.81 0.82
perp 0.71 0.81
c-s 0.74 0.75
30 / Vol. 128, DECEMBER 2006
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coma may be induced immediately �29�. Shear stress relaxation
test is a suitable experiment to determine the finite shear proper-
ties of brain tissues �17,19,30�. Our goal was to study material
properties of uninjured tissue to capture reproducible behavior in
tissue over a range of strains. In our experiment, engineering shear
strain rates reached 25 s−1, which may be associated with mild
head injury but does not represent loading conditions for severe
head injury. However, the mechanical properties presented here
could be used to compare with those in higher strain rate experi-
ments in the future.

The brainstem was modeled as a transversely isotropic, vis-
coelastic material. Specifically, we represented the brainstem as a

f 50% for experiments: „a… A and „b… B

gression analysis between the experimental
vels of 2.5–50% for three shearing directions:
ectional…

0% 20% 30% 40% 50%

.82 0.86 0.86 0.89 0.91

.91 0.92 0.92 0.94 0.95

.84 0.85 0.87 0.9 0.79

.79 0.81 0.87 0.89 0.91

.78 0.79 0.83 0.86 0.92
.8 0.82 0.86 0.84 0.74
l o
f re
le

s s

1

0
0
0
0
0
0
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ber reinforced material, similar to the previous linear model
hich limited its characterization of the brainstem to very small
eformations �12�. We described the axonal fibers using a qua-
ratic standard reinforcing strain-energy function and the matrix
aterial using a neo-Hookean model. For simplicity, we assumed

hat the matrix material and axonal fibers demonstrated similar
iscoelastic characteristics.

In the current study, we obtained the finite shear properties of
he brainstem of 4-week old pig undergoing large deformation.
he axonal fiber initial modulus was 121.2 Pa, which was nearly

en times that of brainstem matrix, 12.7 Pa. For comparison, at
mall deformations �2.5%�, Arbogast and Margulies �12� reported
hat the real part of the complex modulus of axonal fibers was
nly three times stiffer than that of the matrix material in adult
issues. Thus, we conclude that the neural fiber component of the
rainstem plays a more prominent role at large deformations than
t small strains.

Arbogast �31� performed shear stress relaxation tests on adult
orcine tissues at 2.5% strain and obtained the long-term shear
oduli of brainstem of 180 �±40�, 170 �±50�, and 200 �±80� Pa in

he parallel, perpendicular, and cross-sectional shearing directions,
espectively. In contrast, the present study indicates that in the
arallel and perpendicular directions the long-term shear modulus
f brainstem of 4-week old pig is only 0.36 Pa, equal to that of the
rainstem matrix because the fiber does not act in these directions.
xamining both the experiment and analysis, we attribute the sig-
ificant difference between the two studies to preconditioning pro-
edures and deformation magnitudes. In our experiment, two pre-
onditioning runs were performed before data were recorded,
hereas no preconditioning was done in Arbogast’s experiment

31�. It was shown that the long-term shear modulus of non-
reconditioning in vitro brain tissues was 1.53 times that of pre-
onditioning ones on average �32�. Moreover, the long-term
odulus of brain tissues is reduced due to the softening effect at

arge deformations �19�.
Previously reported material properties of brain tissues cover a

road range of values, probably due to the variety of test proce-
ures or conditions such as strain rates, strain magnitudes, species,
pecimen locations and preparations, and loading types. For shear
xperiments alone, oscillation tests reveal a dynamic elastic
odulus range from 600 to 2000 Pa and a dynamic loss modulus

ange from 350 to 600 Pa �11,12,16,17,25,26,31�. For relaxation
ests, adult gray and white matter has an initial shear modulus on
he order of 216.5 Pa �19�. Our relaxation tests in brainstem yield

uch lower values than cerebrum. We measure initial shear
odulus values of 12.7 Pa in the parallel and perpendicular shear

irections and less than 121.2 Pa in the cross-sectional shear di-
ections. These data demonstrate that the brainstem provides dra-
atically less resistance to deformations than the cerebrum. Thus,
e conclude that the brainstem may be especially vulnerable to
istortion during rapid movements of the head.

