

A

A

AutoCAD®

API

Civil 3D® 2

Deve

2013

elop

April

per’s

2012

 Guiide

Contents

Chapter 1 API Developer's Guide . 1
About the Developer's Guide . 1

Intended Audience . 1
AutoCAD Civil 3D APIs . 1
Organization . 2
New Features in the .NET API . 4
Legal Notices . 8

Getting Started . 9
Setting up a .NET Project for AutoCAD Civil 3D 9
Running Commands from the Toolbox 14

Running Commands from the Toolbox 15
Migrating COM code to .NET . 16

Base Objects . 16
Transactions and ObjectIds 16
Styles . 17
Settings . 18
Properties . 18
Limitations and Using Interop 19

Root Objects and Common Concepts 21
Root Objects . 21

Accessing Application and Document Objects 22
Using Collections Within the Document Object 22
Accessing and Using the Database Object 24

Settings . 24

i

Accessing Drawing, Feature, and Command Settings 24
Label Styles . 27

Creating a Label Style Object 27
Defining a Label Style . 27
Using Property Fields in Label Style Text 29
Sharing Styles Between Drawings 30

Sample Programs . 31
Surfaces . 32

Accessing Surfaces . 32
Surface Properties . 34
Creating Surfaces . 36

Creating a TIN Surface from a TIN file 36
Creating a TIN Surface using TinSurface.Create() 37
Creating a Grid Surface from a DEM File 39
Creating a GridSurface with GridSurface.Create() 40
Creating a Volume Surface 41

Working with Surfaces . 42
Adding a Boundary . 42
Adding Data from DEM Files 44
Improving Performance by Using Snapshots 44

Working with TIN Surfaces . 45
Adding Point Data to a TIN Surface 45
Adding Points Using Point Groups 48
Smoothing a TIN Surface 48
Adding A Breakline to a TIN Surface 50
Adding a Wall Breakline 53
Importing Breaklines from a File 53
Adding Contours to a TIN Surface 54
Extracting Contours . 55

Surface Styles . 57
Creating and Changing a Style 57
Assigning a Style to a Surface 58

Surface Analysis . 60
Creating an Elevation Analysis 60
Accessing a Watershed Analysis 62
Calculating Bounded Volumes 63

Alignments . 65
Basic Alignment Operations . 65

Creating an Alignment . 65
Defining an Alignment Path Using Entities 67
Determining Entities Within an Alignment 68

Stations . 70
Modifying Stations with Station Equations 70
Creating Station Sets . 70
Specifying Design Speeds 71
Finding the Location of a Station 72

ii | Contents

Superelevation . 72
Alignment Style . 74

Creating an Alignment Style 74
Alignment Label Styles . 76

Sample Programs . 78
Profiles . 78

Profiles . 79
Creating a Profile From a Surface 79
Creating a Profile Using Entities 80
Editing Points of Vertical Intersection 82
Creating a Profile Style . 83

Profile Views . 85
Creating a Profile View . 85
Creating Profile View Styles 86
Setting Profile View Styles 86

Sample Programs . 91
Pipe Networks . 92

Base Objects . 92
Accessing Pipe Network-Specific Base Objects 92
Pipe-Specific Ambient Settings 92
Listing and Adding Dynamic Part Properties 93
Retrieving the Parts List . 94
Creating a Pipe Network 96

Pipes . 98
Creating Pipes . 98
Using Pipes . 100
Creating Pipe Styles . 100
Creating Pipe Label Styles 103

Structures . 103
Creating Structures . 103
Using Structures . 103
Creating Structure Styles 104
Creating Structure Label Styles 105

Interference Checks . 106
Performing an Interference Check 106
Listing the Interferences 106
Interference Check Styles 106

Sample Program . 108
Corridors . 108

Root Objects . 108
Accessing Corridor-Specific Base Objects 108
Ambient Settings . 109

Corridors . 112
Corridor Concepts . 112
Listing Corridors . 112
Creating Corridors . 113

Contents | iii

Baselines . 113
Listing Baselines in a Corridor 114
Adding a Baseline to a Corridor 114
Listing Baseline Regions 114
Accessing and Modifying Baseline Stations 115
Listing Offset Baselines 116

Assemblies and Subassemblies 117
Listing Applied Assemblies in a Baseline Region 118
Getting Applied Subassembly Information 119

Feature Lines . 119
Listing Feature Lines Along a Baseline 120
Listing Feature Lines Along Offset Baselines 121

Corridor Surfaces . 122
Listing Corridor Surfaces 122
Listing Surface Boundaries 123
Computing Cut and Fill 125

Styles . 125
Assembly Style . 125
Link Style . 126
Shape Style . 126
Roadway Style Sets . 127

Points . 128
Using the Points Collection . 128
Using Points . 129

Bulk Editing Points . 130
Point User-Defined Properties 131

Point Groups . 134
Using Point Groups . 134
Adding Points to Point Groups with Queries 135

Point Style . 139
Creating Point Styles . 139
Creating Point Label Styles 140
Using Point Description Keys 141

Creating Custom Subassemblies Using .NET 143
Overview . 143
Subassembly Changes . 144
Designing Custom Subassemblies 146

Naming Custom Subassemblies 146
Attachment and Insertion Methodology 146
User-defined vs. Hard-coded Parameters 147
Input Parameter Types . 148
Superelevation Behavior and Subassemblies 149
Creating Subassembly Help Files 152

Structure of Subassembly Programs 156
The Subassembly Template (SATemplate.vb) 156
The Corridor State Object 157

iv | Contents

Support Files (CodesSpecific.vb, Utilities.vb) 157
Sample VB.NET Subassembly 160
The Subassembly Tool Catalog 174

Overview . 174
Creating a Tool Catalog ATC File 175
Creating a Tool Catalog Cover Page 185
Creating a Tool Catalog Registry File 186

Installing Custom Subassemblies 188
Exporting Custom Subassemblies Using a Package File 189

Exporting Custom Subassemblies Using a Package
File . 190

Converting VBA Subassemblies to .NET 191
Procedure . 191

Create the Visual Basic.NET Subassembly Module 191
Copy Subassembly Code 193
Port the VBA Code to Visual Basic .NET Code 193
Final Adjustments . 202
Installing the New Subassembly 202
Replacing the VBA Subassembly 202

Legacy COM API . 203
Using VBA in AutoCAD Civil 3D 203
Root Objects and Common Concepts in COM 204

Root Objects . 204
Ambient Settings . 208
Label Styles . 211

Survey in COM . 216
Object Hierarchy . 216
Root Objects . 217
Survey Network . 222
Figures . 228
Sample Program . 233

Points in COM . 234
Object Hierarchy . 234
Points . 234
Style . 239
Point Groups . 243
Sample Program . 246

Surfaces in COM . 247
Object Hierarchy . 247
Using the Surfaces Collection 248
Creating a Surface . 249
Working with Surfaces . 252
Working with TIN Surfaces 258
Surface Style . 264
Performing Surface Analysis 266
Sample Programs . 273

Contents | v

Sites and Parcels in COM . 275
Object Hierarchy . 275
Sites . 276
Parcels . 276
Sample Program . 284

Alignments in COM . 284
Object Hierarchy . 285
Basic Alignment Operations 286
Stations . 290
Alignment Style . 293
Sample Program . 296

Profiles in COM . 297
Object Hierarchy . 298
Profiles . 299
Profile Views . 303
Sample Programs . 307

Sections in COM . 308
Object Hierarchy . 308
Sample Lines . 309
Sections . 316
Section Views . 318
Sample Program . 324

Data Bands in COM . 326
Object Hierarchy . 326
Defining a Data Band Style 327
Creating a Data Band Set 345
Using Data Bands . 347
Sample Programs . 349

Pipe Networks in COM . 349
Object Hierarchy . 350
Base Objects . 351
Pipes . 357
Structures . 363
Interference Checks . 369
Sample Program . 374

Corridors in COM . 375
Root Objects . 375
Corridors . 381
Baselines . 383
Assemblies and Subassemblies 387
Feature Lines . 391
Corridor Surfaces . 395
Styles . 399
Sample Program . 402

Object Hierarchy . 402
AutoCAD Civil 3D . 402

vi | Contents

Creating Client Applications 404
Overview . 404
Samples . 404

Index . 407

Contents | vii

viii

API Developer's Guide

About the Developer's Guide

Intended Audience

The is designed for developers who want to customize AutoCAD® Civil 3D® or
create applications using the underlying APIs. It can also be used for creating
macros to automate repetitive tasks for AutoCAD Civil 3D users and for
developers of custom subassemblies.

AutoCAD Civil 3D APIs

There are three APIs available for customizing AutoCAD Civil 3D:
■ .NET API — allows you to write extensions to AutoCAD Civil 3D in any .NET

language. In general, the AutoCAD Civil 3D.NET API performs significantly
faster than the COM API. Development requires Microsoft Visual Studio
2008 SP1 or better.

■ COM API — you can create clients that access the COM API from managed
(.NET) or unmanaged (C++) code. See Creating Client Applications (page
404). In addition, this API can be used in the Visual Basic for Applications
(VBA) IDE, which is available as a separate download. VBA support is
deprecated.

■ Custom Draw API (in C++) — an extension of the AutoCAD ObjectARX API
that allows you to customize the way AutoCAD Civil 3D renders objects.
Development requires Microsoft Visual Studio.

1

1

The COM and .NET APIs are described in this guide. For more information
about the Custom Draw API, see the Custom Draw API Reference
(civildraw-reference.chm).

In addition, an API is provided for creating custom subassemblies in .NET. See
Creating Custom Subassemblies Using .NET (page 143).

Which API you choose to use depends on what you want to do:

Use:If you want to:

the Custom Draw API. The Custom Draw
API is an extension of the AutoCAD Ob-

Customize the way objects are rendered in
AutoCAD Civil 3D

jectARX API. For example, if you wanted to
number the triangles on a TIN surface, you
could create a DLL using the Custom Draw
API. See the sample applications shipped
with AutoCAD Civil 3D for an example.

.NET or COM API.Create macros to automate repetitive ac-
tions

.NET or COM API.Create applications to manipulate AutoCAD
Civil 3D objects

NOTE

Where possible, you should use the Civil .NET API instead of the COM API,
especially for longer operations, as the .NET API is a thin layer to Civil objects
and has better performance. However, you may find you need to use the COM
object to access some functionality or object members that are not yet exposed
by the .NET API. In this case it's possible to use both. See Limitations and Using
Interop (page 19) .

Organization

This guide is organized by the major features of AutoCAD Civil 3D. It consists
of the following chapters, each of which includes samples from applicable
APIs taken from one or more demonstration programs:

2 | Chapter 1 API Developer's Guide

Chapter 1: Getting Started (page 9)

Explains how to set up a COM and .NET project. Also discusses porting COM
to .NET code, limitations of the .NET API, and how to use interop to access
COM objects.

Chapter 2: Root Objects and Common Concepts (page 21)

Explains how to obtain the base .NET objects representing the documents and
databases, which are required for all subsequent chapters. Also discussed are
objects common to many features, such as ambient settings and label styles.

Chapter 3: Surfaces (page 32)

Explains how to import surfaces from files, manipulate point data directly,
insert breaklines, manage borders, modify contours, and analyze elevation
and watershed information.

Chapter 4: Alignments (page 65)

Explains how to create alignments through layout functions, from polyline
entities, or based on an offset from existing alignments, using the .NET API.
Includes discussion of stations, design speeds, and superelevation.

Chapter 5: Profiles (page 78)

Explains the creation of profiles and profile styles, using the .NET API.

Chapter 6: Pipe Networks (page 92)

Explains the creation of pipes, structures, and pipe networks, including
interference detection, using the .NET API.

Chapter 7: Corridors (page 108)

Explains how to gather and modify information about existing corridors,
baselines, feature lines, assemblies and subassemblies in a document, using
the .NET API.

Chapter 8: Points (page 128)

Explains how to access and create points in a document's point collection,
how to create point groups and populate them using queries, and how to style
points using point description keys.

About the Developer's Guide | 3

Chapter 9: Creating Custom Subassemblies (page 143)

Explains how to create and install custom subassemblies using Visual Basic
.NET and the creation of catalog files which enables users to access custom
subassemblies. You can also convert subassemblies written in VBA to .NET
(see the Appendix Converting VBA Subassemblies to .NET (page 191) for more
information).

Appendix A: Converting VBA Subassemblies to .NET (page 191)

Explains how to convert legacy custom subassemblies written in Visual Basic
for Applications (VBA) to .NET.

Appendix B: COM API (page 203)

Covers the Legacy COM API.

New Features in the .NET API

This section covers changes to the .NET API for AutoCAD Civil 3D for the
2013 release.

Points

COGO points and related features are now fully supported in the .NET API
with these new classes:
■ CogoPoint class: exposes Coordinate Geometry (COGO) points , including

styles and labels.

■ PointGroup class: exposes point groups.
■ CivilDocument.PointGroups is the collection of all point groups in the

drawing.

■ CogoPoint.PrimaryPointGroupId indicates the primary point group a
CogoPoint belongs to.

■ Point Group Queries: Standard and custom point group queries are exposed:
StandardPointGroupQuery and CustomPointGroupQuery classes.

■ User-defined properties are exposed. You can create/modify UDPs, and
they can be set on CogoPoint objects. The collection of all point
user-defined properties defined in a drawing is accessed via the
CivilDocument.PointUDPs property.

4 | Chapter 1 API Developer's Guide

■ Description keys are exposed with the PointDescriptionKey class. The
collection of all point description key sets in a drawing is accessed with
the static
PointDescriptionKeySetCollection.GetPointDescriptionKeySets()

method.

Surfaces

Additional changes have been made to the Surface API:
■ You can now calculate the bounded volume of a surface with

Surface.GetBoundedVolumes().

■ The SurfaceOperationAdd3DFaces Surface operation is now exposed.

■ You can now sample Surface Points along linear entities with the
SampleElevation() method.

■ You can now extract contour information from a surface with several new
ExtractContours*() and related methods.

■ You can now extract elements from surface objects (ExtractBorder(),
ExtractWatershed(), and ExtractGridded()).

Profile Views

Stacked and multiple profile views can now be created using
ProfileView.Create().

Labels

The following changes have been made to the Labels API in this release:
■ Parcel Area labels are exposed (ParcelAreaLabel class). These labels are

obtained from the Parcel.GetAvailableParcelAreaLabelIds() method.

■ Pipe labels are exposed: PipeLabel, SpanningPipeLabel, PipeProfileLabel,
PipeSectionLabel, SpanningPipeProfileLabel, StructureLabel,
StructureProfileLabel and StructureSectionLabel classes.

■ Catchment labels are exposed: CatchmentAreaLabel and FlowSegmentLabel.

■ Sampleline, Section, and SectionView labels: SectionViewDepthLabel,
SectionViewOffsetElevationLabel, SectionProjectionLabel,
SectionLabelSetItem, SectionSegmentLabelGroup,
SectionGradeBreakLabelGroup, SectionDataBandLabelGroup,
SectionSegmentBandLabelGroup, SampleLineLabelGroup.

■ Plan production labels: ViewFrameLabelGroup and MatchLineLabelGroup

About the Developer's Guide | 5

■ General labels: NoteLabel, GeneralSegmentLabel

■ Intersection Label: IntersectionLocationLabel

■ The GetAvailableLabelGroups() method for existing *LabelGroup classes
is deprecated in favor of the more accurately named
GetAvailableLabelGroupIds().

Transportation

The following changes have been made to the Transportation-related API in
this release:
■ You can access FeatureLines by code and modify their properties. You can

also export Corridor FeatureLines as Polylines, Grading FeatureLines,
Alignments and Profiles.

■ You can export a Corridor as COGO points.

■ You can get the offset for a FeatureLinePoint.

■ You can get/set corridor region lock options while creating a Corridor
though the API.

■ Cant View is exposed, including command settings and style.

■ Cant Label is exposed. You can now get/create the cant label object and
access cant label's properties.

■ You can get/set Cant Option and Rail Alignment Options for an Alignment.

Survey

The following changes have been made to the Survey API:
■ The Survey project collection is now exposed (SurveyProjectCollection

class) . It can be obtained from the CivilApplication::SurveyProjects()

method. Users can now set/get the current working folder for survey
projects, get the currently opened survey project object, get a survey project
object from the project guid or path.

■ The Survey project object is exposed (SurveyProject class). Users can now
open and close the project, get the project's guid and name, and get the
survey project's queries.

■ SurveyQueries are exposed (SurveyQueryCollection class and SurveyQuery
class). Users can now get the survey query object with the query guid and
access the survey query's properties.

■ Survey query definitions for TIN Surfaces are exposed, including AddPoint
and AddFigure survey query definitions

6 | Chapter 1 API Developer's Guide

(SurveyQueriesAddPointDefinition, SurveyQueriesAddFigureDefinition,
SurfaceOperationAddPointSurveyQuery, and
SurfaceOperationAddFigureSurveyQuery class). Users can now add data
for a TinSurface with a survey query, and access the properties of a surface
operation with a survey query.

.NET Namespace Changes

This release introduces a namespace restructuring that simplifies referencing
objects. The "domain" part of of the namespace has been removed, so for
existing projects, you will have to update your "using" statements to include
the new namespace. As an example, previous releases exposes "Land" related
classes and types in the Autodesk.Civil.Land.DatabaseServices namespace.
In AutoCAD Civil 3D 2013, these classes and types are in the
Autodesk.Civil.DatabaseServices namespace.

COM Changes

If you are using the COM API, you need to update the object version to 10.0
(from 9.0 used in AutoCAD Civil 3D 2012). The objects and interfaces exposed
have remained the same, but you should reference the new libraries, which
are installed by default to: "C:\Program Files\Common Files\Autodesk
Shared\Civil Engineering 100".

In addition, interop DLLs are no longer registered as Primary Interop Assemblies
(PIAs), and are deployed in the AutoCAD Civil 3D installation directory rather
than the Global Assembly Cache (GAC). This means that these assemblies
must now be added to Visual Studio projects using the Browse tab of the Add
Reference dialog, rather than from the COM tab as was done previously.

To compile previously written projects against AutoCAD Civil 3D 2013, you
will need to remove references to all interop assemblies from your project,
and then re-add them using the Browse tab.

The assemblies required for COM interop are:

■ Autodesk.AEC.Interop.Base

■ Autodesk.AEC.Interop.UiBase

■ Autodesk.AutoCAD.Interop

■ Autodesk.AutoCAD.Interop.Common

■ Autodesk.AECC.Interop.<domain>

■ Autodesk.AEC.Interop.Ui<domain>

About the Developer's Guide | 7

Where <domain> is one of the four Civil 3D COM domains: Land, Roadway,
Pipe, or Survey.

We recommend that you set the "Embed Interop Types" property for each
interop assembly to True, as this will embed all referenced types into your
target assembly, and the referenced interop DLLs are therefore not required
at runtime.

Also see the for detailed information about these new APIs, and items that
have been deprecated in this release.

Legal Notices

AutoCAD Civil 3D 2013

© 2012 Autodesk, Inc. All Rights Reserved. Except as otherwise permitted
by Autodesk, Inc., this publication, or parts thereof, may not be reproduced
in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission
of the copyright holder.

Trademarks

The following are registered trademarks or trademarks of Autodesk, Inc., and/or
its subsidiaries and/or affiliates in the USA and other countries: 123D, 3ds
Max, Algor, Alias, Alias (swirl design/logo), AliasStudio, ATC, AUGI, AutoCAD,
AutoCAD Learning Assistance, AutoCAD LT, AutoCAD Simulator, AutoCAD
SQL Extension, AutoCAD SQL Interface, Autodesk, Autodesk Homestyler,
Autodesk Intent, Autodesk Inventor, Autodesk MapGuide, Autodesk Streamline,
AutoLISP, AutoSketch, AutoSnap, AutoTrack, Backburner, Backdraft, Beast,
Beast (design/logo) Built with ObjectARX (design/logo), Burn, Buzzsaw, CAiCE,
CFdesign, Civil 3D, Cleaner, Cleaner Central, ClearScale, Colour Warper,
Combustion, Communication Specification, Constructware, Content Explorer,
Creative Bridge, Dancing Baby (image), DesignCenter, Design Doctor,
Designer's Toolkit, DesignKids, DesignProf, DesignServer, DesignStudio, Design
Web Format, Discreet, DWF, DWG, DWG (design/logo), DWG Extreme, DWG
TrueConvert, DWG TrueView, DWFX, DXF, Ecotect, Evolver, Exposure,
Extending the Design Team, Face Robot, FBX, Fempro, Fire, Flame, Flare, Flint,
FMDesktop, Freewheel, GDX Driver, Green Building Studio, Heads-up Design,
Heidi, Homestyler, HumanIK, IDEA Server, i-drop, Illuminate Labs AB
(design/logo), ImageModeler, iMOUT, Incinerator, Inferno, Instructables,
Instructables (stylized robot design/logo),Inventor, Inventor LT, Kynapse,
Kynogon, LandXplorer, LiquidLight, LiquidLight (design/logo), Lustre,

8 | Chapter 1 API Developer's Guide

MatchMover, Maya, Mechanical Desktop, Moldflow, Moldflow Plastics
Advisers, Moldflow Plastics Insight, Moldflow Plastics Xpert, Moondust,
MotionBuilder, Movimento, MPA, MPA (design/logo), MPI, MPI (design/logo),
MPX, MPX (design/logo), Mudbox, Multi-Master Editing, Navisworks,
ObjectARX, ObjectDBX, Opticore, Pipeplus, Pixlr, Pixlr-o-matic, PolarSnap,
PortfolioWall, Powered with Autodesk Technology, Productstream,
ProMaterials, RasterDWG, RealDWG, Real-time Roto, Recognize, Render Queue,
Retimer, Reveal, Revit, RiverCAD, Robot, Scaleform, Scaleform GFx, Showcase,
Show Me, ShowMotion, SketchBook, Smoke, Softimage, Softimage|XSI
(design/logo), Sparks, SteeringWheels, Stitcher, Stone, StormNET, Tinkerbox,
ToolClip, Topobase, Toxik, TrustedDWG, U-Vis, ViewCube, Visual, Visual
LISP, Voice Reality, Volo, Vtour, WaterNetworks, Wire, Wiretap,
WiretapCentral, XSI.

All other brand names, product names or trademarks belong to their respective
holders.

Disclaimer

THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE
AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC. DISCLAIMS ALL
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE REGARDING THESE MATERIALS.

Getting Started
This chapter describes how to use VBA, and how to set up a new project for
using the COM or .NET APIs for AutoCAD Civil 3D.

Setting up a .NET Project for AutoCAD Civil 3D

This section describes the basic steps to set up a .NET solution using Visual
Studio and the AutoCAD Civil 3D managed classes. The steps are the similar
whether you use Microsoft Visual C# .NET or Visual Basic .NET. The example
below uses C# in Visual Studio 2010. Express (free) versions of Visual Studio
may look slightly different, but can also be used.

To create a new project that uses the AutoCAD Civil 3D managed classes in
Microsoft Visual Studio

1 In Visual Studio 2010, create a new class library solution and project.

Getting Started | 9

New Project Dialog in Visual Studio

2 Select Project menu ➤ Add References, or right-click References
in the Solution Explorer and select Add References.

10 | Chapter 1 API Developer's Guide

3 Browse to the install directory for AutoCAD Civil 3D, and select the base
libraries acdbmgd.dll, acmgd.dll, accoremgd.dll, AecBaseMgd.dll, and
AeccDbMgd.dll.

NOTE

These are the base AutoCAD and AutoCAD Civil 3D managed libraries.
Your .NET assembly can use classes defined in additional libraries.

To allow debugging and reduce the disk space requirements for your
projects, select these libraries in the Visual Studio Solution Explorer, and
set the Copy Local property to False.

4 Optionally, you can configure your project to start AutoCAD Civil 3D
when you run the application from Visual Studio, which is useful for
debugging.

NOTE

This option is not avaiable in Express (free) versions of Visual Studio.

1 On the project Properties page, select the Debug panel.

2 Under Start Action, choose Start external program, and enter
the path to the acad.exe executable in the AutoCAD Civil 3D
directory.

3 Under Start Options, fill in the Command line arguments:
/ld "C:\Program Files\AutoCAD Civil 3D 2013\AecBase.dbx"

/p "<<C3D_Imperial>>"

4 Under Start Options, fill in the Working directory, for
example: C:\Program Files\AutoCAD Civil 3D

2013\UserDataCache\

5 Implement the IExtensionApplication interface in your main class.
Add the Autodesk.AutoCAD.Runtime namespace (which is where this
interface is defined), and IExtensionApplication after your class
definition: Visual Studio will provide a code complete option to
implement stubs for the interface. Your code should now look like this:

using System;
using Autodesk.AutoCAD.Runtime;

namespace GettingStarted
{

public class Class1 : IExtensionApplication
{

Getting Started | 11

#region IExtensionApplication Members

public void Initialize()
{

throw new System.Exception("The method or
operation is not implemented.");

}

public void Terminate()
{

throw new System.Exception("The method or
operation is not implemented.");

}

#endregion
}

}

You can remove or comment out the default content of these methods.
Initialize() is called when your assembly is first loaded by a NETLOAD
command in AutoCAD Civil 3D, and can be used for setting up resources,
reading configuration files, and other initialization tasks. Terminate()
is called when AutoCAD Civil 3D shuts down (there is no NETUNLOAD
command to unload .NET assemblies), and can be used for cleanup to
free resources.

6 You are now ready to create a public method that is the target of a
CommandMethod attribute. This attribute defines the AutoCAD Civil 3D
command that invokes the method. For example:

[CommandMethod("HelloWorld")]
public void HelloWorld()
{

}

7 Let’s make the method print out a “Hello World” message on the
command line. Add the Autodesk.AutoCAD.ApplicationServices
namespace, and add this line to the HelloWorld() method:

Application.DocumentManager.MdiActiveDocument.Editor.WriteMessage("\nHello
World!\n");

12 | Chapter 1 API Developer's Guide

You can now build the assembly and run it. Start AutoCAD Civil 3D,
and type NETLOAD at the command line. In the Choose .NET
Assembly dialog, browse to your assembly DLL (if you are using the
project settings from step 1, this will be GettingStarted.dll). Type
HELLOWORLD at the command line, and you will see the command
output:

8 The previous step used functionality from the AutoCAD Application
class. Let’s include some functionality specific to the AutoCAD Civil 3D
managed classes. First, add two more namespaces:
Autodesk.AutoCAD.DatabaseServices and
Autodesk.Civil.ApplicationServices. Then add these lines to obtain
the current Civil document, get some basic information about it, and
print the information out:

public void HelloWorld()
{

CivilDocument doc =
Autodesk.Civil.ApplicationServices.CivilApplication.ActiveDocument;

ObjectIdCollection alignments =
doc.GetAlignmentIds();

ObjectIdCollection sites = doc.GetSiteIds();
String docInfo = String.Format("\nHello

World!\nThis document has {0} alignments and {1}
sites.\n", alignments.Count, sites.Count);

Application.DocumentManager.MdiActiveDocument.Editor.WriteMessage(docInfo);

}

Open or create a document in AutoCAD Civil 3D that contains
alignments and sites. When you run the HELLOWORLD command
now, you should see output similar to this:

Getting Started | 13

For more samples, look in the AutoCAD Civil 3D\samples\dotNet directory.

Running Commands from the Toolbox

The recommended method to expose a AutoCAD Civil 3D extension to users
is to add it to the Toolbox tab in Toolspace, by creating a toolbox macro.
The Toolbox handles loading the .NET assembly or ARX DLL containing the
commands.

There are two execution types that a toolbox macro can have:

1 CMD - the command name is sent to the command line to execute. This
is the recommended execution type for both .NET and ARX commands.

2 .NET - a method name is located, via Reflection, in the assembly, and is
executed directly. No attribute flags are read and the code is always run
in application context. (A command executed from the command line
runs in the drawing context by default). Therefore, code run as as a .NET
execute type must always be a static method, and must handle its own
document locking.

NOTE

It is safe to explicitly lock a document, even if the code might be run in
document context.

Here is an example of how to handle document locking:

static void setPrecision()
{

using (Autodesk.AutoCAD.ApplicationServices.DocumentLock
locker =
Autodesk.AutoCAD.ApplicationServices.Application.DocumentManager.MdiActiveDocument.LockDocument())

14 | Chapter 1 API Developer's Guide

{
// perform any document / database modifications

here
CivilApplication.ActiveDocument.Settings.DrawingSettings.AmbientSettings.Station.Precision.Value

= 2;
}

}

Running Commands from the Toolbox

To create a toolbox macro for a compiled command using the Toolbox Editor

1 Click the Toolbox tab in Toolspace.

2 Click to open the Toolbox Editor.

3 Right-click Miscellaneous Utilities and click New Category.

4 Right-click the new category, and click New Tool.

5 Select the new tool, and enter its name.

6 For Execute Type, click the drop-down and select CMD or .NET.

NOTE

CMD is the recommended execution type in most cases, because you
do not need to explicitly handle document locking. See the discussion
above.

7 For Execute File, browse to the .NET assembly or ARX DLL that contains
the command.

8 For Macro Name, enter:
■ Name of the command to run, if the execute type is CMD

■ Name of the method to run, if the execute type is .NET.

9 Optionally, enter a help file and help topic for the command.

10 Click to apply the changes and close the editor.

After a command has been set up, it can be run by right-clicking it and clicking
Execute.

Getting Started | 15

Migrating COM code to .NET

In the majority of cases, the .NET API mirrors the structure of the COM API,
so porting code to .NET involves setting up a .NET project, copying the code
lines, and renaming classes and methods to match the .NET names. If you are
using C# instead of VB.NET, some additional changes to code structure are
required. The following sections describe some of the differences in the two
APIs.

Base Objects

The COM API requires that you access the AcadApplication object (via the
ThisDrawing.Application object), get the interface object for the
AeccApplication object, and from that get the active document. In the .NET
API you import Autodesk.Civil.ApplicationServices namespace, and get
the active document from the CivilApplication class:

g_oDocument = CivilApplication.ActiveDocument()

There is a single root document object, CivilDocument, instead of four
domain-specific root objects for Land, Pipe, Roadway and Survey.

Transactions and ObjectIds

In the .NET API, code that reads and writes to root Civil documents need to
use an Autodesk.AutoCAD.DatabaseServices.TransactionManager object to
start and commit transactions. It’s a best practice to manage a Transaction
with a Using statement, which automatically disposes the Transaction at the
end of the block; otherwise, the Transaction should be explicitly disposed of
in the Finally section of a Try-Finally block. Here’s an example of a
Transaction in a Using block:

using (Transaction
trans=TransactionManager.StartTransaction())
{
//operation here
trans.Commit();

}

16 | Chapter 1 API Developer's Guide

NOTE

See the section Use Transactions with the Transaction Manager in the AutoCAD
.NET Developer’s Guide for more information about using the Transaction
object to open and modify drawing database objects.

In the .NET API, objects that you get from collections are, in most cases, type
ObjectId, which have to be cast to their intended type using a Transaction
object (returned by TransactionManager.StartTransaction()). Here’s an
example:

m_AligmentStyleId =
m_doc.Styles.AlignmentStyles.Item(sStyleName)
oAlignmentStyle = m_trans.GetObject(m_AligmentStyleId,
OpenMode.ForWrite) As AlignmentStyle

Styles

In the COM API, styles are held by the root document object. In the .NET API,
they are located under CivilDocument.Styles, which is an object of type
StylesRoot and contains style objects inherited from StyleBase. Getting and
setting style attributes for StyleBase objects requires using a
GetDisplayStyle*() method rather than a property. Here’s an example from
COM VBA:

oAlignmentStyle.ArrowDisplayStyle2d.Visible = False
oAlignmentStyle.ArrowDisplayStyle3d.Visible = False
' Display curves using violet.
oAlignmentStyle.CurveDisplayStyle2d.color = 200 ' violet
oAlignmentStyle.CurveDisplayStyle3d.color = 200 ' violet
oAlignmentStyle.CurveDisplayStyle2d.Visible = True
oAlignmentStyle.CurveDisplayStyle3d.Visible = True

This is the equivalent code in VB.NET:

oAlignmentStyle.GetDisplayStyleModel(AlignmentDisplayStyleType.Arrow).Visible
= False
oAlignmentStyle.GetDisplayStylePlan(AlignmentDisplayStyleType.Arrow).Visible
= False
' Display curves using violet.
oAlignmentStyle.GetDisplayStyleModel(AlignmentDisplayStyleType.Curve).Color

Getting Started | 17

= Autodesk.AutoCAD.Colors.Color.FromRgb(191, 0, 255) '
violet
oAlignmentStyle.GetDisplayStylePlan(AlignmentDisplayStyleType.Curve).Color
= Autodesk.AutoCAD.Colors.Color.FromRgb(191, 0, 255) '
violet
oAlignmentStyle.GetDisplayStyleModel(AlignmentDisplayStyleType.Curve).Visible
= True
oAlignmentStyle.GetDisplayStylePlan(AlignmentDisplayStyleType.Curve).Visible
= True

Settings

In the COM API, settings are accessed through the AeccDatabase::Settings
object, which contains properties representing the settings object hierarchy.
In the .NET API, you use a method to retrieve specific settings objects, for
example:

SettingsPipeNetwork oSettingsPipeNetwork =
doc.Settings.GetFeatureSettings<SettingsPipeNetwork>() as
SettingsPipeNetwork;

Properties

In the COM API, properties are usually simple built-in types, such as double,
or types such as BSTR that map to built-in VBA types such as String. In the
.NET API, most properties are one of the Property* classes that implement
the IProperty interface. For these properties, you get or set the Value of the
property. For example, this code in COM:

oLabelStyleLineComponent.Visibility = True

Becomes this in .NET:

oLabelStyleLineComponent.General.Visible.Value = true;

18 | Chapter 1 API Developer's Guide

NOTE

There are a few other changes here: the Visibility property is renamed
Visible, which has moved to a sub-property of LabelStyleLineComponent
called General.

Limitations and Using Interop

The .NET API does not expose all the functionality of AutoCAD Civil 3D, and
it exposes less than the COM API. The following areas are not yet exposed in
.NET:
■ Sites and Parcels

■ Sections

■ Data Bands

■ Some labels

In addition, there are some areas in implemented functionality that are not
yet complete:
■ Pipes: interference checks (except interference check styles)

■ Corridors:
■ creating new corridors

■ adding baselines to corridors

■ creating or modifying corridor boundaries or masks

■ computing cut and fill

■ setting the CodeSetStyle

If you require this functionality in your .NET project, you can use the
corresponding COM objects.

To use AutoCAD Civil 3D COM APIs from .NET

1 Create a .NET solution and project.

2 Select Add Reference from the Project menu or Solution Explorer.

3 On the Browse tab, browse to the Civil 3D install directory, and select
the following COM interop DLLs, where <domain> is the Civil domain
you want to use (Land, Roadway, Pipe, or Survey):
■ Autodesk.AEC.Interop.Base

Getting Started | 19

■ Autodesk.AEC.Interop.UiBase

■ Autodesk.AutoCAD.Interop

■ Autodesk.AutoCAD.Interop.Common

■ Autodesk.AECC.Interop.<domain>

■ Autodesk.AECC.Interop.Ui<domain>

4 Select the references above, and set the "Copy Local" property to true,
as this will embed all referenced types into your target assembly, and
the referenced interop DLLs are therefore not required at runtime.

5 Add the Autodesk.AutoCAD.Interop and
Autodesk.AECC.Interop.Ui<domain> namespaces to your using or
Imports statement.

NOTE

You may see warnings about types not being found in various
Autodesk.AutoCAD.Interop namespaces (warning type 1684). To disable these
warnings, enter 1684 under Supress Warnings on the Build tab of the project’s
properties.

Here is a C# example of getting a count of point groups and surfaces from a
document using COM interop:

string m_sAcadProdID = "AutoCAD.Application";
string m_sAeccAppProgId =
"AeccXUiLand.AeccApplication.10.0";
...
private void useCom()
{

//Construct AeccApplication object, Document and
Database objects

m_oAcadApp =
(IAcadApplication)System.Runtime.InteropServices.Marshal.GetActiveObject(m_sAcadProdID);

if (m_oAcadApp != null)
{

m_oAeccApp =
(IAeccApplication)m_oAcadApp.GetInterfaceObject(m_sAeccAppProgId);

m_oAeccDoc =
(IAeccDocument)m_oAeccApp.ActiveDocument;

20 | Chapter 1 API Developer's Guide

// get the Database object via a late bind
m_oAeccDb =

(Autodesk.AECC.Interop.Land.IAeccDatabase)m_oAeccDoc.GetType().GetProperty("Database").GetValue(m_oAeccDoc,
null);

long lCount = m_oAeccDb.PointGroups.Count;
m_sMessage += "Number of PointGroups = " +

lCount.ToString() + "\n";
lCount = m_oAeccDb.Surfaces.Count;
m_sMessage += "Number of Surfaces = " +

lCount.ToString() + "\n\n";
MessageBox.Show(m_sMessage);
m_sMessage = "";

}
}

For more interoprability examples, see the CSharpClient and VbDotNetClient
sample projects located in <Install directory>\Sample\AutoCAD Civil 3D\COM\.

Root Objects and Common Concepts
This chapter explains how to work with the root objects required to access all
other objects exposed by the AutoCAD Civil 3D .NET API: CivilApplication
and CivilDocument, as well as how to work with collections. It also describes
how to work with settings and label styles.

Root Objects

This section explains how to acquire references to the base objects, which are
required for all applications using the .NET API. It also explains the uses of
the application, document, and database objects and how to use collections,
which are commonly used throughout the .NET API. To help developers who
are already familiar with COM to migrate existing code to .NET, the differences
between the two APIs are highlighted with notes.

Root Objects and Common Concepts | 21

Accessing Application and Document Objects

The root object in the AutoCAD Civil 3D .NET hierarchy is the
CivilApplication object. It contains a reference to the currently active
document, and information about the running product.

NOTE

Unlike the COM API, CivilApplication does not inherit from the AutoCAD
object Autodesk.AutoCAD.ApplicationServices.Application. Therefore, if
you need access to application-level methods and properties (such as the
collection of all open documents, information about the main window, etc.),
you need to access through the AutoCAD Application object. See the
ObjectARX Managed Class Reference in the ObjectARX SDK for information
about this class.

The active CivilDocument object is accessed by importing the
AutodeskCivil.ApplicationServices namespace, and getting the
CivilApplication.ActiveDocument property.

This example demonstrates the process of accessing the CivilApplication
and CivilDocument objects:

using Autodesk.Civil.ApplicationServices;
namespace CivilSample {

class CivilExample {
CivilDocument doc = CivilApplication.ActiveDocument;

}
}

Using Collections Within the Document Object

The document object not only contains collections of AutoCAD Civil 3D
drawing elements (such as points and alignments) but also objects that modify
those elements (such as styles and label styles). Collections in CivilDocument
are ObjectID collections
(Autodesk.AutoCAD.DatabaseServices.ObjectIdCollection) for most objects.
Objects in these collections must be retrieved with a Transaction.GetObject(),
and cast to their type before they can be used.

22 | Chapter 1 API Developer's Guide

NOTE

In the COM API, document objects are contained in collections of objects that
do not need to be cast.

ObjectIdCollection objects implement the IList interface, and can be
enumerated or accessed by index. Here’s an example of iterating through the
Corridor collection with foreach, and retrieving and casting the resulting
ObjectId to a Corridor to access its methods and properties:

public static void iterateCorridors () {
CivilDocument doc = CivilApplication.ActiveDocument;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.
Database.TransactionManager.StartTransaction()

) {
foreach (ObjectId objId in doc.CorridorCollection

) {
Corridor oCorridor = ts.GetObject(objId,

OpenMode.ForRead) as Corridor;
Application.DocumentManager.MdiActiveDocument.Editor.WriteMessage("Corridor:

{0}\nLargest possible triangle side: {1}\n",
oCorridor.Name,

oCorridor.MaximumTriangleSideLength);
}

}
}

For more information about ObjectIdCollections, see the .

This example creates a new point style:

ObjectId pointStyleID = doc.Styles.PointStyles.Add("Name");
// Now a new point style is added to the collection of
styles,
// and we can modify it by setting the properties
// of the oPointStyle object, which we get from the
Transaction ts:
PointStyle oPointStyle = ts.GetObject(pointStyleID,
OpenMode.ForWrite) as PointStyle;
oPointStyle.Elevation = 114.6;
// You must commit the transaction for the add / modify
operation

Root Objects and Common Concepts | 23

// to take effect
ts.Commit();

If you attempt to add a new element with properties that match an already
existing element, try to access an item that does not exist, or remove an item
that does not exist or is in use, an error will result. You should trap the error
and respond accordingly.

The following sample demonstrates one method of dealing with such errors:

// Try to access the style named "Name"
try {

// This raises an ArgumentException if the item doesn't
// exist:
ObjectId pointStyleId = doc.Styles.PointStyles["Name"];
// do something with the point style...

} catch (ArgumentException e) {
ed.WriteMessage(e.Message);

}

Accessing and Using the Database Object

CivilDocument class does not expose the underlying database associated with
the document. However, you can access the database from the AutoCAD
Application.DocumentManager.MdiActiveDocument.Database object. The
Database object contains references to AutoCAD Civil 3D entities, as well as
base AutoCAD entities. See the in the ObjectARX SDK for information.

Settings

This section explains the purpose and use of the document settings objects,
and covers changing general and specific settings.

Accessing Drawing, Feature, and Command Settings

Settings apply at three levels in AutoCAD Civil 3D:

1 Drawing level: there are drawing-wide settings, such as units and zone,
abbreviations, etc. There are also ambient settings, which affect a variety

24 | Chapter 1 API Developer's Guide

of AutoCAD Civil 3D behaviors. While these settings also apply
drawing-wide, they can be overridden at the feature or command level.

2 Feature (object) level: ambient settings override drawing level ambient
settings for that feature only. There are also feature-specific settings, such
as default styles.

3 Command level: ambient settings can be set on a command-by-command
basis. These settings override both drawing level and feature level settings.

For more information on settings in general, see Understanding Settings in
the .

A document’s settings are accessed through the properties of the SettingsRoot
object, which is obtained from the Document.Settings property. This object
contains the DrawingSettings property (type SettingsDrawing), which
contains all the top-level ambient settings for the document. It also has the
GetSettings() method, which gets feature and command settings.

Drawing settings and general ambient settings are in the
Autodesk.Civil.Settings namespace, while feature and command settings
are in the namespace for the related feature. For example, alignment-related
ambient and command settings are in the Autodesk.Civil.Land.Settings
namespace.