With a continuum strain energy density function, our model
ill predict that the stiffness in extension is equivalent to that in

ompression whereas Miller and Chinzei �15� showed the brain’s
tiffness in compression is 20% higher than in extension. Exam-
ning their test protocol, it is important to note that their speci-

ens were not from a single tissue but composed of arachnoid
embrane, gyral white matter and cortical gray matter. As stated

y the authors �15�, their experimental results represented a spatial
veraging behavior of brain tissue because their specimen exhib-
ted composite material stiffness, which depended on many com-
lex factors. Besides, the material orientation was not considered
n their experiment. In contrast, our experiment was focused on
he carefully oriented specimens of uniform compositions from
rainstem. With dissimilar origins of specimens, it is not surpris-
ng to find that our results might be different from Miller and
hinzei’s experimental results.
Fifteen experiments were performed. In order to ensure that
arameters were fit to data from reproducible brain tissue tests,

ournal of Biomechanical Engineering
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two data quality control criteria were established. The experiments
were screened based on the reproducibility at 50% strain and the
requirement of equal shear stress in the parallel and perpendicular
shearing directions. Previously, Prange and Margulies �19� as-
sessed tissue integrity of samples tested at 50% strain using Nissl
staining and found that there was no difference in cell morphology
and arrangement between the unstrained tissue and deformed
samples. They also verified that the long-term shear modulus at
5% strain was not altered in more than 80% of samples after a
sequence of shear tests at strain levels of 2.5%, 5%, 10%, 20%,
30%, 40%, 50%, and then 5% again. In the present study, ten
experiments were eliminated because we introduced a condition
of reproducibility at 50% strain that had to be satisfied in all three
test directions. We justified this rigorous quality control standard
because all parameter fitting was performed with the data at 50%
strain. The high rejection rate was likely due to slip between the
plate and sample given large strains up to 50%. Based on the
second data quality control criterion, three of five remaining ex-
periments were eliminated. If the tissue is transversely isotropic,
the experimental shear stress in the parallel and perpendicular
should be equal since they arise solely from the isotropic matrix.
Therefore, it was likely that in the rejected data sets axonal fibers
were not precisely oriented with the test direction, either due to
the inaccurate excision or orientation in the test apparatus. Ulti-
mately, only two experiments passed both criteria, which high-
lights the challenges of this brain tissue testing protocol. In addi-
tion, because we rejected three of five test data sets, we cannot
completely dismiss the possibility that brainstem may not be
transversely isotropic, despite its morphology.

Using a transversely isotropic viscoelastic material, the finite
element model fit the shear test data at the strain level of 50% well
in all three shearing directions. When these material parameters
were used to simulate the shear tests at other strain levels, results
correlated well with the experimental data, confirming good pre-
dictive ability. A neo-Hookean model was employed to describe
constitutive response of the matrix. Because neo-Hookean strain-
energy function represents a linear response, the consistently ex-
cellent fit in the parallel and perpendicular directions where the
matrix dominates the response indicates that the deformation of
matrix may be considered linear. However, at higher strain levels,
the coefficients of determination between measurement and FEA
predictions of force in the cross-sectional direction �Table 3� were
not as good as in the parallel or perpendicular directions. In un-
deformed, highly oriented central nervous system tissue, axons are
undulated, and they straighten as the tissue is elongated along the
axonal axis �18�. This straightening is not uniform but rather may
be represented as a population whose variance decreases with
stretch. We hypothesize that when the brainstem is subjected to
shear deformation in the cross-sectional direction, the axonal de-
formation is actually inhomogeneous. Future models may be im-
proved using an inhomogeneous model to describe axonal fibers.

To incorporate inhomogeneous deformations of axon fibers into
the model, it is necessary to discern the work of fibers both in
compression and extension. In the present study, a continuum
strain energy density function has been chosen to describe the
instantaneous response of the brainstem as a homogeneous, trans-
versely isotropic material. As a result, the tissue response is ana-
lyzed as a homogeneous material instead of distinguishing be-
tween the response of the matrix and fibers. In the modeling, the
assumption of homogeneous deformation of fibers implied that the
tissue behaves similarly in compression and extension, which sug-
gested fiber bundles work in compression, although in our experi-
ments, axonal fibers acted only in the cross-section shear direction
and mainly experiences stretch. Recently, Miller and Chinzei �15�
showed the brain’s stiffness in compression is 20% higher than in
extension. This result indicated that fibers might work in compres-
sion given the fact that brainstem consists of a large portion of
fibers, e.g., 90% optic fiber volume fraction in the composites of

optic fiber-matrix of adult porcine brainstem �12�. It is not clear

DECEMBER 2006, Vol. 128 / 931
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ow the isotropic matrix could provide higher stiffness in com-
ression than both fibers and matrix in extension. Microstructur-
lly, the embedded fiber bundles in matrix might play a role in
esisting compression, but their contribution to the tissue com-
ression stiffness depends on many factors including fiber orien-
ations, fiber bundle buckling stability, specimen dimensions, and
ber-matrix bond strength. Obviously, to fully model inhomoge-
eous deformations of axonal fibers, experiments should be per-
ormed on brainstem to elucidate the work of tissue components
n compression.