The following sample shows how to access the angle settings for alignments:

SettingsAlignment alignmentSettings =
doc.Settings.GetSettings<SettingsAlignment>();
Autodesk.Civil.Settings.SettingsAmbient.SettingsAngle
angleSettings = alignmentSettings.Angle;
ed.WriteMessage(@"Alignment settings:\n Precision: {0}\n
Rounding: {1}

Unit: {2}\n Drop Decimal: {3}\n DropZeros: {4}\n ",
angleSettings.Precision.Value,

angleSettings.Rounding.Value,
angleSettings.Unit.Value,

angleSettings.DropDecimalForWholeNumbers.Value,
angleSettings.DropLeadingZerosForDegrees.Value);

The command settings apply to commands, and correspond to the settings
in the Commands folder for each item in the AutoCAD Civil 3DToolspace
Settings Tab. Each command setting has a corresponding class named
SettingsCmdCommandName. For example, the settings class corresponding to
the CreateAlignmentLayout command is
SettingsCmdCreateAlignmentLayout. As with other types of settings, you use

Root Objects and Common Concepts | 25

the CivilDocument.Settings.GetSettings() method to access command
settings objects in the document.

The following snippet determines what the “Alignment Type Option” is for
the CreateAlignmentLayout command:

SettingsCmdCreateAlignmentLayout alignLayoutCmdSettings =

doc.Settings.GetSettings<SettingsCmdCreateAlignmentLayout>();

ed.WriteMessage(@"Alignment Layout Command settings:
AlignmentType: {0} ",

alignLayoutCmdSettings.AlignmentTypeOption.AlignmentType.Value
);

The result of this code returns the current command setting:

26 | Chapter 1 API Developer's Guide

Getting command settings

Label Styles

This section explains common features of label styles. It covers creating a new
label style object, defining a label style, and using property fields in label style
text strings. Details specific to each construct are covered in the appropriate
chapters.

Creating a Label Style Object

All types of annotation for AutoCAD Civil 3D elements are governed by label
styles, which are objects of type LabelStyle. A label style can include any
number of text labels, tick marks, lines, markers, and direction arrows.

The following example creates a new label style object that can be used with
points:

CivilDocument doc = CivilApplication.ActiveDocument;
ObjectId labelStyleId;
labelStyleId =
doc.Styles.LabelStyles.PointLabelStyles.LabelStyles.Add

("New Point Label Style");

Defining a Label Style

A label style consists of collections of different features of a label, called
“components”. The collection of these components is accessed with the
LabelStyle::GetComponents() method, which takes the type
(LabelStyleComponentType) of component to get. The component types are:
■ Text

■ Line

■ Block - symbols

■ Tick - for both major and minor tick marks

■ ReferenceText

■ DirectionArrow

Root Objects and Common Concepts | 27

■ TextForEach

Not all of these may be valid, depending on the label style type. For example,
adding a tick mark component to a label style meant for a point has no visible
effect. Label styles also depend on graphical objects that may or may not be
part of the current document. For example, if the style references a block that
is not part of the current document, then the specified block or tick
components are not shown.

To add a feature to a label style, add a new component to the corresponding
collection using the LabelStyle::AddComponent() method. Then set the
properties of that component to the appropriate values. Always make sure to
set the Visible property to true.

try
{

// Add a line to the collection of lines in our label
style

ObjectId lineComponentId = oLabelStyle.AddComponent("New
Line Component", LabelStyleComponentType.Line);

// Get the new component:
ObjectIdCollection lineCompCol =

oLabelStyle.GetComponents(LabelStyleComponentType.Line);
var newLineComponent = ts.GetObject(lineComponentId,

OpenMode.ForWrite) as LabelStyleLineComponent;
// Now we can modify the component
newLineComponent.General.Visible.Value = true;
newLineComponent.Line.Color.Value =

Autodesk.AutoCAD.Colors.Color.FromColorIndex(Autodesk.AutoCAD.Colors.ColorMethod.ByAci,
40); // orange-yellow

newLineComponent.Line.Angle.Value = 2.094; // radians,
= 120 deg

// negative lengths are allowed - they mean the line
is drawn

// in the opposite direction to the angle specified:
newLineComponent.Line.Length.Value = -0.015;
newLineComponent.Line.StartPointXOffset.Value = 0.005;
newLineComponent.Line.StartPointYOffset.Value = -0.005;

}
// Thrown if component isn't valid, or name is duplicated
catch (System.ArgumentException e)
{

Application.DocumentManager.MdiActiveDocument.Editor.WriteMessage("Error:

28 | Chapter 1 API Developer's Guide

{0}\n", e.Message);
}

When first created, the label style object is set according to the ambient
settings. Because of this, a new label style object may already contain features.
If you are creating a new label style object, be sure to check for such existing
features or your style might contain unintended elements.

// Check to see whether any text components already exist.

// If not, add one.
if
(oLabelStyle.GetComponentsCount(LabelStyleComponentType.Text)
== 0)
{

// Add a text component
oLabelStyle.AddComponent("New Text ",

LabelStyleComponentType.Text);
}
// Now modify the first one:
ObjectIdCollection textCompCol =
oLabelStyle.GetComponents(LabelStyleComponentType.Text);
var newTextComponent = ts.GetObject(textCompCol[0],
OpenMode.ForWrite) as LabelStyleTextComponent;

The ambient settings also define which units are used. If you are creating an
application designed to work with different drawings, you should take ambient
settings into account or labels may demonstrate unexpected behavior in each
document.

Using Property Fields in Label Style Text

Text within a label is designated by the LabelStyleTextComponent.Contents
property, a PropertyString value. Of course, text labels are most useful if they
can provide some sort of information that is unique to each particular item
being labeled. This is accomplished by specifying property fields within the
string. These property fields are of the form “<[Property name(modifier 1|[..]
modifier n)]>”. Modifier values are optional and can be in any order. Any
number of property fields can be combined with normal text in the Contents
property.

In this example, a string component of a label is modified to show design
speeds and station values for a point along an alignment:

Root Objects and Common Concepts | 29

var newTextComponent = ts.GetObject(textCompCol[0],
OpenMode.ForWrite) as LabelStyleTextComponent;
newTextComponent.Text.Contents.Value = "SPD=<[Design
Speed(P0|RN|AP|Sn)]>";
newTextComponent.Text.Contents.Value += "STA=<[Station
Value(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>";

Valid property fields for each element are listed in the appropriate chapter.

Sharing Styles Between Drawings

Label styles, like all style objects, can be shared between drawings. To do this,
call the style’s ExportTo() method, targeting the drawing you want to add
the style to.

NOTE

You can also export collections of styles to another drawing by using the static
StyleBase::ExportTo() method.

When exporting styles, you specify how conflicts are resolved using the
StyleConflictResolverType enum. In this example, the first style in the
MajorStationLabelStyles collection is exported from the active drawing to
another open drawing named Drawing1.dwg:

[CommandMethod("ExportStyle")]
public void ExportStyle()
{

CivilDocument doc = CivilApplication.ActiveDocument;
Document AcadDoc =

Application.DocumentManager.MdiActiveDocument;
Database destDb = null;
// Find the database for "Drawing 1"
foreach (Document d in Application.DocumentManager)
{

if (d.Name.Equals("Drawing1.dwg")) destDb =
d.Database;

}
// cancel if no matching drawing:
if (destDb == null) return;
using (Transaction ts =

30 | Chapter 1 API Developer's Guide

AcadDoc.Database.TransactionManager.StartTransaction())
{

// Export style:
ObjectId styleId =

doc.Styles.LabelStyles.AlignmentLabelStyles.MajorStationLabelStyles[0];
LabelStyle oLabelStyle = ts.GetObject(styleId,

OpenMode.ForRead) as LabelStyle;
oLabelStyle.ExportTo(destDb,

Autodesk.Civil.StyleConflictResolverType.Rename);
}

}

NOTE

In certain situations attempts to abort the transaction will fail when calling
ExportTo(). This is the case when all the following conditions are all true:
multiple styles are being exported, there is a naming conflict between styles,
and the StyleConflictResolverType is StyleConflictResolverType.Override.

Sample Programs

BatchEditLabelTextSample

<installation-directory>\Sample\Civil 3D
API\DotNet\CSharp\BatchEditLabelTextSample\

This sample prompts the user to select multiple alignment labels, then it
prompts for some input text, and replaces the original text for all selected
labels.

CommandSettingsSample

<installation-directory>\Sample\Civil 3D
API\DotNet\CSharp\CommandSettingsSample\

This sample demonstrates how to iterate through all the command settings
defined in a drawing using Reflection. All commands are exported to an xml
file.

CompareStyles

<installation-directory>\Sample\Civil 3D
API\DotNet\CSharp\CompareStyles\

Root Objects and Common Concepts | 31

This sample illustrates how to compare styles defined in two drawings.

DraggedLabelSample

<installation-directory>\Sample\Civil 3D
API\DotNet\CSharp\DraggedLabelSample\

This sample illustrates how to add a new label in a dragged state.

EditLabelStyleSample

<installation-directory>\Sample\Civil 3D
API\DotNet\CSharp\EditLabelStyleSample\

This sample illustrates how to batch copy label styles from one label to multiple
selected labels.

Surfaces
This chapter covers Civil 3D Surface objects, and how to work with them using
the AutoCAD Civil 3D .NET API.

There are four classes of surface in Civil 3D:
■ TinSurface

■ GridSurface

■ TinVolumeSurface

■ GridVolumeSurface

The first two represent a single layer of terrain, while the second two represent
a volume between two layers. All four derive from a generic Surface object,
which exposes the common methods and properties shared by all surfaces.

Accessing Surfaces

There are many ways to access the surfaces objects in a drawing. All the surfaces
contained by a Document can be obtained using the
CivilDocument.GetSurfaceIds() method, which returns an
ObjectIdCollection.

ObjectIdCollection SurfaceIds = doc.GetSurfaceIds();
foreach (ObjectId surfaceId in SurfaceIds)

32 | Chapter 1 API Developer's Guide

{
CivSurface oSurface =

surfaceId.GetObject(OpenMode.ForRead) as CivSurface;
editor.WriteMessage("Surface: {0} \n Type: {1}",

oSurface.Name, oSurface.GetType().ToString());

}

Note that there is also a Surface class in the
Autodesk.AutoCAD.DatabaseServices namespace, which will conflict with
Autodesk.Civil.DatabaseServices.Surface if you use both namespaces. In
this case you can fully qualify the Surface object, or use a "using" alias directive
to disambiguate the reference. For example:

using CivSuface = Autodesk.Civil.DatabaseServices.Surface;

And then use the alias like this:

CivSuface oSurface = surfaceId.GetObject(OpenMode.ForRead)
as CivSuface;

You can also prompt a user to select a specific surface type, such as a TIN
Surface, and then get the surface ID from the selection:

private ObjectId promptForTinSurface(String prompt)
{

PromptEntityOptions options = new PromptEntityOptions(

String.Format("\n{0}: ", prompt));
options.SetRejectMessage(

"\nThe selected object is not a TIN Surface.");
options.AddAllowedClass(typeof(TinSurface), true);

PromptEntityResult result = editor.GetEntity(options);

if (result.Status == PromptStatus.OK)
{

// We have the correct object type
return result.ObjectId;

}
return ObjectId.Null; // Indicating error.

}

Surfaces | 33

Surface Properties

The Surface object exposes general surface properties, which you can access
using the various GetGeneralProperties() methods. Calculating and returning
properties is a resource-intensive process, so you are encouraged to call this
method once and re-use the returned object, instead of calling the method
for each property. TIN and Grid surfaces have type-specific properties (returned
by GetTinProperties() and GetGridProperties() respectively). Both Tin and
Grid surfaces also implement a GetTerrainProperties() method.

This example gets general properties for the first surface in the database, and
then depending on the surface type, it gets the Tin or Grid surface properties:

[CommandMethod("SurfaceProperties")]
public void SurfaceProperties()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
try
{

// Get the first surface in a document
// "doc" is the CivilApplication.ActiveDocument

ObjectId surfaceId = doc.GetSurfaceIds()[0];
CivSurface oSurface =

surfaceId.GetObject(OpenMode.ForRead) as CivSurface;

// print out general properties:
GeneralSurfaceProperties genProps =

oSurface.GetGeneralProperties();
String propsMsg = "\nGeneral Properties for "

+ oSurface.Name;
propsMsg += "\n-------------------";
propsMsg += "\nMin X: " +

genProps.MinimumCoordinateX;
propsMsg += "\nMin Y: " +

genProps.MinimumCoordinateY;
propsMsg += "\nMin Z: " +

genProps.MinimumElevation;
propsMsg += "\nMax X: " +

genProps.MaximumCoordinateX;

34 | Chapter 1 API Developer's Guide

propsMsg += "\nMax Y: " +
genProps.MaximumCoordinateY;

propsMsg += "\nMax Z: " +
genProps.MaximumElevation;

propsMsg += "\nMean Elevation: " +
genProps.MeanElevation;

propsMsg += "\nNumber of Points: " +
genProps.NumberOfPoints;

propsMsg += "\n--";

editor.WriteMessage(propsMsg);

// Depending on the surface type, let's look
at grid or TIN properties:

if (oSurface is TinSurface)
{

TinSurfaceProperties tinProps =
((TinSurface)oSurface).GetTinProperties();

propsMsg = "\nTIN Surface Properties for
" + oSurface.Name;

propsMsg += "\n-------------------";
propsMsg += "\nMin Triangle Area: " +

tinProps.MinimumTriangleArea;
propsMsg += "\nMin Triangle Length: " +

tinProps.MinimumTriangleLength;
propsMsg += "\nMax Triangle Area: " +

tinProps.MaximumTriangleArea;
propsMsg += "\nMax Triangle Length: " +

tinProps.MaximumTriangleLength;
propsMsg += "\nNumber of Triangles: " +

tinProps.NumberOfTriangles;
propsMsg += "\n--";

editor.WriteMessage(propsMsg);
}
else if (oSurface is GridSurface)
{

#region GetGridProperties
GridSurfaceProperties gridProps =

((GridSurface)oSurface).GetGridProperties();
propsMsg = "\\Grid Surface Properties for

" + oSurface.Name;

Surfaces | 35

propsMsg += "\n-------------------";
propsMsg += "\n X Spacing: " +

gridProps.SpacingX;
propsMsg += "\n Y Spacing: " +

gridProps.SpacingY;
propsMsg += "\n Orientation: " +

gridProps.Orientation;
propsMsg += "\n--";

editor.WriteMessage(propsMsg);
#endregion

}

}
catch (System.Exception e) {

editor.WriteMessage(e.Message); }
}

}

Creating Surfaces

GridSurface and TinSurface objects can be created from an imported file, or
created as a new, empty surface to which surface data can be added later. A
new TinSurface can also be created by cropping existing TinSurface objects.

NOTE Import from LandXML data is not supported in the .NET API at this time.
You can use the COM API to import or export surface data to or from LandXML.

Most methods for creating empty or importing surfaces are similar in that
they all have two overloads: one that specifies the database where the surface
will be created (with the default SurfaceStyle applied), the other specifies a
SurfaceStyle to apply, and adds the surface to the database that contains the
SurfaceStyle.

Volume surfaces are created from two existing surfaces, the base (bottom)
surface and a comparison surface.

Creating a TIN Surface from a TIN file

You can create a new TIN surface from a binary .tin file using the
TinSurface.CreateFromTin() method. This method takes two arguments, the

36 | Chapter 1 API Developer's Guide

database for the drawing to which the TIN surface will be added, and the path
to a .tin file, as a string.

[CommandMethod("CreateFromTIN")]
public void CreateFromTin()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// Example TIN surface from Civil Tutorials:

string tinFile = @"C:\Program Files\Autodesk\AutoCAD
Civil 3D 2013\Help\Civil Tutorials\Corridor surface.tin";

try
{

Database db =
Application.DocumentManager.MdiActiveDocument.Database;

ObjectId tinSurfaceId =
TinSurface.CreateFromTin(db, tinFile);

editor.WriteMessage("Import succeeded: {0} \n
{1}", tinSurfaceId.ToString(), db.Filename);

}
catch (System.Exception e)
{

// handle bad file path
editor.WriteMessage("Import failed: {0}",

e.Message);
}

// commit the transaction
ts.Commit();

}
}

Creating a TIN Surface using TinSurface.Create()

You can create an empty TIN surface and add it to the document’s surface
collection with the TinSurface.Create() method. This method has two
overloads, one that specifies the SurfaceStyle to apply, while the other uses
the default style.

Surfaces | 37

In this example, we create a new TIN surface with a specified style, and then
add some random point data.

[CommandMethod("CreateTINSurface")]
public void CreateTINSurface()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
string surfaceName = "ExampleTINSurface";
// Select a style to use
ObjectId surfaceStyleId =

doc.Styles.SurfaceStyles[3];

// Create the surface
ObjectId surfaceId = TinSurface.Create(surfaceName,

surfaceStyleId);

TinSurface surface =
surfaceId.GetObject(OpenMode.ForWrite) as TinSurface;

// Add some random points
Point3dCollection points = new Point3dCollection();

Random generator = new Random();
for (int i = 0; i < 10; i++)
{

double x = generator.NextDouble() * 250;
double y = generator.NextDouble() * 250;
double z = generator.NextDouble() * 100;
points.Add(new Point3d(x, y, z));

}

surface.AddVertices(points);

// commit the create action
ts.Commit();

}
}

38 | Chapter 1 API Developer's Guide

Creating a Grid Surface from a DEM File

You can create a GridSurface from a Digital Elevation Model (DEM) file using
the GridSurface.CreateFromDEM() method. There are two overloads of this
method: one that applies the default style, while the other allows you to
specify the SurfaceStyle to use. Both take the filename and path of a DEM
file, as a string.

[CommandMethod("CreateFromDEM")]
public void CreateFromDEM()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// Prompt user for a DEM file:
// string demFile = @"C:\Program

Files\Autodesk\AutoCAD Civil 3D 2013\Help\Civil
Tutorials\Corridor surface.tin";

PromptFileNameResult demResult =
editor.GetFileNameForOpen("Enter the path and name of the
DEM file to import:");

editor.WriteMessage("Importing: {0}",
demResult.StringResult);

try
{

// surface style #3 is "slope banding" in the
default template

ObjectId surfaceStyleId =
doc.Styles.SurfaceStyles[3];

ObjectId gridSurfaceId =
GridSurface.CreateFromDEM(demResult.StringResult,
surfaceStyleId);

editor.WriteMessage("Import succeeded: {0} \n",
gridSurfaceId.ToString());

}
catch (System.Exception e)
{

// handle bad file data or other errors
editor.WriteMessage("Import failed: {0}",

e.Message);
}

Surfaces | 39

// commit the transaction
ts.Commit();

}
}

Creating a GridSurface with GridSurface.Create()

You can create an empty GridSurface using the GridSurface.Create()
method. There are two overloads of this method: one applies the default
SurfaceStyle, while the other allows you to specify which SurfaceStyle to
use. Both take the name of the new GridSurface, x and y spacing, and
orientation. The units for x and y spacing and orientation are specified in the
surface creation ambient settings (SettingsCmdCreateSurface Distance and
Area properties).

GridSurface objects are defined on a regularly-spaced grid, and each location
on the grid (represented by the GridLocation structure) has a row index and
column index. The grid address (0,0) is at the bottom left corner of the grid.

The following example creates a new, empty GridSurface with 25’ x 25’
spacing, and then iterates through a 10 x 10 grid and adds a random elevation
at each sample location:

[CommandMethod("CreateGridSurface")]
public void CreateGridSurface()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
string surfaceName = "ExGridSurface";
// Select a surface style to use
ObjectId surfaceStyleId =

doc.Styles.SurfaceStyles["Slope Banding (2D)"];

// Create the surface with grid spacing of 25' x
25', orientation 0 degrees:

ObjectId surfaceId = GridSurface.Create(surfaceName,
25, 25, 0.0, surfaceStyleId);

GridSurface surface =
surfaceId.GetObject(OpenMode.ForWrite) as GridSurface;

40 | Chapter 1 API Developer's Guide

// Add some random elevations
Random m_Generator = new Random();
for (int i = 0; i < 10; i++)
{

for (int j = 0; j < 10; j++)
{

double z = m_Generator.NextDouble() * 10;
GridLocation loc = new GridLocation(i, j);

surface.AddPoint(loc, z);
}

}

// commit the create action
ts.Commit();

}
}

Creating a Volume Surface

A volume surface represents the difference or composite between two TIN or
grid surface areas in a document. You can create a volume surface using the
Create() method for either the TinVolumeSuface or GridVolumeSurface class.

In this example, the user is prompted to select the base and comparison
surfaces, and then a new TinVolumeSurface is created from them. The
implementation of promptForTinSurface() is left out for clarity.

CommandMethod("CreateTinVolumeSurface")]
public void CreateTinVolumeSurface()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
string surfaceName = "ExampleVolumeSurface";
// Prompt user to select surfaces to use
// promptForTinSurface uses Editor.GetEntity() to

select a TIN surface
ObjectId baseId = promptForTinSurface("Select the

base surface");
ObjectId comparisonId = promptForTinSurface("Select

the comparison surface");

Surfaces | 41

try
{

// Create the surface
ObjectId surfaceId =

TinVolumeSurface.Create(surfaceName, baseId, comparisonId);

TinVolumeSurface surface =
surfaceId.GetObject(OpenMode.ForWrite) as TinVolumeSurface;

}

catch (System.Exception e)
{

editor.WriteMessage("Surface create failed:
{0}", e.Message);

}

// commit the create action
ts.Commit();

}
}

Working with Surfaces

This section describes the various methods for adding and editing surface data.
This includes adding a boundary, adding information to an existing surface
from a DEM file, and using snapshots to improve surface performance.

Adding a Boundary

A boundary is a closed polygon that affects the visibility of the triangles inside
it.

All boundaries applied to a surface are stored in the
Surface.BoundariesDefinition collection. The boundary itself is defined by
an AutoCAD entity such as a closed polyline or polygon. The height of the
entity plays no part in how surface triangles are clipped, so you can use 2D
or 3D entities. This entity can also contain curves, but the boundary always
consists of lines. How these lines are tessellated is defined by the mid-ordinate

42 | Chapter 1 API Developer's Guide

distance, which is the maximum distance between a curve and the lines that
are generated to approximate it.

You can add boundaries to a surface with its
BoundariesDefinition.AddBoundaries() method. There are three overloads
of this method that take one of these to define the new boundaries:

1 an ObjectIdCollection containing an existing polyline, polygon, or
parcel

2 a Point2dCollection

3 a Point3dCollection

This method also specifies the boundary type (data clip, outer, hide, or show),
whether non-destructive breaklines should be used, and the mid-ordinate
distance value, which determines how lines are tessellated from curves.

In this example, the user is prompted to select a TIN surface and a polyline,
and the polyline is added to the surface’s boundaries collection. Note that the
surface must be re-built after the boundary is added. The re-build icon in the
Civil 3D GUI is not displayed when a surface’s boundaries are modified using
the .NET API.

[CommandMethod("AddSurfaceBoundary")]
public void AddSurfaceBoundary()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// Prompt the user to select a surface and a

polyline
ObjectId surfaceId = promptForEntity("Select the

surface to add a boundary to", typeof(TinSurface));
ObjectId polyId = promptForEntity("Select the object

to use as a boundary", typeof(Polyline));

// The boundary or boundaries must be added to an
ObjectIdCollection for the AddBoundaries method:

ObjectId[] boundaries = { polyId };
TinSurface oSurface =

surfaceId.GetObject(OpenMode.ForWrite) as TinSurface;

try
{

Surfaces | 43

oSurface.BoundariesDefinition.AddBoundaries(new
ObjectIdCollection(boundaries), 100,
Autodesk.Civil.Land.SurfaceBoundaryType.Outer, true);

oSurface.Rebuild();
}

catch (System.Exception e)
{

editor.WriteMessage("Failed to add the boundary:
{0}", e.Message);

}

// commit the transaction
ts.Commit();

}
}

Adding Data from DEM Files

Any number of DEM files can be added to existing grid and TIN surfaces.
When a DEM file is added to the GridSurface.DEMFilesDefinition or
TinSurface.DEMFilesDefinition collection, its information is converted to
an evenly spaced lattice of triangles that is added to the surface.

Improving Performance by Using Snapshots

A surface is made up of all the operations that modifiy the surface’s triangles.
If you rebuild the surface, re-performing all these operations can be slow.
Snapshots can improve performance by recording the current state of all the
triangles in a surface. Subsequent rebuilds start from the data of the snapshot,
thus saving time by not performing complicated calculations that have already
been done once. Surface objects have CreateSnapshot(), RebuildSnapshot(),
and RemoveSnapshot() methods. Both CreateSnapshot() and
RebuildSnapshot() will overwrite an existing snapshot.

44 | Chapter 1 API Developer's Guide

NOTE

RebuildSnapshot() will cause an error if the snapshot does not exist.
CreateSnapshot() and RebuildSnapshot() can also cause errors if the surface
is out-of-date. You can check whether the Surface has a snapshot already with
the Surface.HasSnapshot property. For example:

if (oSurface.HasSnapshot)
{

oSurface.RemoveSnapshot();
}
oSurface.CreateSnapshot();
oSurface.RebuildSnapshot();

Working with TIN Surfaces

This section covers the various methods and properties for examining or
modifying existing TIN surfaces, including adding new point data, adding
breaklines, and adding contours.

Extracting Contours

The ExtractContour() and ExtracBorder() methods exposed in the COM
API are not yet available in the .NET API.

Adding Point Data to a TIN Surface

There are two techniques for adding points that are unique to TIN surfaces:

1 Using point files

2 Using point groups

The TinSurface.PointFilesDefinition property contains the names of text
files that contain point information. These text files must consist only of lines
containing the point number, easting, northing, and elevation delineated by
spaces. Except for comment lines beginning with “#”, any other information
will result in an error. Unlike TIN or LandXML files, text files do not contain
a list of faces - the points are automatically joined into a series of triangles
based on the document settings.

Surfaces | 45

The method PointFilesDefinition.AddPointFile() takes the path to a point
file, and the ObjectId of a PointFileFormat object. This object is obtained
from the Database’s PointFileFormatCollection using the same string used
to describe the format in the Civil 3D GUI:

46 | Chapter 1 API Developer's Guide

This is an example of adding a PENZD format point file to an existing surface.
The file in this example is from the Civil 3D tutorials directory.

[CommandMethod("SurfacePointFile")]
public void SurfacePointFile()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// Select the first Surface in the document
ObjectId surfaceId = doc.GetSurfaceIds()[0];
TinSurface oSurface =

surfaceId.GetObject(OpenMode.ForRead) as TinSurface;

try
{

// add points from a point file to the surface

// this is the location of an example PENZD
file from the C3D tutorials, the actual path may

// differ based on the OS
string penzdFile = @"C:\Program

Files\Autodesk\AutoCAD Civil 3D 2013\Help\Civil
Tutorials\EG-Surface-PENZD (space delimited).txt";

// get the point file format object, required
for import:

PointFileFormatCollection ptFileFormats =
PointFileFormatCollection.GetPointFileFormats(HostApplicationServices.WorkingDatabase);

ObjectId ptFormatId = ptFileFormats["PENZD
(space delimited)"];

oSurface.PointFilesDefinition.AddPointFile(penzdFile,
ptFormatId);

}

catch (System.Exception e)
{

editor.WriteMessage("Failed: {0}", e.Message);

}

Surfaces | 47

// commit the transaction
ts.Commit();

}
}

Adding Points Using Point Groups

Although the TinSurface class exposes a point group collection (as the
SurfaceDefinitionPointGroups property), the API doesn’t support adding
point groups to the collection at this time.

Smoothing a TIN Surface

Surface smoothing adds points at system-determined elevations using Natural
Neighbor Interpolation (NNI) or Kriging methods, which results in smoothed
contours with no overlapping. See the for more information about the two
supported smoothing methods.

TinSurface objects expose these two smoothing operations with the
SmoothSurfaceByNNI() and SmoothSurfaceByKriging() methods.

Setting up a smoothing operation takes a couple of steps:

1 Create a SurfacePointOutputOptions object.

2 Set the OutputLocations property (enumerated by
SurfacePointOutputLocationsType) to specify the output locations. The
other options you need to set on SurfacePointOutputOptions depend
on what is specified for this setting:

1 EdgeMidPoints – specifies the Edges property, an array of
TinSurfaceEdge objects representing edges on the surface.

2 RandomPoints – specifies the number of points
(RandomPointsNumber) and output regions (OutputRegions, a
Point3dCollection)

3 Centroids – specifies the OutputRegions property.

4 GridBased – sets the OutputRegions property, grid spacing
(GridSpacingX and GridSpacingY), and grid orientation
(GridOrientation).

48 | Chapter 1 API Developer's Guide

3 If you are using the Kriging method, you need to also create a
KrigingMethodOptions object to set the options for this method:

1 SemivariogramModel property – set to one of the models enumerated
by KrigingSemivariogramType.

2 SampleVertices property – set to the collection of vertices to which
to smooth (for example, you can use the
TinSurface.GetVerticesInsidePolylines() to get this collection).

3 Optionally set NuggetEffect, VariogramParamA and
VariogramParamC depending on the model selected.

4 Pass the options to SmoothSurfaceByNNI() or SmoothSurfaceByKriging().
These methods return a SurfaceOperationSmooth object that includes
the number of output points in the operation.

This example illustrates setting up and using the SmoothSurfaceByNNI()
method, using the Centroids output location:

[CommandMethod("SmoothTinSurface")]
public void SmoothTinSurface()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
try
{

// Select a TIN Surface:
ObjectId surfaceId = promptForEntity("Select

a TIN surface to smooth\n", typeof(TinSurface));
TinSurface oSurface =

surfaceId.GetObject(OpenMode.ForWrite) as TinSurface;

// Select a polyline to define the output
region:

ObjectId polylineId = promptForEntity("Select
a polyline to define the output region\n",
typeof(Polyline));

Point3dCollection points = new
Point3dCollection();

Polyline polyline =
polylineId.GetObject(OpenMode.ForRead) as Polyline;

// Convert the polyline into a collection of

Surfaces | 49

points:
int count = polyline.NumberOfVertices;
for (int i = 0; i < count; i++)
{

points.Add(polyline.GetPoint3dAt(i));
}

// Set the options:
SurfacePointOutputOptions output = new

SurfacePointOutputOptions();
output.OutputLocations =

SurfacePointOutputLocationsType.Centroids;
output.OutputRegions = new Point3dCollection[]

{ points };

SurfaceOperationSmooth op =
oSurface.SmoothSurfaceByNNI(output);

editor.WriteMessage("Output Points: {0}\n",
op.OutPutPoints.Count);

// Commit the transaction
ts.Commit();

}
catch (System.Exception e) {

editor.WriteMessage(e.Message); }
}

}

Adding A Breakline to a TIN Surface

Breaklines are used to shape the triangulation of a TIN surface. Each TIN surface
has a collection of breaklines contained in the
TinSurface.BreaklinesDefinition property, which is a
SurfaceDefinitionBreaklines object. There are different kinds of breaklines,
and each is created in a slightly different way.

NOTE For more information about breakline types, see the

The SurfaceDefinitionBreaklines class allows you to add standard,
non-destructive, and proximity breaklines in similar ways. Each breakline type
has its own Add*() method (for example, AddStandardBreaklines for standard

50 | Chapter 1 API Developer's Guide

breaklines), and each method has three versions, depending on the type of
object you are creating a breakline from. You can add breaklines from a
Point2dCollection, a Point3dCollection, or an ObjectIdCollection that
contains one or more 3D lines, grading feature lines, splines, or 3D polylines.
Each type of breakline requires a specified mid-ordinate distance parameter,
which determines how curves are tessellated.

A standard breakline consists of an array of 3D lines or polylines. Each
line endpoint becomes a point in the surface and surface triangles around the
breakline are redone. The AddStandardBreaklines() method requires that
you specify the maximum distance, weeding distance and weeding angle, in
addition to the mid-ordinate distance. The maximumDistance parameter
corresponds to the Supplementing Distance in the AutoCAD Civil 3D GUI,
while weedingDistance and weedingAngle correspond to the weeding distance
and angle, respectively.

A proximity breakline does not add new points to a surface. Instead, the
nearest surface point to each breakline endpoint is used. The triangles that
make up a surface are then recomputed making sure those points are
connected.

A non-destructive breakline does not remove any triangle edges. It places
new points along the breakline at each intersection with a triangle edge and
new triangles are computed.

This example illustrates how to add standard, non-destructive and proximity
breaklines:

[CommandMethod("SurfaceBreaklines")]
public void SurfaceBreaklines()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// Prompt the user to select a TIN surface and a

polyline, and create a breakline from the polyline

ObjectId surfaceId = promptForEntity("Select a TIN
surface to add a breakline to", typeof(TinSurface));

ObjectId lineId = promptForEntity("Select a 3D
polyline to use as the breakline", typeof(Polyline3d));

TinSurface oSurface =
surfaceId.GetObject(OpenMode.ForWrite) as TinSurface;

ObjectId[] lines = { lineId };

Surfaces | 51

PromptKeywordOptions pKeyOpts = new
PromptKeywordOptions("");

pKeyOpts.Message = "\nEnter the type of breakline
to create: ";

pKeyOpts.Keywords.Add("Standard");
pKeyOpts.Keywords.Add("Non-Destructive");
pKeyOpts.Keywords.Add("Proximity");
pKeyOpts.Keywords.Default = "Standard";
pKeyOpts.AllowNone = true;

PromptResult pKeyRes = editor.GetKeywords(pKeyOpts);

try
{

switch (pKeyRes.StringResult)
{

case "Non-Destructive":

oSurface.BreaklinesDefinition.AddNonDestructiveBreaklines(new
ObjectIdCollection(lines), 1);

break;
case "Proximity":

oSurface.BreaklinesDefinition.AddProximityBreaklines(new
ObjectIdCollection(lines), 1);

break;
case "Standard":
default:

oSurface.BreaklinesDefinition.AddStandardBreaklines(new
ObjectIdCollection(lines), 10, 5, 5, 0);

break;
}

}

catch (System.Exception e)
{

editor.WriteMessage("Operation failed: {0}",
e.Message);

}

// commit the transaction
ts.Commit();

52 | Chapter 1 API Developer's Guide

}
}

Adding a Wall Breakline

A wall breakline is used when the height of the surface on one side of the
breakline is different than the other side. The AddWallBreaklines() method
creates two breaklines, one for the top of the wall and one for the bottom.
However, you cannot have a perfectly vertical wall in a TIN surface. The first
breakline is placed along the path specified, and the second breakline is very
slightly offset to one side and raised or lowered by a relative elevation. There
are two versions of AddWallBreaklines(): one takes a WallBreaklineCreation
structure that sets one elevation for all vertices in the breakline, while
WallBreaklineCreationEx specifies an elevation for each individual vertex.
The IsRightOffset property indicates in which direction the wall at each
entity endpoint is offset. If set to true, the offset is to the right as you walk
along the breakline from the start point to the end.

Importing Breaklines from a File

You can import breaklines from a file in .FLT format, using
SurfaceDefinitionBreaklines.ImportBreaklineFromFile(). When you
import the file, all breaklines in the FLT file are copied into the surface as Add
Breakline operations, and the link to the file is not maintained. The option
available on the GUI to maintain a link to the file is not available via the API.

This sample shows how to import breaklines from a file named eg1.flt, and to
get the first newly created breakline:

[CommandMethod("ImportBreaklines")]
public void ImportBreaklines()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// Prompt the user to select a TIN surface and a

polyline, and create a breakline from the polyline

ObjectId surfaceId = promptForEntity("Select a TIN
surface to add a breakline to", typeof(TinSurface));

Surfaces | 53

TinSurface oSurface =
surfaceId.GetObject(OpenMode.ForWrite) as TinSurface;

string breaklines = "eg1.flt";

oSurface.BreaklinesDefinition.ImportBreaklinesFromFile(breaklines);

// commit the transaction
ts.Commit();

}
}

Adding Contours to a TIN Surface

A contour is an open or closed entity that describes the altitude of the surface
along the entity. Contours must have a constant altitude. The z value of the
first point of the entity is used as the altitude of entire entity, no matter what
is specified in the following points. Contours also have settings that can adjust
the number of points added to the surface - when you create a contour, you
specify a weeding distance, a weeding angle, and a distance parameter. Points
in the contour are removed if the distance between the points before and after
is less than the weeding distance and if the angle between the lines before
and after is less than the weeding angle. Each line segment is split into equal
sections with a length no greater than the maximumDistance parameter. Any
curves in the entity are also tessellated according to the mid-ordinate distance,
just as with breaklines. The maximumDistance value has precedence over the
weeding values, so it is possible that the final contour will have line segments
smaller than the weeding parameters specify.

Contours can be added from a Point2dCollection, Point3dCollection, or an
ObjectIdCollection containing polylines. You can optionally specify options
for minimizing flat areas in a surface by passing a
SurfaceMinimizeFlatAreaOptions object as a parameter to
SurfaceDefinitionContours.AddContours(). For more information about the
ways you can minimize flat areas, see “Minimizing Flat Areas in a Surface” in
the Civil 3D user’s Guide.

The following sample demonstrates adding a contour to a surface from a
polyline:

[CommandMethod("CreateContour")]
public void CreateContour()
{

54 | Chapter 1 API Developer's Guide

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// Prompt the user to select a TIN surface and a

polyline, and create a contour from the polyline
ObjectId surfaceId = promptForEntity("Select a TIN

surface to add a contour to", typeof(TinSurface));
ObjectId polyId = promptForEntity("Select a polyline

to create a contour from", typeof(Polyline));
TinSurface oSurface =

surfaceId.GetObject(OpenMode.ForWrite) as TinSurface;

ObjectId[] contours = {polyId};

oSurface.ContoursDefinition.AddContours(new
ObjectIdCollection(contours), 1, 85.5, 55.5, 0);

// commit the transaction
ts.Commit();

}
}

Extracting Contours

Contours can be extracted as AutoCAD drawing objects from surfaces (both
TIN and Grid) using versions of ExtractContours(), ExtractContoursAt(),
ExtractMajorContours(), and ExtractMinorContours(). These methods are
defined by the ITerrainSurface interface, and implemented by all Surface
classes.

The four methods are very similar, but accomplish different things:
■ ExtracContours() - this method extracts contours at a specified elevation

interval, starting at the surface's lowest elevation.

■ ExtractContoursAt() - this method extracts all contours at a single
specified elevation.

■ ExtractMajorContours() - this method extracts only major contours from
a Surface.

■ ExtractMinorContours() - this method extracts only minor contours from
a Surface.

Surfaces | 55

The ExtractContours() method has four versions, the simplest taking an
interval parameter, and another taking an elevation range and interval. There
are also versions of these two methods that take additional smoothing
parameters to smooth the extracted polylines. The extracted contours are
lightweight AutoCAD Polyline objects, and the method returns an
ObjectIdCollection containing the IDs of all extracted objects. The objects are
independent of the surface and can be manipulated without affecting the
underlying surface.

This example creates a random surface, and then extracts contours in a couple
of ways.

// Setup: creates a new, random surface
//
TinSurface surface = CreateRandomSurface("Example Surface");

// Extract contours and print information about them:
ObjectIdCollection contours;
double contourInterval = 50.0;
contours = surface.ExtractContours(contourInterval);
write("# of extracted contours: " + contours.Count + "\n");
int totalVertices = 0;
for (int i = 0; i < contours.Count; i++)
{

ObjectId contourId = contours[i];

// Contours are lightweight Polyline objects:
Polyline contour = contourId.GetObject(OpenMode.ForRead)

as Polyline;
write(String.Format("Contour #{0} length:{1}, # of

vertices:{2}\n",
i, contour.Length, contour.NumberOfVertices));

totalVertices += contour.NumberOfVertices;
}

// Extract contours with smoothing:
contours = surface.ExtractContours(contourInterval,
ContourSmoothingType.AddVertices, 10);
int totalVerticesSmoothed = 0;
foreach (ObjectId contourId in contours)
{

Polyline contour = contourId.GetObject(OpenMode.ForRead)
as Polyline;

totalVerticesSmoothed += contour.NumberOfVertices;

56 | Chapter 1 API Developer's Guide

}

// Compare smoothing by adding vertices:
write(String.Format("Effects of smoothing:\n total vertices
no smoothing: {0}\n total vertices with smoothing: {1}\n",

totalVertices, totalVerticesSmoothed));

// Extract contours in a range:
double startRange = 130.0;
double endRange = 190.0;
contours = surface.ExtractContours(contourInterval,
startRange, endRange);

write("# of extracted contours in range: " + contours.Count
+ "\n");

// You can also extract contours in a range with smoothing:
// contours = surface.ExtractContours(contourInterval,
startRange, endRange,
// ContourSmoothingType.SplineCurve, 10);

Surface Styles

This section describes how to create and apply styles to surface objects.

Creating and Changing a Style

Surface styles are stored in the CivilDocument.Styles.SurfaceStyles
collection. To create a new style, call the SurfaceStyleCollection.Add()
method with the name of your new style. The new style is created according
to the document’s ambient settings.

In addition to the properties inherited from StyleBase, a surface style consists
of different objects governing the appearance of boundaries, contours, direction
analysis, elevation analysis, grids, points, slope arrows, triangles, and watershed
analysis. Usually a single style only displays some of these objects. When
initially created, a style is set according to the document’s ambient settings
and may show some unwanted style elements. Always set the visibility
properties of all style elements to ensure the style behaves as you expect.

Surfaces | 57

Assigning a Style to a Surface

To assign a style to a surface, set the Surface object’s StyleId property to the
ObjectId of a valid SurfaceStyle object.

This example illustrates creating a new style, changing its settings, and then
assigning it to the first surface in the document. Only the plan display settings
are changed for brevity, though you would normally also change the model
display settings as well.

[CommandMethod("SurfaceStyle")]
public void SurfaceStyle()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// create a new style called 'example style':
ObjectId styleId =

doc.Styles.SurfaceStyles.Add("example style");

// modify the style:
SurfaceStyle surfaceStyle =

styleId.GetObject(OpenMode.ForWrite) as SurfaceStyle;

// display surface triangles

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.Triangles).Visible
= true;

surfaceStyle.GetDisplayStyleModel(SurfaceDisplayStyleType.Triangles).Visible
= true;

// display boundaries, exterior only:

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.Boundary).Visible
= true;

surfaceStyle.BoundaryStyle.DisplayExteriorBoundaries
= true;

surfaceStyle.BoundaryStyle.DisplayInteriorBoundaries
= false;

// display major contours:

58 | Chapter 1 API Developer's Guide

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.MajorContour).Visible
= true;

// turn off display of other items:

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.MinorContour).Visible
= false;

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.UserContours).Visible
= false;

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.Directions).Visible
= false;

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.Elevations).Visible
= false;

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.Slopes).Visible
= false;

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.SlopeArrows).Visible
= false;

surfaceStyle.GetDisplayStylePlan(SurfaceDisplayStyleType.Watersheds).Visible
= false;

// do the same for all model display settings as
well

// assign the style to the first surface in the
document:

CivSurface surf =
doc.GetSurfaceIds()[0].GetObject(OpenMode.ForWrite) as
CivSurface;

surf.StyleId = styleId;

// commit the transaction
ts.Commit();

}
}

Surfaces | 59

Surface Analysis

This section shows you how to access surface analysis data using the .NET
API.

All surface analysis data is accessed with the Surface.Analysis property,
which exposes data for contour, user-defined contour, direction, elevation,
slope arrow, slope, and watershed analyses.