In nature, most biological soft tissues are anisotropic and vis-
oelastic. Thus, the material model and parameter estimation tech-
ique developed in the current study are likely to find broad ap-
lications in characterizing soft tissues such as brain white matter,
nee ligaments, and tendons.
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ppendix: Transversely Isotropic Hyperelastic Model
If x is the current position of a material particle and X is the

eference position of the same point, the deformation gradient F is
efined as

F =
�x

�X
�A1�

he ratio of deformed/undeformed volumes at this point is

J = det�F� �A2�

here det�·� represents the determinant. A deviatoric deformation
radient is defined to eliminate the volume change for easy finite
lement implementation of nearly incompressible materials

F̃ = J− 1
3 F �A3�

he left and right Cauchy–Green strain tensors are B̃ and C̃, re-
pectively

B̃ = F̃ · F̃T, C̃ = F̃T · F̃ �A4�
hree principal invariants are:

Ĩ1 = tr B̃ = tr C̃ �A5�

Ĩ2 = 1
2 ��tr B̃�2 − tr�B̃2�� = 1

2 ��tr C̃�2 − tr�C̃2�� �A6�

Ĩ3 = detB̃ = detC̃ �A7�

If the unit vector a0 is the direction of the fiber reinforcement in
n undeformed configuration, two additional invariants that in-

olve a0 and C̃ are defined to describe the effect of the fiber-
einforcement �20�

Ĩ4 = a0 · C̃ · a0, Ĩ5 = a0 · C̃2 · a0 �A8�
In order to describe the nonlinear response of transversely iso-

ropic, hyperelastic materials, an uncoupled strain-energy function
er unit volume is defined in terms of the five invariants

W�Ĩ1, Ĩ2, Ĩ3, Ĩ4, Ĩ5� = Wiso�Ĩ1, Ĩ2,J� + Waniso�Ĩ4, Ĩ5� �A9�

here Wiso�Ĩ1 , Ĩ2 ,J� describe the response of the isotropic matrix;

nd the Waniso�Ĩ4 , Ĩ5� describe the directional contribution of the

ber reinforcement. It is implicitly assumed that the fibers respond
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only to stretch in their direction, and their response acts in their
direction only.

For hyperelastic materials, the second Piola–Kirchhoff stress is
�20,21�

� = 2J− 2
3DEV
 �W

�C̃
� − pJC−1 �A10�

where

DEV�·� = �·� −
1

3
��·�:C̃�C̃−1, p = −

�W

�J
�A11�

p is the hydrostatic pressure. Equation �A10� may be further writ-
ten as

� = 2J− 2
3 DEV��




 �W

� Ĩ


� Ĩ


�C̃
�	 − pJC−1, 
 = 1,2,4,5

�A12�
where

� Ĩ1

�C̃
= I,

� Ĩ2

�C̃
= Ĩ1I − C̃ �A13�

� Ĩ4

�C̃
= a0 � a0,

� Ĩ5

�C̃
= a0 � C̃ · a0 + a0 · C̃ � a0 �A14�

where I is an identity tensor.
The Cauchy stress tensor of a transversely isotropic, compress-

ible hyperelastic material is

� =
2

J
dev
F̃

�W

�C̃
F̃T� − pI

=
2

J
dev†„W1 + Ĩ1W2…B̃ − W2B̃2 + Ĩ4W4a � a

+ Ĩ4W5�a � B̃ · a + a · B̃ � a�‡ − pI �A15�
where

W
 = �W/� Ĩ
, dev�·� = �·� − 1
3 ��·�:I�I, a = Fa0 �A16�

a denotes the configuration of a0 during the deformation.
If the material is incompressible, I3=J2=1, W is a function of

only I1, I2, I4, and I5, but an arbitrary Lagrangian multiplier p is
introduced as a reaction stress to the kinematics constraint of in-
compressibility on the deformation field.

In Eq. �A15�, the Cauchy stress � actually consists of two
components: the equivalent pressure p and the deviatoric stress S

p = − 1
3I:�, S = � + pI �A17�
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