Creating an Elevation Analysis

An elevation analysis creates a 2-dimensional projection of a surface and then
adds bands of color indicating ranges of altitude. Calling
Surface.Analysis.GetElevationData() returns an array of
SurfaceAnalysisElevationData objects, one for each elevation region created
by the analysis, or an empty array if no analysis exists. Each elevation region
represents a portion of the surface’s total elevation. The collection lets you
modify the color, minimum elevation, and maximum elevation of each region.

Note that each time a surface’s elevation analysis is generated in the GUI,
AutoCAD Civil 3D discards all existing elevation regions for the surface and
creates a new collection of regions. Changes to the previous collection of
SurfaceAnalysisElevationData objects are discarded.

The .NET API does not have an equivalent to the COM API
SurfaceAnalysisElevation.CalculateElevationRegions() method, but you
can implement one that does the same thing. This example shows one
implementation, and the implemented method being used by a command:

/// <summary>
/// Calculates elevation regions for a given surface, and
returns an array that can be passed
/// to Surface.Analysis.SetElevationData()
/// </summary>
/// <param name="surface">A Civil 3D Surface object</param>
/// <param name="steps">The number of elevation steps to
calculate</param>
/// <param name="startColor">The index of the start color.
Each subsequent color index is incremeted by 2.</param>

/// <returns>An array of SurfaceAnalysisElevationData
objects.</returns>
private SurfaceAnalysisElevationData[]
CalculateElevationRegions(Autodesk.Civil.Land.DatabaseServices.Surface

60 | Chapter 1 API Developer's Guide

surface, int steps, short startColor)
{

// calculate increments based on # of steps:
double minEle =

surface.GetGeneralProperties().MinimumElevation;
double maxEle =

surface.GetGeneralProperties().MaximumElevation;
double incr = (maxEle - minEle) / steps;

SurfaceAnalysisElevationData[] newData = new
SurfaceAnalysisElevationData[steps];

for (int i = 0; i < steps; i++)
{

Color newColor =
Color.FromColorIndex(ColorMethod.ByLayer, (short)(100 + (i
* 2)));

newData[i] = new SurfaceAnalysisElevationData(minEle
+ (incr * i), minEle + (incr * (i + 1)), newColor);

}

return newData;
}

/// <summary>
/// Illustrates performing an elevation analysis
/// </summary>
[CommandMethod("SurfaceAnalysis")]
public void SurfaceAnalysis()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// Select first TIN Surface
ObjectId surfaceId = doc.GetSurfaceIds()[0];
TinSurface oSurface =

surfaceId.GetObject(OpenMode.ForWrite) as TinSurface;

// get existing analysis, if any:
SurfaceAnalysisElevationData[] analysisData =

oSurface.Analysis.GetElevationData();
editor.WriteMessage("Existing Analysis length:

{0}\n", analysisData.Length);

Surfaces | 61

SurfaceAnalysisElevationData[] newData =
CalculateElevationRegions(oSurface, 10, 100);

oSurface.Analysis.SetElevationData(newData);

// commit the transaction
ts.Commit();

}
}

Many elevation analysis features can be modified through the surface style.
For example, you can use a number of pre-set color schemes (as defined in
the ColorSchemeType enumeration).

Accessing a Watershed Analysis

A watershed analysis predicts how water will flow over and off a surface. The
analysis data is managed by an object of type
SurfaceAnalysisWatershedDataCollection returned by the
Surface.Analysis.GetWatershedData() method.

The .NET API does not implement an equivalent to the COM API
AeccSurfaceAnalysisWatershed.CalculateWatersheds() method, but you
can use the SurfaceAnalysis.GetWatershedData() method to access watershed
data from an existing analysis, and change properties (such as AreaColor) of
watershed regions.

Each item in the SurfaceAnalysisWatershedDataCollection represents a
watershed region. Depending on the nature of the drain target, each watershed
region is a different type specified by the WatershedType enumeration. (For
more information about watershed region types, see “Types of Watersheds”
in the). Other properties, such as the region color, hatch pattern, description,
and visibility, are all accessible.

This example illustrates reading the properties of an existing watershed
analysis:

[CommandMethod("SurfaceWatershedAnalysis")]
public void SurfaceWatershedAnalysis()
{

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

62 | Chapter 1 API Developer's Guide

{
// Select first TIN Surface
ObjectId surfaceId = doc.GetSurfaceIds()[0];
CivSurface oSurface =

surfaceId.GetObject(OpenMode.ForRead) as CivSurface;

SurfaceAnalysisWatershedDataCollection analysisData
= oSurface.Analysis.GetWatershedData();

editor.WriteMessage("Number of watershed regions:
{0}\n", analysisData.Count);

foreach (SurfaceAnalysisWatershedData watershedData
in analysisData)

{
editor.WriteMessage("Data item AreaId: {0} \n"

+ "Description: {1}\n"
+ "Type: {2}\n"
+ "Drains into areas: {3}\n"
+ "Visible? {4}\n",
watershedData.AreaID,

watershedData.Description, watershedData.Type,
String.Join(", ", watershedData.DrainsInto),

watershedData.Visible);
}

// commit the transaction
ts.Commit();

}
}

Calculating Bounded Volumes

The .NET API exposes the Civil 3D Bounded Volumes Utility as the
GetBoundedVolumes() method for the Surface class, which means that bounded
volumes can be calculated for both TIN and Grid surfaces. This method takes
a Point3dCollection containing points that define the vertices of a polygon
area, and an optional elevation datum. If you do not supply an elevation
datum, the method uses 0.0. The first and last point in the vertices collection
must be the same; that is, the polygon must be closed. The method returns a
SurfaceVolumeInfo object that includes values for net volume, cut volume,
and fill volume.

Surfaces | 63

In this example, a sample TIN surface is created, a polygon inside the surface
is defined, and both versions of the GetBoundedVolumes() method is called
on the surface.

// Create a sample surface
ObjectId surfaceId = TinSurface.Create(_acaddoc.Database,
"Example Surface");
TinSurface surface = surfaceId.GetObject(OpenMode.ForWrite)
as TinSurface;

// Generates 100 random points between 0,100:
Point3dGenerator p3dgen = new Point3dGenerator();
Point3dCollection locations = p3dgen.AsPoint3dCollection();
surface.AddVertices(locations);

// Create a region that is a polygon inside the surface.
// The first and last point must be the same to create a
closed polygon.
//
Point3dCollection polygon = new Point3dCollection();
polygon.Add(new Point3d(20, 20, 20));
polygon.Add(new Point3d(20, 80, 15));
polygon.Add(new Point3d(80, 40, 25));
polygon.Add(new Point3d(20, 20, 20));
double elevation = 30.5;

SurfaceVolumeInfo surfaceVolumeInfo =
surface.GetBoundedVolumes(polygon, elevation);
write(String.Format("Surface volume info:\n Cut volume:
{0}\n Fill volume: {1}\n Net volume: {2}\n",

surfaceVolumeInfo.Cut, surfaceVolumeInfo.Fill,
surfaceVolumeInfo.Net));

// If you do not specify an elevation, 0.0 is used:
//
surfaceVolumeInfo = surface.GetBoundedVolumes(polygon);
write(String.Format("Surface volume info:\n Cut volume:
{0}\n Fill volume: {1}\n Net volume: {2}\n",

surfaceVolumeInfo.Cut, surfaceVolumeInfo.Fill,
surfaceVolumeInfo.Net));

64 | Chapter 1 API Developer's Guide

Alignments
This chapter covers creating and using Alignments, Stations, and Alignment
styles using the AutoCAD Civil 3D .NET API.

Basic Alignment Operations

Creating an Alignment

Alignments are usually created without being associated with an existing site.
Each CivilDocument object has its own collection of alignments not associated
with a site accessed with the GetSitelessAlignmentIds() method. There is
also a collection of all alignments (siteless and associated with a site) accessed
with GetAlignmentIds() method. Alignments can be moved into a site with
the Alignment.CopyToSite() method. A siteless alignment can be copied from
a sited alignment using Alignment.CopyToSite(), and passing ObjectId.Null
or ““ as the site.

Creating a New Alignment

The Alignment class provides versions of the Create() method to create a new
Alignment object from a polyline, or without geometry data. There are two
overloads for creating an alignment without geometry data. Both take a
reference to the document object, and the name of the new alignment. One
takes ObjectIds for the site to associate the alignment with (pass ObjectId.Null
to create a siteless alignment), the layer to create the alignment on, the style
to apply to the alignment, and the label set style to use. The other overload
takes strings naming these items. Here’s a simple example that creates a siteless
alignment without geometry data:

// Uses an existing Alignment Style named "Basic" and Label
Set Style named "All Labels" (for example, from
// the _AutoCAD Civil 3D (Imperial) NCS.dwt template. This
call will fail if the named styles
// don't exist.
// Uses layer 0, and no site (ObjectId.Null)
ObjectId testAlignmentID = Alignment.Create(doc, "New
Alignment", ObjectId.Null, "0", "Basic", "All Labels");

Alignments | 65

There are two overloads of the create() method for creating alignments from
polylines. The first takes a reference to the CivilDocument object, a
PolylineOptions object (which contains the ID of the polyline to create an
alignment from), a name for the new alignment, the ObjectID of a layer to
draw to, the ObjectID of an alignment style, and the ObjectID of a label set
object, and returns the OjectID of the new Alignment. The second overload
takes the same parameters, except the layer, alignment style, and label set are
specified by name instead of ObjectID.

This code creates an alignment from a 2D polyline, using existing styles:

[CommandMethod("CreateAlignment")]
public void CreateAlignment()
{

doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;

// Ask the user to select a polyline to convert to an
alignment

PromptEntityOptions opt = new
PromptEntityOptions("\nSelect a polyline to convert to an
Alignment");

opt.SetRejectMessage("\nObject must be a polyline.");
opt.AddAllowedClass(typeof(Polyline), false);
PromptEntityResult res = ed.GetEntity(opt);

// create some polyline options for creating the new
alignment

PolylineOptions plops = new PolylineOptions();
plops.AddCurvesBetweenTangents = true;
plops.EraseExistingEntities = true;
plops.PlineId = res.ObjectId;

// uses an existing Alignment Style and Label Set Style
named "Basic" (for example, from

// the Civil 3D (Imperial) NCS Base.dwt template. This
call will fail if the named styles

// don't exist.
ObjectId testAlignmentID = Alignment.Create(doc, plops,

"New Alignment", "0", "Standard", "Standard");
}

66 | Chapter 1 API Developer's Guide

Creating an Alignment Offset From Another Alignment

Alignments can also be created based on the layout of existing alignments.
The Alignment::CreateOffsetAlignment() method creates a new alignment
with a constant offset and adds it to the same parent site as the original
alignment. The new alignment has the same name (followed by a number in
parenthesis) and the same style as the original, but it does not inherit any
station labels, station equations, or design speeds from the original alignment.

[CommandMethod("CreateOffsetAlignment")]
public void CreateOffsetAlignment()
{

doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())
{

// Ask the user to select an alignment to create
a new offset alignment from

PromptEntityOptions opt = new
PromptEntityOptions("\nSelect an Alignment");

opt.SetRejectMessage("\nObject must be an
alignment.");

opt.AddAllowedClass(typeof(Alignment), false);
ObjectId alignID = ed.GetEntity(opt).ObjectId;
Alignment align = ts.GetObject(alignID,

OpenMode.ForRead) as Alignment;

// Creates a new alignment with an offset of 10:
ObjectId offsetAlignmentID =

align.CreateOffsetAlignment(10.0);
}

}

Defining an Alignment Path Using Entities

An alignment is made up of a series of entities, which are individual lines,
curves, and spirals that make up the path of an alignment. A collection of
entities is held in the Alignment::Entities property, which is an

Alignments | 67

AlignmentEntityCollection object. This collection has a wide array of methods
for creating new entities.

Here’s a short code snippet that illustrates one of the methods for adding a
FixedCurve entitiy to an alignment’s Entities collection:

Int32 previousEntityId = 0;
Point3d startPoint = new Point3d(8800.7906, 13098.1946,
0.0000);
Point3d middlePoint = new Point3d(8841.9624, 13108.6382,
0.0000);
Point3d endPoint = new Point3d(8874.2664, 13089.3333,
0.0000);
AlignmentArc retVal =
myAlignment.Entities.AddFixedCurve(previousEntityId,
startPoint, middlePoint, endPoint);

Determining Entities Within an Alignment

Each of the entities in the Alignment::Entities collection is a type derived
from the Alignment::AlignmentEntity class. By checking the
AlignmentEntity.EntityType property, you can determine the specific type
of each entity and cast the reference to the correct type.

The following sample loops through all entities in an alignment, determines
the type of entity, and prints one of its properties.

[CommandMethod("EntityProperties")]
public void EntityProperties()
{

doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())
{

// Ask the user to select an alignment to get info
about

PromptEntityOptions opt = new
PromptEntityOptions("\nSelect an Alignment");

opt.SetRejectMessage("\nObject must be an
alignment.");

68 | Chapter 1 API Developer's Guide

opt.AddAllowedClass(typeof(Alignment), false);
ObjectId alignID = ed.GetEntity(opt).ObjectId;
Alignment align = ts.GetObject(alignID,

OpenMode.ForRead) as Alignment;

int i = 0;
// iterate through each Entity and check its type
foreach (AlignmentEntity myAe in align.Entities){

i++;
String msg = "";
switch (myAe.EntityType)
{

case AlignmentEntityType.Arc:
AlignmentArc myArc = myAe as

AlignmentArc;
msg = String.Format("Entity{0} is an

Arc, length: {1}\n", i, myArc.Length);
break;

case AlignmentEntityType.Spiral:
AlignmentSpiral mySpiral = myAe as

AlignmentSpiral;
msg = String.Format("Entity{0} is a

Spiral, length: {1}\n", i, mySpiral.Length);
break;

// we could detect other entity types as
well, such as

// Tangent, SpiralCurve, SpiralSpiral, etc.
default:

msg = String.Format("Entity{0} is not
a spiral or arc.\n", i);

break;

}
// write out the Entity information
ed.WriteMessage(msg);

}
}

}

Each entity has an identification number contained in its
AlignmentEntity.EntityId property. Each entity knows the numbers of the
entities before and after it in the alignment, and you can access specific entities

Alignments | 69

by identification number through the
AlignmentEntityCollection.EntityAtId() method.

Stations

Modifying Stations with Station Equations

A station is a point along an alignment a certain distance from the start of
the alignment. By default the station at the start point of an alignment is 0
and increases contiguously through its length. This can be changed by using
station equations, which can renumber stations along an alignment. A station
equation is an object of type StationEquation which contains a location along
the alignment, a new station number basis, and a flag describing whether
station values should increase or decrease from that location on. A collection
of these station equations is contained in the Alignment::StationEquations
property.

The following code adds a station equation to an alignment, starting at a point
80 units from the beginning of the alignment, and increasing in value:

StationEquation myStationEquation =
myAlignment.StationEquations.Add(80, 0,
StationEquationType.Increasing);

NOTE

Some functions, such as
Alignment::DesignSpeedCollection::GetDesignSpeed(), require a “raw”
station value without regard to modifications made by station equations.

Creating Station Sets

Alignment stations are usually labeled at regular intervals. You can compute
the number, location, and geometry of stations taken at regular spacings by
using the Alignment::GetStationSet() method. Overloads of this method
return a collection of stations based on the type of station requested, and
optionally major and minor intervals.

70 | Chapter 1 API Developer's Guide

// Get all the potential stations with major interval =
100, and minor interval = 20
// Print out the raw station number, type, and location
Station[] myStations = myAlignment.GetStationSet(
StationType.All,100,20);
ed.WriteMessage("Number of possible stations: {0}\n",
myStations.Length);
foreach (Station myStation in myStations){

ed.WriteMessage("Station {0} is type {1} and at
{2}\n", myStation.RawStation, myStation.StnType.ToString(),
myStation.Location.ToString());
}

Specifying Design Speeds

You can assign design speeds along the length of an alignment to aid in the
future design of a roadway based on the alignment. The collection of speeds
along an alignment are contained in the Alignment::DesignSpeeds property.
Each item in the collection is an object of type DesignSpeed, which contains
a raw station value, a speed to be used from that station on until the next
specified design speed or the end of the alignment, the design speed number,
and an optional string comment.

// Starting at station 0 + 00.00
DesignSpeed myDesignSpeed = myAlignment.DesignSpeeds.Add(0,
45);
myDesignSpeed.Comment = "Straigtaway";
// Starting at station 4 + 30.00
myDesignSpeed = myAlignment.DesignSpeeds.Add(430, 30);
myDesignSpeed.Comment = "Start of curve";
// Starting at station 14 + 27.131 to the end
myDesignSpeed = myAlignment.DesignSpeeds.Add(1427.131, 35);
myDesignSpeed.Comment = "End of curve";
// make alignment design speed-based:
myAlignment.UseDesignSpeed = true;

Alignments | 71

Finding the Location of a Station

You can find the point coordinates (northing and easting) of a station and
offset on an alignment using the Alignment::PointLocation() method. The
simplest version of the method takes a station and offset, and returns a
northing and easting (as ref parameters).

Another version of this method takes a station, offset, and tolerance, and
returns a northing, easting, and bearing (as ref parameters). The tolerance
determines on which alignment entity the point is returned. If the tolerance
is greater than the desired station minus the station at the alignment entity
transition, the point will be reported on that entity. For example, consider an
alignment made up of a tangent (length 240) and curve (length 260). Looking
for the location of station 400, with tolerance = 0, will find a point on the
curve. However, a tolerance of 200 will cause the method to report a point on
the tangent, because 400 - 240 < 200.

Superelevation

Another setting that can be applied to certain stations of an alignment is the
superelevation, used to adjust the angle of roadway section components for
corridors based on the alignment. The inside and outside shoulders and road
surfaces can be adjusted for both the left and right sides of the road.

NOTE

The Superelevation feature was substantially changed in AutoCAD Civil 3D
2013, and the API has also changed. The Alignment::SuperelevationData
property and Alignment::SuperElevationAtStation() method have been
removed. Existing code should be updated to use the new API, and access
superelevation via Alignment::SuperelevationCurves,
Alignment::SuperelevationCriticalStations, and
SuperelevationCriticalStationCollection::GetCriticalStationAt().

The superelevation data for an alignment is divided into discrete curves, called
superelevation curves, and each superelevation curve contains transition
regions where superelevation transitions from normal roadway to full
superelevation and back (with separate regions for transition in, and transition
out of superelvation). These regions are defined by “critical stations”, or
stations where there is a transition in the roadway cross-section. The collection
of superelevation curves for an alignment is accessed with the
Alignment::SuperelevationCurves property, while all critical stations for all

72 | Chapter 1 API Developer's Guide

curves is accessed with the Alignment::SuperelevationCriticalStations
property. The SuperelevationCurves collection is empty if superelevation
curves have not been added to the alignment (either manually, or calculated
by the Superelevation Wizard in the user interface). The
SuperelevationCriticalStations collection contains default entites for the
start and end stations of the Alignment if no superelevation data has been
calculated for the curves.

An individual SuperelevationCriticalStation can be accessed through the
Alignment::SuperelevationCriticalStations::GetCriticalStationAt()

method.

In this code snippet, the collection of superelevation curves for an alignment
is iterated, and information about each critical station in each curve is printed
out. Note that you must specify the cross segment type to get either the slope
or smoothing length, but you may not know which segment types are valid
for the critical station. In this snippet, the code attempts to get all segment
types, and silently catches the InvalidOperationException exception for
invalid types.

[CommandMethod("GetSECurves")]
public void GetSECurves()
{

doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())
{

// get first alignment:
ObjectId alignID = doc.GetAlignmentIds()[0];
Alignment myAlignment = ts.GetObject(alignID,

OpenMode.ForRead) as Alignment;
if (myAlignment.SuperelevationCurves.Count < 1)
{

ed.WriteMessage("You must calculate
superelevation data.\n");

return;
}
foreach (SuperelevationCurve sec in

myAlignment.SuperelevationCurves)
{

ed.WriteMessage("Name: {0}\n", sec.Name);
ed.WriteMessage(" Start: {0} End: {1}\n",

Alignments | 73

sec.StartStation, sec.EndStation);
foreach (SuperelevationCriticalStation sest in

sec.CriticalStations)
{

ed.WriteMessage(" Critical station: {0}
{1} {2}\n", sest.TransitionRegionType,

sest.Station, sest.StationType);
// try to get the slope:
foreach (int i in

Enum.GetValues(typeof(SuperelevationCrossSegmentType)))
{

try
{

// if this succeeds, we know the
segment type:

double slope =
sest.GetSlope((SuperelevationCrossSegmentType)i, false);

ed.WriteMessage(" Slope: {0}
Segment type:
{1}\n",slope,Enum.GetName(typeof(SuperelevationCrossSegmentType),i));

}
// silently fail:

catch (InvalidOperationException e) {
}

}
}

}
}

}

Alignment Style

Creating an Alignment Style

Styles govern many aspects of how alignments are drawn, including direction
arrows and curves, spirals, and lines within an alignment. All alignment styles
are contained in the CivilDocument.Styles.AlignmentStyles collection.
Alignment styles must be added to this collection before being used by an
alignment object. A style is normally assigned to an alignment when it is first

74 | Chapter 1 API Developer's Guide

created, but it can also be assigned to an existing alignment through the
Alignment.StyleId property.

[CommandMethod("SetAlignStyle")]
public void SetAlignStyle()
{

doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())
{

// Ask the user to select an alignment
PromptEntityOptions opt = new

PromptEntityOptions("\nSelect an Alignment");
opt.SetRejectMessage("\nObject must be an

alignment.\n");
opt.AddAllowedClass(typeof(Alignment), false);
ObjectId alignID = ed.GetEntity(opt).ObjectId;
Alignment myAlignment = ts.GetObject(alignID,

OpenMode.ForWrite) as Alignment;
ObjectId styleID =

doc.Styles.AlignmentStyles.Add("Sample alignment style");
AlignmentStyle myAlignmentStyle =

ts.GetObject(styleID, OpenMode.ForWrite) as AlignmentStyle;
// don't show direction arrows

myAlignmentStyle.GetDisplayStyleModel(AlignmentDisplayStyleType.Arrow).Visible
= false;

myAlignmentStyle.GetDisplayStylePlan(AlignmentDisplayStyleType.Arrow).Visible
= false;

// show curves in violet
myAlignmentStyle.GetDisplayStyleModel(AlignmentDisplayStyleType.Curve).Color

= Color.FromColorIndex(ColorMethod.ByAci, 200);
myAlignmentStyle.GetDisplayStylePlan(AlignmentDisplayStyleType.Curve).Color

= Color.FromColorIndex(ColorMethod.ByAci, 200);
// show straight sections in blue

myAlignmentStyle.GetDisplayStyleModel(AlignmentDisplayStyleType.Line).Color
= Color.FromColorIndex(ColorMethod.ByAci, 160);

myAlignmentStyle.GetDisplayStylePlan(AlignmentDisplayStyleType.Line).Color
= Color.FromColorIndex(ColorMethod.ByAci, 160);

// assign style to an existing alignment
myAlignment.StyleId = myAlignmentStyle.Id;
ts.Commit();

Alignments | 75

}
}

Alignment Label Styles

The style of text labels and graphical markers displayed along an alignment
are set by specifying a LabelSet (by name or ObjectID) when the alignment is
first created with one of the Alignment::Create() methods, or by assigning
the label set object to the
CivilDocument.Styles.LabelSetStyles.AlignmentLabelSetStyles property.
The AlignmentLabelSetStyles collection consists of separate sets of styles to
be placed at major stations, minor stations, and where the alignment geometry,
design speed, or station equations change.

Alignment labels are described in the AlignmentLabelSetStyle collection,
which is a collection of AlignmentLabelSetItem objects. Labels at major
stations are described by AlignmentLabelSetItem objects with a
LabelStyleType property of LabelStyleType.AlignmentMajorStation. Minor
station labels are described by AlignmentLabelSetItem objects with a
LabelStyleType property of LabelStyleType.AlignmentMinorStation. Each
AlignmentLabelSetItem object has a related LabelStyle object (which you
can get or set with the LabelStyleId and LabelStyleName properties) and a
number of properties describing the limits of the labels and the interval
between labels along the alignment. When a new AlignmentLabelSetItem is
created for a minor station label (using BaseLabelSetStyle.Add()), it must
reference a parent major station label AlignmentLabelSetItem object.

Labels may be placed at the endpoints of each alignment entity. Such labels
are controlled through the
AlignmentLabelSetItem.GetLabeledAlignmentGeometryPoints() and
AlignmentLabelSetItem.GetLabeledAlignmentGeometryPoints() methods.
These methods also access labels at each change in alignment design speeds
and station equations. The get method returns a Dictionary hash object:
Dictionary<AlignmentPointType, bool>, specifiying the location of the
geometry point, and the bool indicates whether the point is labeled.

Label text for all label styles at alignment stations is controlled by a LabelStyle
object’s Text component, which is set by the LabelStyle.SetComponent()

76 | Chapter 1 API Developer's Guide

method. The following list of property fields indicates valid values for the
Text component:

Valid property fields for LabelStyleComponentType.Text Contents

<[Station Value(Uft|FS|P0|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Raw Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Design Speed(P3|RN|AP|Sn|OF)]>

<[Instantaneous Direction(Udeg|FDMSdSp|MB|P4|RN|DSn|CU|AP|OF)]>

<[Perpendicular Direction(Udeg|FDMSdSp|MB|P4|RN|DSn|CU|AP|OF)]>

<[Alignment Name(CP)]>

<[Alignment Description(CP)]>

<[Alignment Length(Uft|P3|RN|AP|Sn|OF)]>

<[Alignment Start Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Alignment End Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

Label styles for minor stations, geometry points, design speeds, and station
equations can also use the following property fields:

Minor stations<[Offset From Major Station(Uft|P3|RN|AP|Sn|OF)]>

Geometry points<[Geometry Point Text(CP)]>

Geometry points<[Geometry Point Entity Before Data(CP)]>

Alignments | 77

Geometry points<[Geometry Point Entity After Data(CP)]>

Design speeds<[Design Speed Before(P3|RN|AP|Sn|OF)]>

Station equations<[Station Ahead(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

Station equations<[Station Back(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

Station equations<[Increase/Decrease(CP)]>

Label styles are described in detail in the chapter 2 section Label Styles (page
27).

Sample Programs

AlignmentSample

<installation-directory>\Sample\Civil 3D
API\DotNet\VB.NET\AlignmentSample

Some of the sample code from this chapter can be found in context in the
AlignmentSample project. This sample shows how to create an alignment,
add entities to an alignment, create an alignment label style set, get a site,
and create an alignment style.

Sprial2 Demo

<installation-directory>\Sample\Civil 3D
API\DotNet\CSharp\Spiral2 Demo

Demonstrates how to get simple and complex alignment information.

Profiles
This chapter describes the process for creating and using profiles with the
AutoCAD Civil 3D .NET API. For information about using Profiles with the
COM API, see Profiles (page 297)

78 | Chapter 1 API Developer's Guide

Profiles

Profiles are the vertical analogue to alignments. Together, an alignment and
a profile represent a 3D path.

Creating a Profile From a Surface

A profile is an object consisting of elevations along an alignment. Each
alignment contains a collection of profiles which you can access by the
Alignment.GetProfileIds() method. The Profile.CreateFromSurface()
method creates a new profile and derives its elevation information from the
specified surface along the path of the alignment.

// Illustrates creating a new profile from a surface
[CommandMethod("ProfileFromSurface")]
public void ProfileFromSurface()
{

doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())
{

// Ask the user to select an alignment
PromptEntityOptions opt = new

PromptEntityOptions("\nSelect an Alignment");
opt.SetRejectMessage("\nObject must be an

alignment.\n");
opt.AddAllowedClass(typeof(Alignment), true);
ObjectId alignID = ed.GetEntity(opt).ObjectId;
// get layer id from the alignment
Alignment oAlignment = ts.GetObject(alignID,

OpenMode.ForRead) as Alignment;
ObjectId layerId = oAlignment.LayerId;
// get first surface in the document
ObjectId surfaceId = doc.GetSurfaceIds()[0];
// get first style in the document
ObjectId styleId = doc.Styles.ProfileStyles[0];
// get the first label set style in the document
ObjectId labelSetId =

Profiles | 79

doc.Styles.LabelSetStyles.ProfileLabelSetStyles[0];
try
{

ObjectId profileId =
Profile.CreateFromSurface("My Profile", alignID, surfaceId,
layerId, styleId, labelSetId);

ts.Commit();
}
catch (Autodesk.AutoCAD.Runtime.Exception e)
{

ed.WriteMessage(e.Message);
}

}
}

Creating a Profile Using Entities

The various Profile.CreateByLayout() overloaded methods create a new
profile with no elevation information. The vertical shape of a profile can then
be specified using entities. Entities are geometric elements - tangents or
symmetric parabolas. The collection of all entities that make up a profile are
contained in the Profile.Entities collection. The ProfileEntityCollection
class also contains all the methods for creating new entities.

This sample creates a new profile along the alignment “oAlignment” and then
adds three entities to define the profile shape. Two straight entities are added
at each end and a symmetric parabola is added in the center to join them and
represent the sag of a valley.

// Illustrates creating a new profile without elevation
data, then adding the elevation
// via the entities collection

[CommandMethod("CreateProfileNoSurface")]
public void CreateProfileNoSurface()
{

doc = CivilApplication.ActiveDocument;

Editor ed =
Application.DocumentManager.MdiActiveDocument.Editor;

using (Transaction ts =

80 | Chapter 1 API Developer's Guide

Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())
{

// Ask the user to select an alignment
PromptEntityOptions opt = new

PromptEntityOptions("\nSelect an Alignment");
opt.SetRejectMessage("\nObject must be an

alignment.\n");
opt.AddAllowedClass(typeof(Alignment), false);
ObjectId alignID = ed.GetEntity(opt).ObjectId;

Alignment oAlignment = ts.GetObject(alignID,
OpenMode.ForRead) as Alignment;

// use the same layer as the alignment
ObjectId layerId = oAlignment.LayerId;
// get the standard style and label set
// these calls will fail on templates without a

style named "Standard"
ObjectId styleId =

doc.Styles.ProfileStyles["Standard"];
ObjectId labelSetId =

doc.Styles.LabelSetStyles.ProfileLabelSetStyles["Standard"];

ObjectId oProfileId = Profile.CreateByLayout("My
Profile", alignID, layerId, styleId, labelSetId);

// Now add the entities that define the profile.

Profile oProfile = ts.GetObject(oProfileId,
OpenMode.ForRead) as Profile;

Point3d startPoint = new
Point3d(oAlignment.StartingStation, -40, 0);

Point3d endPoint = new Point3d(758.2, -70, 0);
ProfileTangent oTangent1 =

oProfile.Entities.AddFixedTangent(startPoint, endPoint);

startPoint = new Point3d(1508.2, -60.0, 0);
endPoint = new Point3d(oAlignment.EndingStation,

-4.0, 0);
ProfileTangent oTangent2

=oProfile.Entities.AddFixedTangent(startPoint, endPoint);

Profiles | 81

oProfile.Entities.AddFreeSymmetricParabolaByLength(oTangent1.EntityId,
oTangent2.EntityId, VerticalCurveType.Sag, 900.1, true);

ts.Commit();
}

}

Editing Points of Vertical Intersection

The point where two adjacent tangents would cross (whether they actually
cross or not) is called the “point of vertical intersection”, or “PVI.” This location
can be useful for editing the geometry of a profile because this one point
controls the slopes of both tangents and any curve connecting them. The
collection of all PVIs in a profile is contained in the Profile.PVIs property.
This collection lets you access, add, and remove PVIs from a profile, which
can change the position and number of entities that make up the profile.
Individual PVIs (type ProfilePVI) do not have a name or id, but are instead
identified by a particular station and elevation. The collection methods
ProfilePVICollection.GetPVIAt and ProfilePVICollection.RemoveAt either
access or delete the PVI closest to the station and elevation parameters so you
do not need the exact location of the PVI you want to modify.

This sample identifies the PVI closest to a specified point. It then adds a new
PVI to the profile created in the Creating a Profile Using Entities (page 299)
topic and adjusts its elevation.

[CommandMethod("EditPVI")]
public void EditPVI()
{

doc = CivilApplication.ActiveDocument;

Editor ed =
Application.DocumentManager.MdiActiveDocument.Editor;

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// get first profile of first alignment in document
ObjectId alignID = doc.GetAlignmentIds()[0];
Alignment oAlignment = ts.GetObject(alignID,

OpenMode.ForRead) as Alignment;
Profile oProfile =

82 | Chapter 1 API Developer's Guide

ts.GetObject(oAlignment.GetProfileIds()[0],
OpenMode.ForRead) as Profile;

// check to make sure we have a profile:
if (oProfile == null)
{

ed.WriteMessage("Must have at least one
alignment with one profile");

return;
}
// Find the PVI close to station 1000 elevation

-70.
ProfilePVI oProfilePVI =

oProfile.PVIs.GetPVIAt(1000, -70);
ed.WriteMessage("PVI closest to station 1000 is at

station: {0}", oProfilePVI.Station);
// Add another PVI and slightly adjust its

elevation.
oProfilePVI = oProfile.PVIs.AddPVI(607.4, -64.3);
oProfilePVI.Elevation -= 2.0;

ts.Commit();
}

}

Creating a Profile Style

The profile style, an object of type ProfileStyle, defines the visual display
of profiles. The collection of all such styles in a document are stored in the
CivilDocument.Styles.ProfileStyles collection. The style contains properties
of type DisplayStyle which govern the display of arrows showing alignment
direction and of the lines, line extensions, curves, parabolic curve extensions,
symmetrical parabolas and asymmetrical parabolas that make up a profile.
The properties of a new profile style are defined by the document’s ambient
settings.

// Illustrates creating a new profile style
[CommandMethod("CreateProfileStyle")]
public void CreateProfileStyle()
{

doc = CivilApplication.ActiveDocument;

Profiles | 83

Editor ed =
Application.DocumentManager.MdiActiveDocument.Editor;

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
ObjectId profileStyleId =

doc.Styles.ProfileStyles.Add("New Profile Style");
ProfileStyle oProfileStyle =

ts.GetObject(profileStyleId, OpenMode.ForRead) as
ProfileStyle;

oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.Arrow).Visible
= true;

// set to yellow:
oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.Line).Color

= Color.FromColorIndex(ColorMethod.ByAci, 50);
oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.Line).Visible

= true;
// grey

oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.LineExtension).Color
= Color.FromColorIndex(ColorMethod.ByAci, 251);

oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.LineExtension).Visible
= true;

// green
oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.Curve).Color

= Color.FromColorIndex(ColorMethod.ByAci, 80);
oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.Curve).Visible

= true;
// grey

oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.ParabolicCurveExtension).Color
= Color.FromColorIndex(ColorMethod.ByAci, 251);

oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.ParabolicCurveExtension).Visible
= true;

// green
oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.SymmetricalParabola).Color

= Color.FromColorIndex(ColorMethod.ByAci, 81);
oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.SymmetricalParabola).Visible

= true;
// green

oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.AsymmetricalParabola).Color
= Color.FromColorIndex(ColorMethod.ByAci, 83);

oProfileStyle.GetDisplayStyleProfile(ProfileDisplayStyleProfileType.AsymmetricalParabola).Visible
= true;

84 | Chapter 1 API Developer's Guide

// properties for 3D should also be set
}

}

Profile Views

This section describes the creation and display of profile views. A profile view
is a graph displaying the elevation of a profile along the length of the related
alignment.

Creating a Profile View

The ProfileView class has two versions of the ProfileView::Create() method
for adding new ProfileView objects to a drawing. Each method overload takes
a reference to the CivilDrawing object, the name of the new profile view, and
a Point3d location in the drawing where the profile view is inserted. They also
both take a band set style and alignment; one version takes these arguments
as ObjectIds, while the other takes them as strings.

This example demonstrates creating a new ProfileView:

[CommandMethod("CreateProfileView")]
public void CreateProfileView()
{

doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())
{

// Ask the user to select an alignment
PromptEntityOptions opt = new

PromptEntityOptions("\nSelect an Alignment");
opt.SetRejectMessage("\nObject must be an

alignment.\n");
opt.AddAllowedClass(typeof(Alignment), false);
ObjectId alignID = ed.GetEntity(opt).ObjectId;
// Create insertion point:
Point3d ptInsert = new Point3d(100, 100, 0);

Profiles | 85

// Get profile view band set style ID:
ObjectId pfrVBSStyleId =

doc.Styles.ProfileViewBandSetStyles["Standard"];
// If this doesn't exist, get the first style in

the collection
if (pfrVBSStyleId == null) pfrVBSStyleId =

doc.Styles.ProfileViewBandSetStyles[0];
ObjectId ProfileViewId = ProfileView.Create(doc,

"New Profile View", pfrVBSStyleId, alignID, ptInsert);
ts.Commit();

}
}

Creating Profile View Styles

The profile view style, an object of type ProfileViewStyle, governs all aspects
of how the graph axes, text, and titles are drawn. Within ProfileViewStyle
are objects dealing with the top, bottom, left, and right axes; lines at geometric
locations within profiles; and with the graph as a whole. All profile view styles
in the document are stored in the CivilDocument.ProfileViewStyles
collection. New styles are created using the collection’s Add method with the
name of the new style.

ObjectId profileViewStyleId =
doc.Styles.ProfileViewStyles.Add("New Profile View Style");
ProfileViewStyle oProfileViewStyle =
ts.GetObject(profileViewStyleId, OpenMode.ForRead) as
ProfileViewStyle;

Setting Profile View Styles

The profile view style object consists of separate objects for each of the four
axes, one object for the graph overall, and an DisplayStyle object for grid
lines displayed at horizontal geometry points (accessed with the
GetDisplayStylePlan() method). The axis styles and graph style also contain
subobjects for specifying the style of tick marks and titles.

86 | Chapter 1 API Developer's Guide

Setting the Axis Style

All axis styles are based on the AxisStyle class. The axis style object controls
the display style of the axis itself, tick marks and text placed along the axis,
and a text annotation describing the axis’s purpose. The annotation text,
location, and size is set through the AxisStyle.TitleStyle property, an object
of type AxisTitleStyle. The annotation text can use any of the following
property fields:

Valid property fields for AxisTitleStyle.Text

<[Profile View Minimum Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Profile View Maximum Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Profile View Start Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Profile View End Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

Axis Tick Marks

Within each axis style are properties for specifying the tick marks placed along
the axis. Both major tick marks and minor tick marks are represented by objects
of type AxisTickStyle. The AxisTickStyle class manages the location, size,
and visual style of tick marks through its Interval, Size and other properties.
Note that while most style properties use drawing units, the Interval property
uses the actual ground units of the surface. The AxisTickStyle object also
determines the text that is displayed at each tick, including the following
property fields:

AxisValid property fields for TickStyle.Text

horizontal<[Station Value(Uft|FS|P0|RN|AP|Sn|TP|B2|EN|W0|OF)]>

horizontal<[Raw Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

horizontal<[Graph View Abscissa Value(Uft|P4|RN|AP|Sn|OF)]>

vertical<[Profile View Point Elevation(Uft|P1|RN|AP|Sn|OF)]>

Profiles | 87

AxisValid property fields for TickStyle.Text

vertical<[Graph View Ordinate Value(Uft|P3|RN|AP|Sn|OF)]>

Setting the Graph Style

The graph is managed by objects of type GraphStyle and GridStyle. These
objects can be used to change the scale, title, and grid of the graph.

The grid is controlled by the ProfileViewStyle.GridStyle property, an object
of type GridStyle. The grid style sets the amount of empty space above and
below the extents of the section through the GridStyle.GridPaddingAbove
and GridStyle.GridPaddingBottom properties. The grid style also manages
the line styles of major and minor vertical and horizontal gridlines with the
DisplayStyle.PlotStyle property accessed by the GetDisplayStylePlan()
method.

Graph Title

The title of the graph is controlled by the GraphStyle.TitleStyle property,
an object of type GraphTitleStyle. The title style object can adjust the
position, style, and border of the title. The text of the title can include any of
the following property fields:

Valid property fields for GraphTitleStyle.Text

<[Graph View Name(CP)]>

<[Parent Alignment(CP)]>

<[Drawing Scale(P4|RN|AP|OF)]>

<[Graph View Vertical Scale(P4|RN|AP|OF)]>

<[Graph View Vertical Exaggeration(P4|RN|AP|OF)]>

<[Profile View Start Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

88 | Chapter 1 API Developer's Guide

Valid property fields for GraphTitleStyle.Text

<[Profile View End Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Profile View Minimum Elevation(Uft|P2|RN|AP|Sn|OF)]>

<[Profile View Maximum Elevation(Uft|P3|RN|AP|Sn|OF)]>

Working With Hatch Areas

Hatch areas are a feature of profile views that apply a style to areas of cut and
fill to highlight them. In addition to cut and fill, a hatch area can highlight
areas of intersection between any two defined profiles.

The hatching feature for ProfileView objects is exposed by the HatchAreas
property. This is a collection of all ProfileHatchArea objects defined for the
ProfileView, which can be used to access or add additional hatch areas.

Each ProfileHatchArea has a set of criteria (ProfileCriteria objects) that
specify the profile that defines the upper or lower boundary for the hatch
area. The criteria also references a ShapeStyle object that defines how the
hatch area is styled in the profile view.

This code sample illustrates how to access the hatch areas for a profile view,
and prints out some information about each ProfileHatchArea object’s criteria:

[CommandMethod("ProfileHatching")]
public void ProfileHatching () {

doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction()
) {

// Ask the user to select a profile view
PromptEntityOptions opt = new

PromptEntityOptions("\nSelect a profile view");
opt.SetRejectMessage("\nObject must be a profile

view.\n");
opt.AddAllowedClass(typeof(ProfileView), false);

Profiles | 89

ObjectId profileViewID = ed.GetEntity(opt).ObjectId;
ProfileView oProfileView =

ts.GetObject(profileViewID, OpenMode.ForRead) as
ProfileView;

ed.WriteMessage("\nHatch areas defined in this
profile view: \n");

foreach (ProfileHatchArea oProfileHatchArea in
oProfileView.HatchAreas) {

ed.WriteMessage(" Hatch area: " +
oProfileHatchArea.Name + " shape style: " +
oProfileHatchArea.ShapeStyleName + "\n");

foreach (ProfileCriteria oProfileCriteria in
oProfileHatchArea.Criteria) {

ed.WriteMessage(string.Format(" Criteria:
type: {0} profile: {1}\n",
oProfileCriteria.BoundaryType.ToString(),
oProfileCriteria.ProfileName));

}
}

}
}

Profile View Style Example

This example takes an existing profile view style and modifies its top axis and
title:

[CommandMethod("ModProfileViewStyle")]
public void ModProfileViewStyle()
{

doc = CivilApplication.ActiveDocument;

Editor ed =
Application.DocumentManager.MdiActiveDocument.Editor;

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.Database.TransactionManager.StartTransaction())

{
// Get the first style in the document's collection

of styles

ObjectId profileViewStyleId =

90 | Chapter 1 API Developer's Guide

doc.Styles.ProfileViewStyles[0];
ProfileViewStyle oProfileViewStyle =

ts.GetObject(profileViewStyleId, OpenMode.ForRead) as
ProfileViewStyle;

// Adjust the top axis. Put station information
here, with the title

// at the far left.
oProfileViewStyle.GetDisplayStylePlan(ProfileViewDisplayStyleType.TopAxis).Visible

= true;
oProfileViewStyle.TopAxis.MajorTickStyle.LabelText

= "<[Station Value(Um|FD|P1)]> m";
oProfileViewStyle.TopAxis.MajorTickStyle.Interval

= 164.041995;
oProfileViewStyle.TopAxis.TitleStyle.OffsetX =

0.13;
oProfileViewStyle.TopAxis.TitleStyle.OffsetY = 0.0;
oProfileViewStyle.TopAxis.TitleStyle.Text =

"Meters";
oProfileViewStyle.TopAxis.TitleStyle.Location =

Autodesk.Civil.DatabaseServices.Styles.AxisTitleLocationType.TopOrLeft;

// Adjust the title to show the alignment name
oProfileViewStyle.GraphStyle.TitleStyle.Text =

"Profile View of:<[Parent Alignment(CP)]>";

ts.Commit();
}

}

Sample Programs

Profile Sample

This sample is located in <install directory>\Sample\Civil 3D
API\DotNet\VB.NET\ProfileSample\. It illustrates:
■ How to create a profile

■ Creating profile styles and profile views

Profiles | 91

Pipe Networks
This chapter describes working with pipe networks with the AutoCAD Civil
3D .NET API.

Base Objects

This section explains how to get the base objects required for using the pipe
network API classes.

Accessing Pipe Network-Specific Base Objects

Applications that access pipe networks do so through the CivilDocument
object. This is different from the COM API, in which pipe network functionality
is accessed through the separate AeccPipeDocument instead of AeccDocument.
In the .NET API, the CivilDocument object contains collections of pipe
network-related items, such as pipe networks, pipe styles, and interference
checks.

Pipe-Specific Ambient Settings

Ambient settings allow you to get and set the units and default property
settings of pipe network objects as well as access the catalog of all pipe and
structure parts held in the document. Ambient settings for a pipe document
are obtained from the CivilDocument.Settings.GetSettings() method,
which returns an object inherited from SettingsAmbient.

Among the classes that inherit from SettingsAmbient are SettingsPipe,
SettingsPipeNetwork, and SettingsStructure. Each of these has properties
that describe the default units of measurement for interference, pipe, and
structure objects. The PipeSettingsRoot.PipeNetworkSettings property
contains the name of the default styles for pipe and structure objects as well
as the default label placement, units, and naming conventions for pipe
networks as a whole.

public void ShowPipeRules()
{

CivilDocument doc = CivilApplication.ActiveDocument;

92 | Chapter 1 API Developer's Guide

Editor ed =
Application.DocumentManager.MdiActiveDocument.Editor;

SettingsPipeNetwork oSettingsPipeNetwork =
doc.Settings.GetSettings<SettingsPipeNetwork>() as
SettingsPipeNetwork;

ed.WriteMessage("Using pipe rules: {0}\n",
oSettingsPipeNetwork.Rules.Pipe.Value);

// Set the default units used for pipes in this
document.

oSettingsPipeNetwork.Angle.Unit.Value =
Autodesk.Civil.AngleUnitType.Radian;

oSettingsPipeNetwork.Coordinate.Unit.Value =
Autodesk.Civil.LinearUnitType.Foot;

oSettingsPipeNetwork.Distance.Unit.Value =
Autodesk.Civil.LinearUnitType.Foot;
}

Listing and Adding Dynamic Part Properties

Each type of pipe and structure has many unique attributes (such as size,
geometry, design, and composition) that cannot be stored in the standard
pipe and structure properties. To give each part appropriate attributes, pipe
and structure objects have sets of dynamic properties. A single property is
represented by an PartDataField object. Data fields are held in collections of
type PartDataRecord. You can reach these collections through the PartData
property of the Part class, from which Pipe and Structure objects inherit.
Each data field contains an internal variable name, a text description of the
value, a global context used to identify the field, data type, and the data value
itself, as well as other properties.

This sample enumerates all the data fields contained in a pipe object “oPipe”
and displays information from each field.

// Get PartDataRecord for first pipe in the network
ObjectId pipeId = oNetwork.GetPipeIds()[0];
Pipe oPipe = ts.GetObject(pipeId, OpenMode.ForRead) as
Pipe;
PartDataField[] oDataFields =
oPipe.PartData.GetAllDataFields();
ed.WriteMessage("Additional info for pipe: {0}\n",
oPipe.Name);
foreach (PartDataField oPartDataField in oDataFields)

Pipe Networks | 93

{
ed.WriteMessage("Name: {0}, Description: {1}, DataType:

{2}, Value: {3}\n",
oPartDataField.Name,
oPartDataField.Description,
oPartDataField.DataType,
oPartDataField.Value);

}

Dynamic properties created with the NetworkCatalogDef class are not yet
supported by the .NET API.

Retrieving the Parts List

CivilDocument.Styles.PartsListSet contains a read-only collection of all
the lists of part types available in the document. Each list is an object of type
PartList, a read-only collection of PartsList ObjectIds. A part family represents
a broad category of parts, and is identified by a GUID (Globally Unique
Identification) value. A part family can only contain parts from one domain
- either pipes or structures but not both. Part families contain a read-only
collection of part filters (PartSizeFilter), which are the particular sizes of
parts. A part filter is defined by its PartSizeFilter.PartDataRecord property,
a collection of fields describing various aspects of the part.

This sample prints the complete listing of all parts in a document.

[CommandMethod("PrintParts")]
public void PrintParts()
{

CivilDocument doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.
Database.TransactionManager.StartTransaction())

{
// SettingsPipeNetwork oSettingsPipeNetwork =

doc.Settings.GetSettings<SettingsPipeNetwork>() as
SettingsPipeNetwork;

PartsListCollection oPartListCollection =
doc.Styles.PartsListSet;

ed.WriteMessage("Number of parts lists in document:

94 | Chapter 1 API Developer's Guide

{0}\n", oPartListCollection.Count);
foreach (ObjectId objId in oPartListCollection)
{

PartsList oPartsList = ts.GetObject(objId,
OpenMode.ForWrite) as PartsList;

ed.WriteMessage("PARTS LIST:
{0}\n----------------\n", oPartsList.Name);

// From the part list, looking at only those
part families

// that are pipes, print all the individual
parts, plus

// some information about each part.
ObjectIdCollection pipeFamilyCollection =

oPartsList.GetPartFamilyIdsByDomain(DomainType.Pipe);
ed.WriteMessage(" Pipes\n =====\n");
foreach (ObjectId objIdPfa in

pipeFamilyCollection)
{

PartFamily oPartFamily =
ts.GetObject(objIdPfa, OpenMode.ForWrite) as PartFamily;

if (oPartFamily.Domain == DomainType.Pipe)
{

ed.WriteMessage(" Family: {0}\n",
oPartFamily.Name);

SizeFilterRecord oSizeFilterRecord =
oPartFamily.PartSizeFilter;

SizeFilterField SweptShape =
oSizeFilterRecord.GetParamByContextAndIndex(PartContextType.SweptShape,
0);

SizeFilterField MinCurveRadius =
oSizeFilterRecord.GetParamByContextAndIndex(PartContextType.MinCurveRadius,
0);

//SizeFilterField
StructPipeWallThickness;

SizeFilterField FlowAnalysisManning =

oSizeFilterRecord.GetParamByContextAndIndex(PartContextType.FlowAnalysisManning,
0);

SizeFilterField m_Material =
oSizeFilterRecord.GetParamByContextAndIndex(PartContextType.Material,
0);

// SizeFilterField PipeInnerDiameter
=

Pipe Networks | 95

oSizeFilterRecord.GetParamByContextAndIndex(PartContextType.PipeInnerDiameter,
0);

ed.WriteMessage(" {0}: {1}, {2}: {3},
{4}: {5} {6}: {7}\n",

SweptShape.Description,
SweptShape.Value,

MinCurveRadius.Description,
MinCurveRadius.Value,

FlowAnalysisManning.Description,
FlowAnalysisManning.Value,

m_Material.Description,
m_Material.Value

);
}

}
// From the part list, looking at only those

part families
// that are structures, print all the individual

parts.
ed.WriteMessage(" Structures\n =====\n");
foreach (ObjectId objIdPfa in

pipeFamilyCollection)
{

PartFamily oPartFamily =
ts.GetObject(objIdPfa, OpenMode.ForWrite) as PartFamily;

if (oPartFamily.Domain ==
DomainType.Structure)

{
ed.WriteMessage(" Family: {0}\n",

oPartFamily.Name);
}

}
}

}
}

Creating a Pipe Network

A pipe network is a set of interconnected or related parts. The collection of
all pipe networks is returned by the CivilDocument.GetPipeNetworkIds()
method. A pipe network, an object of type Network, contains the collection
of pipes and the collection of structures which make up the network. Network

96 | Chapter 1 API Developer's Guide

also contains the method FindShortestNetworkPath() for determining the
path between two network parts.

The Network.ReferenceSurfaceId is used primarily for Pipe Rules. For example,
you can have a rule that places the structure rim at a specified elevation from
the surface.

Public Function CreatePipeNetwork() As Boolean
Dim trans As Transaction = tm.StartTransaction()
Dim oPipeNetworkIds As ObjectIdCollection
Dim oNetworkId As ObjectId
Dim oNetwork As Network
oNetworkId = Network.Create(g_oDocument, NETWORK_NAME)
' get the network
Try

oNetwork = trans.GetObject(oNetworkId,
OpenMode.ForWrite)

Catch
CreatePipeNetwork = False
Exit Function

End Try
'
'Add pipe and Structure
' Get the Networks collections
oPipeNetworkIds = g_oDocument.GetPipeNetworkIds()
If (oPipeNetworkIds Is Nothing) Then

MsgBox("There is no PipeNetwork Collection." +
Convert.ToChar(10))

ed.WriteMessage("There is no PipeNetwork
Collection." + Convert.ToChar(10))

CreatePipeNetwork = False
Exit Function

End If
Dim oPartsListId As ObjectId =

g_oDocument.Styles.PartsListSet(PARTS_LIST_NAME) 'Standard
PartsList

Dim oPartsList As PartsList =
trans.GetObject(oPartsListId, OpenMode.ForWrite)

Dim oidPipe As ObjectId = oPartsList("Concrete Pipe
SI")

Dim opfPipe As PartFamily = trans.GetObject(oidPipe,
OpenMode.ForWrite)

Dim psizePipe As ObjectId = opfPipe(0)

Pipe Networks | 97

Dim line As LineSegment3d = New LineSegment3d(New
Point3d(30, 9, 0), New Point3d(33, 7, 0))

Dim oidNewPipe As ObjectId = ObjectId.Null
oNetwork.AddLinePipe(oidPipe, psizePipe, line,

oidNewPipe, True)
Dim oidStructure As ObjectId = oPartsList("CMP

Rectangular End Section SI")
Dim opfStructure As PartFamily =

trans.GetObject(oidStructure, OpenMode.ForWrite)
Dim psizeStructure As ObjectId = opfStructure(0)
Dim startPoint As Point3d = New Point3d(30, 9, 0)
Dim endPoint As Point3d = New Point3d(33, 7, 0)
Dim oidNewStructure As ObjectId = ObjectId.Null
oNetwork.AddStructure(oidStructure, psizeStructure,

startPoint, 0, oidNewStructure, True)
oNetwork.AddStructure(oidStructure, psizeStructure,

endPoint, 0, oidNewStructure, True)
ed.WriteMessage("PipeNetwork created" +

Convert.ToChar(10))
trans.Commit()
CreatePipeNetwork = True

End Function ' CreatePipeNetwork

Pipes

This section explains the creation and use of pipes. Pipes represent the conduits
within a pipe network.

Creating Pipes

Pipe objects represent the conduits of the pipe network. Pipes are created using
the pipe network’s methods for creating either straight or curved pipes,
AddLinePipe() and AddCurvePipe(). Both methods require you to specify a
particular part family (using the ObjectId of a family) and a particular part
size filter object as well as the geometry of the pipe.

This sample creates a straight pipe between two hard-coded points using the
first pipe family and pipe size filter it can find in the part list:

[CommandMethod("AddPipe")]

98 | Chapter 1 API Developer's Guide

public void AddPipe()
{

CivilDocument doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.
Database.TransactionManager.StartTransaction())

{
ObjectIdCollection oIdCollection =

doc.GetPipeNetworkIds();
// Get the first network in the document
ObjectId objId = oIdCollection[0];
Network oNetwork = ts.GetObject(objId,

OpenMode.ForWrite) as Network;
ed.WriteMessage("Pipe Network: {0}\n",

oNetwork.Name);
// Go through the list of part types and select

the first pipe found
ObjectId pid = oNetwork.PartsListId;

PartsList pl = ts.GetObject(pid, OpenMode.ForWrite)
as PartsList;

ObjectId oid = pl["Concrete Pipe"];
PartFamily pfa = ts.GetObject(oid,

OpenMode.ForWrite) as PartFamily;
ObjectId psize = pfa[0];
LineSegment3d line = new LineSegment3d(new

Point3d(30, 9, 0), new Point3d(33, 7, 0));
ObjectIdCollection col = oNetwork.GetPipeIds();
ObjectId oidNewPipe = ObjectId.Null;
oNetwork.AddLinePipe(oid, psize, line, ref

oidNewPipe, false);
Pipe oNewPipe = ts.GetObject(oidNewPipe,

OpenMode.ForRead) as Pipe;
ed.WriteMessage("Pipe created: {0}\n",

oNewPipe.DisplayName);
ts.Commit();

}

}

Pipe Networks | 99

Using Pipes

To make a new pipe a meaningful part of a pipe network, it must be connected
to structures or other pipes using the Pipe.ConnectToStructure() or
Pipe.ConnectToPipe() methods, or structures must be connected to it using
the Structure.ConnectToPipe() method. Connecting pipes together directly
creates a new virtual Structure object to serve as the joint. If a pipe end is
connected to a structure, it must be disconnected before attempting to connect
it to a different structure. After a pipe has been connected to a network, you
can determine the structures at either end by using the StartStructureId and
EndStructureId properties. There are methods and properties for setting and
determining the flow direction, getting all types of physical measurements,
and for accessing collections of user-defined properties for custom descriptions
of the pipe.

Creating Pipe Styles

A pipe style controls the visual appearance of pipes in a document. All pipe
style objects in a document are stored in the CivilDocument.PipeStyles
collection. Pipe styles have four display methods and three hatch methods
for controlling general appearance attributes and three properties for
controlling display attributes that are specific to pipes. The methods
GetDisplayStyleProfile|Section|Plan(), and GetHatchStyleProfile() all
take a parameter describing the feature being modified, and return a reference
to the DisplayStyle or HatchDisplayStyle object controlling common display
attributes, such as line styles and color. The methods GetDisplayStyleModel(),
GetHatchStylePlan(), and GetHatchStyleSection() do not take a component
parameter.

The properties PlanOption and ProfileOption set the size of the inner wall,
outer wall, and end lines according to either the physical properties of the
pipe, custom sizes using drawing units, or a certain percentage of its previous
drawing size. The HatchOption property sets the area of the pipe covered by
any hatching used. A pipe object is given a style by assigning the Pipe.Style
property to a PipeStyle object.

This sample attempts to create a new pipe style object and set some of its
properties. If a style already exists with the same name, it sets the properties
on the existing style:

Public Function CreatePipeStyle(ByVal sStyleName As String)

100 | Chapter 1 API Developer's Guide

As PipeStyle
Dim oPipeStyleId As ObjectId
Dim oPipeStyle As PipeStyle
Dim trans As Transaction = tm.StartTransaction()
Try

oPipeStyleId =
g_oDocument.Styles.PipeStyles.Add(sStyleName)

Catch
End Try
If (oPipeStyleId = ObjectId.Null) Then

Try
oPipeStyleId =

g_oDocument.Styles.PipeStyles.Item(sStyleName)
Catch
End Try
If (oPipeStyleId = ObjectId.Null) Then

MsgBox("Could not create or use a pipe style
with the name:" & sStyleName)

CreatePipeStyle = Nothing
Exit Function

End If
End If
oPipeStyle = trans.GetObject(oPipeStyleId,

OpenMode.ForWrite)
' Set the display size of the pipes in plan view. We

will
' use absolute drawing units for the inside, outside,

and
' ends of each pipe.
' enter a value greater than or equal to 0.000mm and

less than or equal to 1000.000mm
oPipeStyle.PlanOption.InnerDiameter = 0.0021
oPipeStyle.PlanOption.OuterDiameter = 0.0024
' Indicate that we will use our own measurements for

the inside
' and outside of the pipe, and not base drawing on the

actual
' type of pipe.
oPipeStyle.PlanOption.WallSizeType =

PipeWallSizeType.UserDefinedWallSize
' Inidcate what kind of custom sizing to use.
oPipeStyle.PlanOption.WallSizeOptions =

PipeUserDefinedType.UseDrawingScale

Pipe Networks | 101

oPipeStyle.PlanOption.EndLineSize = 0.0021
' Indicate that we will use our own measurements for

the end
'line of the pipe, and not base drawing on the actual

type
' of pipe.
oPipeStyle.PlanOption.EndSizeType =

PipeEndSizeType.UserDefinedEndSize
' Inidcate what kind of custom sizing to use.
oPipeStyle.PlanOption.EndSizeOptions =

PipeUserDefinedType.UseDrawingScale
'
' Modify the colors of pipes using this style, as shown

'in plan view.
oPipeStyle.GetDisplayStylePlan(PipeDisplayStylePlanType.OutsideWalls).Color

= Color.FromRgb(255, 191, 0) ' orange, ColorIndex = 40
oPipeStyle.GetDisplayStylePlan(PipeDisplayStylePlanType.InsideWalls).Color

= Color.FromRgb(191, 0, 255) ' violet, ColorIndex = 200
oPipeStyle.GetDisplayStylePlan(PipeDisplayStylePlanType.EndLine).Color

= Color.FromRgb(191, 0, 255) ' violet, ColorIndex = 200
'
' Set the hatch style for pipes using this style, as

shown
'in plan view.
oPipeStyle.GetHatchStylePlan().Pattern = "DOTS"
oPipeStyle.GetHatchStylePlan().HatchType =

Autodesk.Civil.DatabaseServices.Styles.HatchType.PreDefined
oPipeStyle.GetHatchStylePlan().UseAngleOfObject = False
oPipeStyle.GetHatchStylePlan().ScaleFactor = 9.0#

oPipeStyle.GetDisplayStylePlan(PipeDisplayStylePlanType.Hatch).Color
= Color.FromRgb(0, 255, 191) ' turquose, ColorIndex = 120
oPipeStyle.GetDisplayStylePlan(PipeDisplayStylePlanType.Hatch).Visible

= True
oPipeStyle.PlanOption.HatchOptions =

PipeHatchType.HatchToInnerWalls
trans.Commit()
ed.WriteMessage("Create PipeStyle succeeded." +

Convert.ToChar(10))
CreatePipeStyle = oPipeStyle

End Function ' CreatePipeStyle

102 | Chapter 1 API Developer's Guide

Creating Pipe Label Styles

The collection of all pipe label styles in a document is found in the
CivilDocument.Styles.PipeLabelStyles property, which is a
LabelStylesPipeRoot object. This object lets you get and set cross section
label styles, plan / profile view label styles, and default label styles for pipes.

NOTE

The label style of a particular pipe cannot be set using the .NET API.

Structures

This section describes the creation and use of structures. Structures are the
connectors within a pipe network.

Creating Structures

Structures represent physical objects such as manholes, catch basins, and
headwalls. Logically, structures are used as connections between pipes at pipe
endpoints. In cases where two pipes connect directly, an Structure object
not representing any physical object is still created to serve as the joint. Any
number of pipes can connect with a structure. Structures are represented by
objects of type Structure, which are created by using the AddStructure()
method of Network.

See the code sample in Creating a Pipe Network (page 96) for an example of
how to call this method.

Using Structures

To make the new structure a meaningful part of a pipe network, it must be
connected to pipes in the network using the Structure.ConnectToPipe()
method or pipes must be connected to it using the Pipe.ConnectToStructure()
method. After a structure has been connected to a network, you can determine
the pipes connected to it by using the ConnectedPipe property, which is a
read-only collection of network parts. There are also methods and properties
for setting and determining all types of physical measurements for the structure

Pipe Networks | 103

and for accessing collections of user-defined properties for custom descriptions
of the structure.

Creating Structure Styles

A structure style controls the visual appearance of structures in a document.
All structure style objects are stored in the
CivilDocument.Styles.StructureStyles property. Structure styles have four
methods for controlling general appearance attributes and three properties
for controlling display attributes that are specific to structures. The methods
GetDisplayStylePlan|Profile|Section() and GetHatchStyleProfile() all
take a parameter describing the feature being modified and return a reference
to the DisplayStyle or HatchDisplayStyle object controlling common display
attributes such as line styles and color. The properties PlanOption,
ProfileOption, SectionOption, and ModelOption set the display size of the
structure and whether the structure is shown as a model of the physical object
or only symbolically. A structure object is given a style by assigning the
Structure.StyleId or Structure.StyleName property to a StructureStyle
object.

This sample attempts to create a new structure style object and set some of its
properties. If the style already exists, it changes the existing style:

Public Function CreateStructureStyle(ByVal sStyleName As
String) As StructureStyle

Dim oStructureStyle As StructureStyle
Dim oStructureStyleId As ObjectId
Dim trans As Transaction = tm.StartTransaction()
Try

oStructureStyleId =
g_oDocument.Styles.StructureStyles.Add(sStyleName)

Catch
End Try
If (oStructureStyleId = ObjectId.Null) Then

Try
oStructureStyleId =

g_oDocument.Styles.StructureStyles.Item(sStyleName)
Catch
End Try
If (oStructureStyleId = ObjectId.Null) Then

MsgBox("Could not create or use a structure
style with the name:" & sStyleName)

104 | Chapter 1 API Developer's Guide

CreateStructureStyle = Nothing
Exit Function

End If
End If
oStructureStyle = trans.GetObject(oStructureStyleId,

OpenMode.ForWrite)
oStructureStyle.GetDisplayStylePlan(StructureDisplayStylePlanType.Structure).Color

= Color.FromRgb(255, 191, 0) ' orange
oStructureStyle.GetDisplayStylePlan(StructureDisplayStylePlanType.Structure).Visible

= True
oStructureStyle.PlanOption.MaskConnectedObjects = False
oStructureStyle.PlanOption.SizeType =

StructureSizeOptionsType.UseDrawingScale
oStructureStyle.PlanOption.Size = 0.0035

oStructureStyle.GetDisplayStyleSection(StructureDisplayStylePlanType.Structure).Visible
= False
oStructureStyle.GetDisplayStyleSection(StructureDisplayStylePlanType.StructureHatch).Visible

= False
oStructureStyle.GetDisplayStylePlan(StructureDisplayStylePlanType.StructureHatch).Visible

= False
oStructureStyle.GetDisplayStyleProfile(StructureDisplayStylePlanType.Structure).Visible

= False
oStructureStyle.GetDisplayStyleProfile(StructureDisplayStylePlanType.StructureHatch).Visible

= False
trans.Commit()
ed.WriteMessage("Create StructureStyle Successful." +

Convert.ToChar(10))
CreateStructureStyle = oStructureStyle

End Function ' CreateStructureStyle

Creating Structure Label Styles

The collection of all structure label styles in a document is found in the
CivilDocument.Styles.LabelStyles.StructureLabelStyles property, which
is a LabelStylesStructureRoot object. .

NOTE

The label style of a particular structure cannot be set using the .NET API.

Pipe Networks | 105

Interference Checks

This section explains how to generate and examine an interference check. An
interference check is used to determine when pipe network parts are either
intersecting or are too close together.

Performing an Interference Check

This functionality is not yet supported by the .NET API.

Listing the Interferences

This functionality is not yet supported by the .NET API.

Interference Check Styles

Either a symbol or a model of the actual intersection region can be drawn at
each interference location. The display of these intersections is controlled by
an InterferenceStyle object. The collection of all interference style objects
in the document are stored in the CivilDocument.Styles.InterferenceStyles
collection.

There are three different styles of interference displays you can chose from.
First, you can display a 3D model of the intersection region. This is done by
setting the ModelOptions style property to InterferenceModelType.TrueSolid.
The GetDisplayStyleModel() method returns an object of type DisplayStyle
which controls the visible appearance of the model such as color and line
types. Make sure the DisplayStyle.Visible property is set to True.

Another possibility is to draw a 3D sphere at the location of the intersection.
This is done by setting the ModelOptions style property to
InterferenceModelType.Sphere. If the ModelSizeType property is set to
InterferenceModelSizeType.SolidExtents, then the sphere is automatically
sized to just circumscribe the region of intersection (that is, it is the smallest
sphere that still fits the model of the intersection region). You can set the size
of the sphere by setting the ModelSizeType property to
InterferenceModelSizeType.UserSpecified, setting the ModelSizeOptions
property to use either absolute units or drawing units, and setting the

106 | Chapter 1 API Developer's Guide

corresponding AbsoluteModelSize or DrawingScaleModelSize property to the
desired value. Again, the DisplayStyle object returned by
GetDisplayStyleModel() controls the visual features such as color and line
type.

The third option is to place a symbol at the location of intersection. Set the
GetDisplayStylePlan(InterferenceDisplayStyleType.Symbol).Visible

property to True to make symbols visible. The style property MarkerStyle, an
object of type MarkerStyle, controls all aspects of how the symbol is drawn.

This sample creates a new interference style object that displays an X symbol
with a superimposed circle at points of intersection:

public void InterfStyle()
{

CivilDocument doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;
using (Transaction ts =

Application.DocumentManager.MdiActiveDocument.
Database.TransactionManager.StartTransaction())

{
ObjectId intStyleId;
intStyleId =

doc.Styles.InterferenceStyles.Add("Interference style 01");
InterferenceStyle oIntStyle =

ts.GetObject(intStyleId, OpenMode.ForWrite) as
InterferenceStyle;

// Draw a symbol of a violet X with circle with a
specified

// drawing size at the points of intersection.
oIntStyle.GetDisplayStylePlan(InterferenceDisplayStyleType.Symbol).Visible

= true;
ObjectId markerStyleId = oIntStyle.MarkerStyle;
MarkerStyle oMarkerStyle =

ts.GetObject(markerStyleId, OpenMode.ForWrite) as
MarkerStyle;

oMarkerStyle.MarkerType =
MarkerDisplayType.UseCustomMarker;

oMarkerStyle.CustomMarkerStyle =
CustomMarkerType.CustomMarkerX;

oMarkerStyle.CustomMarkerSuperimposeStyle =
CustomMarkerSuperimposeType.Circle;

oMarkerStyle.MarkerDisplayStylePlan.Color =

Pipe Networks | 107

Color.FromColorIndex(ColorMethod.ByAci, 200);
oMarkerStyle.MarkerDisplayStylePlan.Visible = true;
oMarkerStyle.SizeType =

MarkerSizeType.AbsoluteUnits;
oMarkerStyle.MarkerSize = 5.5;
// Hide any model display at intersection points.

oIntStyle.GetDisplayStyleModel(InterferenceDisplayStyleType.Solid).Visible
= false;

ts.Commit();
}

}

Sample Program

PipeSample

<installation-directory>\Sample\Civil 3D
API\DotNet\VB.NET\PipeSample

Some of the sample code from this chapter can be found in context in the
PipeSample project. This sample creates a simple pipe network, creates pipe,
structure and interference styles, creates a parts list, and prints a hierarchy of
part types available in a document, separated into pipe and structure domains.

Corridors
This chapter covers creating and managing corridor objects using the AutoCAD
Civil 3D .NET API.

Root Objects

Accessing Corridor-Specific Base Objects

The .NET API does not use separate root objects for getting roadway-related
objects. Unlike the COM API, you only need to use the CivilApplication and
CivilDocument classes to access corridor root objects.

108 | Chapter 1 API Developer's Guide

Ambient Settings

Ambient settings allow you to get and set the unit and default property settings
of roadway objects. Ambient settings for a corridor are accessed with the
SettingsCorridor object returned by
CivilDocument.Settings.GetFeatureSettings() method.

Corridor Ambient Settings

The corridor ambient settings object allows you to set the default name formats
and default styles for corridor-related objects. The name templates allow you
to set how new corridors, corridor surfaces, profiles from feature lines, or
alignments from feature lines are named. Each format can use elements from
the following property fields:

Valid property fields for SettingsCorridor.SettingsNameFormat.Corridor

<[Corridor First Assembly(CP)]>

<[Corridor First Baseline(CP)]>

<[Corridor First Profile(CP)]>

<[Next Counter(CP)]>

... for SettingsCorridor.SettingsNameFormat.CorridorSurface

<[Corridor Name(CP)]>

<[Next Corridor Surface Counter(CP)]>

...for SettingsCorridor.SettingsNameformat.ProfileFromFeatureLine

<[Next Counter(CP)]>

... for SettingsCorridor.SettingsNameFormat.AlignmentFromFeatureLine

<[Corridor Baseline Name(CP)]>

Corridors | 109

... for SettingsCorridor.SettingsNameFormat.AlignmentFromFeatureLine

<[Corridor Feature Code(CP)]>

<[Corridor Name(CP)]>

<[Next Counter(CP)]>

<[Profile Type]>

This sample sets the corridor name format:

// Get the Corridor ambient settings root object
CivilDocument doc = CivilApplication.ActiveDocument;
Editor ed =
Application.DocumentManager.MdiActiveDocument.Editor;
SettingsCorridor oCorridorSettings =
doc.Settings.GetFeatureSettings<SettingsCorridor>() as
SettingsCorridor;
// Set the template so new corridors are named "Corridor"
// followed by a unique number followed by the name of the
// corridor's first assembly in parenthesis.
oCorridorSettings.NameFormat.Corridor.Value = "Corridor
<[Next Counter(CP)]>(<[Corridor First Assembly(CP)]>)";

Default styles are set through the SettingsCorridor.StyleSettings property.
The styles for corridor alignments, alignment labels, code sets, surfaces, feature
lines, profiles, profile labels, and slope pattern are accessed through a series
of string properties.

This sample sets the style of alignments in a corridor to the first alignment
style in the document’s collection of styles:

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.

Database.TransactionManager.StartTransaction())
{

// Get the name of the first alignment style in the
collection.

ObjectId alignId = doc.Styles.AlignmentStyles[0];
Alignment oAlignment = ts.GetObject(alignId,

110 | Chapter 1 API Developer's Guide

OpenMode.ForRead) as Alignment;
// Assign the name to alignment style property.
oCorridorSettings.Styles.Alignment.Value =

oAlignment.Name;
}

Assembly Ambient Settings

The assembly ambient settings object allows you to set the default name
formats and default styles for assemblies. The name formats allow you to set
how new assemblies, offset assemblies, and assembly groups are named. Each
format can use elements from the following property fields:

Valid property fields for SettingsAssembly.NameFormat.Assembly

<[Next Counter(CP)]>

... for SettingsAssembly.NameFormat.Offset

<[Corridor Name(CP)]>

...for SettingsAssembly.NameFormat.Group

<[Next Counter(CP)]>

Subassembly Ambient Settings

The subassembly ambient settings object allows you to set the default name
formats and default styles for subassembly objects. The name formats allow
you to set how subassemblies created from entities and subassemblies created
from macros are named. Each format can use elements from the following
property fields:

... for SettingsSubassembly.SettingsNameFormat.CreateFromEntities

<[Macro Short Name(CP)]>

<[Next Counter(CP)]>

<[Subassembly Local Name(CP)]>

Corridors | 111

... for SettingsSubassembly.SettingsNameFormat.CreateFromEntities

<[Subassembly Side]>

... for SettingsSubassembly.SettingsNameFormat.CreateFromMacro

<[Macro Short Name(CP)]>

<[Next Counter(CP)]>

<[Subassembly Local Name(CP)]>

<[Subassembly Side]>

NOTE

The name of the default code style set cannot be set with the .NET API.

Corridors

Corridor Concepts

A corridor represents a path, such as a road, trail, railroad, or airport runway.
The geometry of a corridor is defined by a horizontal alignment and a profile.
Together, these form the baseline - the centerline of the 3D path of the
corridor. Along the length of the baselines are a series of assemblies which
define the cross-sectional shape of the alignment. Common points in each
assembly are connected to form feature lines. Together the assemblies and
feature lines form the 3D shape of a corridor. A corridor also has one or more
surfaces which can be compared against an existing ground surface to
determine the amount of cut or fill required.

Listing Corridors

The collection of all corridors in a document are held in the
CivilDocument.CorridorCollection property.

112 | Chapter 1 API Developer's Guide

The following sample displays the name and the largest possible triangle side
of every corridor in a document:

public static void ListCorridors()
{

CivilDocument doc = CivilApplication.ActiveDocument;
Editor ed =

Application.DocumentManager.MdiActiveDocument.Editor;

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.

Database.TransactionManager.StartTransaction())
{

foreach (ObjectId objId in doc.CorridorCollection)
{

Corridor myCorridor = ts.GetObject(objId,
OpenMode.ForRead) as Corridor;

ed.WriteMessage("Corridor: {0}\nLargest possible
triangle side: {1}\n",

myCorridor.Name,
myCorridor.MaximumTriangleSideLength);

}
}

}

Creating Corridors

You cannot add new Corridors to a document using the .NET API.

Baselines

A baseline represents the centerline of the path of a corridor. It is based on an
alignment (the horizontal component of the path) and a profile (the vertical
component of the path). A corridor can contain more than one baseline if the
corridor is modeling a complicated shape, such as an intersection. A baseline
is made up of one or more baseline regions. Each region has its own assembly
(its own cross section), so a corridor can have different shapes at different
locations along its length.

Corridors | 113

Listing Baselines in a Corridor

The collection of all baselines in a corridor are contained in the
Corridor.Baselines property, which is type BaselineCollection.

The following sample displays information about the underlying alignment
and profile for every baseline in a corridor:

foreach (Baseline oBaseline in oCorridor.Baselines)
{

Alignment oAlign = ts.GetObject(oBaseline.AlignmentId,
OpenMode.ForRead) as Alignment;

Profile oProfile = ts.GetObject(oBaseline.ProfileId,
OpenMode.ForRead) as Profile;

ed.WriteMessage(@"Baseline information -
Alignment : {0}
Profile : {1}
Start station : {2}
End station : {3}",
oAlign.Name,
oProfile.Name,
oBaseline.StartStation,
oBaseline.EndStation);

}

Adding a Baseline to a Corridor

Adding baselines to a Corridor is not supported in the .NET API.

Listing Baseline Regions

The collection of all the regions of a baseline are contained in the
Baseline.BaselineRegions property.

The AutoCAD Civil 3D API does not include methods for creating new baseline
regions, or manipulating existing regions.

The following sample displays the start and end station for every baseline
region in a baseline:

114 | Chapter 1 API Developer's Guide

foreach (BaselineRegion oBaselineRegion in
oBaseline.BaselineRegions)
{

ed.WriteMessage(@"Baseline region information -
Start station : {0}
End station : {1}\n",
oBaselineRegion.StartStation,
oBaselineRegion.EndStation);

}

Accessing and Modifying Baseline Stations

Assembly cross sections are placed at regular intervals along a baseline. The
list of all stations where assemblies are located along a baseline can be retrieved
using the Baseline.SortedStations() method, while all stations along a
baseline region can be retrieved using the BaselineRegion.SortedStations()
method.

double[] stations = oBaselineRegion.SortedStations();
ed.WriteMessage("Baseline Region stations: \n");
foreach (double station in stations){

ed.WriteMessage("\tStation: {0}\n", station);
}

New stations can be added to baseline regions using the AddStation() method.
Existing stations can be deleted using the DeleteStation method.
DeleteStation includes an optional tolerance parameter, letting you specify
a station within a range. You can list all of the stations added to a baseline
region with the BaselineRegion.GetAdditionalStation method.
BaselineRegion.ClearAdditionalStations removes all added stations within
a baseline region and leaves only the original stations created at regular
intervals.

// Add an assembly to the middle of the baseline region
double newStation = oBaselineRegion.StartStation +

((oBaselineRegion.EndStation -
oBaselineRegion.StartStation) / 2);
oBaselineRegion.AddStation(newStation, "New Station");
ed.WriteMessage("Added New Station: {0}", newStation);

Corridors | 115

// Remove the station located at the beginning of the
baseline region:
oBaselineRegion.DeleteStation(oBaselineRegion.StartStation);

Listing Offset Baselines

Within a baseline region, it is possible to have secondary baselines that are
offset from the main baseline. The collection of these offset baselines are
contained in the BaselineRegion.OffsetBaselines property. The collection
contains two kinds of baselines derived from the BaseBaseline class. One is
the hardcoded offset baseline (an instances of the HardcodedOffsetBaseline
class) which is a constant distance from the main baseline for the entire length
of the offset baseline. The other is the offset baseline (an instance of the
OffsetBaseline class), which is a variable distance from the main baseline.

NOTE

The AutoCAD Civil 3D .NET API does not include methods for creating new
offset baselines or hardcoded offset baselines.

This code examines each offset baseline within a baseline region:

foreach (BaseBaseline ob in oBaselineRegion.OffsetBaselines)
{

ed.WriteMessage("Offset baseline: \n");
switch (ob.BaselineType)
{

case CorridorBaselineType.OffsetBaseline:
OffsetBaseline offb = (OffsetBaseline)ob;
ed.WriteMessage("Offset baseline, station {0}

to {1}\n",
offb.StartStationOnMainBaseline,

offb.EndStationOnMainBaseline);
ed.WriteMessage(" is offset by: {0} horizontal

and {1} vertical at start\n",
offb.GetOffsetElevationFromMainBaselineStation(offb.StartStationOnMainBaseline).X,
offb.GetOffsetElevationFromMainBaselineStation(offb.StartStationOnMainBaseline).Y);

ed.WriteMessage(" is offset by: {0} horizontal
and {1} vertical at end\n",

offb.GetOffsetElevationFromMainBaselineStation(offb.EndStationOnMainBaseline).X,
offb.GetOffsetElevationFromMainBaselineStation(offb.EndStationOnMainBaseline).Y);

116 | Chapter 1 API Developer's Guide

break;

case CorridorBaselineType.HardcodedOffsetBaseline:
HardcodedOffsetBaseline hob =

(HardcodedOffsetBaseline)ob;
ed.WriteMessage("Hardcoded offset baseline {0}

\n",
hob.Name);

ed.WriteMessage(" is offset by: {0} horizontal
and {1} vertical\n",

hob.OffsetElevationFromMainBaseline.X,
hob.OffsetElevationFromMainBaseline.Y);

break;

default:
break;

}
}

Assemblies and Subassemblies

An assembly is a pattern for the cross section of a corridor at a particular
station. An assembly consists of a connected set of subassemblies, each of
which are linked to a centerpoint or to other subassemblies. A subassembly
consists of a series of shapes, links, and points. When an assembly is used to
define the cross-section of a corridor, a series of applied assemblies (an object
of type AppliedAssembly) is added to the corridor. Each applied assembly
consists of a collection of applied subassemblies, which in turn consist of
shapes, links, and points that have been positioned relative to a specific station
along the corridor baseline (CalculatedShape, CalculatedLink, and
CalculatedPoint respectively). An applied assembly also has direct access to
all the calculated shapes, links, and points of its constituent applied
subassemblies.

NOTE

The AutoCAD Civil 3D .NET API does not include methods for creating or
modifying assemblies.

Corridors | 117

Listing Applied Assemblies in a Baseline Region

The collection of all applied assemblies used in a baseline region are contained
in the BaselineRegion.AppliedAssemblies property.

The following sample displays information about the construction of an
assembly for every assembly in a baseline region:

// List the applied assemblies in the baseline region
foreach (AppliedAssembly oAppliedAssembly in
oBaselineRegion.AppliedAssemblies)
{

ed.WriteMessage("Applied Assembly, num shapes: {0},
num links: {1}, num points: {2}\n",

oAppliedAssembly.Shapes.Count,
oAppliedAssembly.Links.Count,
oAppliedAssembly.Points.Count);

}

An AppliedAssembly object does not contain its baseline station position.
Instead, each calculated point contains a property for determining its position
with a baseline station, offset, and elevation called
CalculatedPoint.StationOffsetElevationToBaseline. Each calculated shape
contains a collection of all links that form the shape, and each calculated link
contains a collection of all points that define the link. Finally, each shape,
link, and point contain an array of all corridor codes that apply to that element.

This sample retrieves all calculated points in an applied assembly and prints
their locations:

foreach (CalculatedPoint oPoint in oAppliedAssembly.Points)
{

ed.WriteMessage("Point position: Station: {0}, Offset:
{1}, Elevation: {2}\n",

oPoint.StationOffsetElevationToBaseline.X,
oPoint.StationOffsetElevationToBaseline.Y,
oPoint.StationOffsetElevationToBaseline.Z);

}

118 | Chapter 1 API Developer's Guide

Getting Applied Subassembly Information

An applied subassembly consists of a series of calculated shapes, links, and
points, represented by objects of type CalculatedShape, CalculatedLink, and
CalculatedPoint respectivly.

foreach (AppliedSubassembly oSubassembly in oASC)
{

ed.WriteMessage("Applied subassembly: Station to
baseline: {0}, Offset to baseline: {1}, Elevation to
baseline: {2}\n",

oSubassembly.OriginStationOffsetElevationToBaseline.X,
oSubassembly.OriginStationOffsetElevationToBaseline.Y,
oSubassembly.OriginStationOffsetElevationToBaseline.Z);

}

Applied subassemblies also contain an ObjectId reference to the archetype
subassembly (of type Subassembly) in the subassembly database.

// Get information about the subassembly template:
ObjectId oID = oAppliedSubassembly.SubassemblyId;
Subassembly oSubassembly = ts.GetObject(oID,
OpenMode.ForRead) as Subassembly;
ed.WriteMessage("Subassembly name: {0}\n",
oSubassembly.Name);

Feature Lines

Feature lines are formed by connecting related points in each assembly along
the length of a corridor baseline. These lines represent some aspect of the
roadway, such as a sidewalk edge or one side of a corridor surface. Points
become related by sharing a common code, a string property usually describing
the corridor feature.

Each baseline has two sets of feature lines, one for lines that are positioned
along the main baseline and one for lines that are positioned along any of
the offset baselines.

Corridors | 119

NOTE

Creating feature lines from polylines is not supported in the .NET API.
However, you can use the COM API IAeccLandFeatureLine::
AddFromPolyline() method.

Listing Feature Lines Along a Baseline

The set of all feature lines along a main baseline are held in the
Baseline.MainBaselineFeatureLines property, an object of type
BaselineFeatureLines. This object contains information about all the feature
lines, such as a list of all codes used. The
BaselineFeatureLines.FeatureLinesCol property is a collection of feature
line collections. Each feature line (an object of type FeatureLine) contains
the code string used to create the feature line and a collection of all feature
line points.

This sample lists all the feature line collections and feature lines along the
main baseline. It also lists the code and every point location for each feature
line.

// Get all the feature lines:
foreach (FeatureLineCollection oFeatureLineCollection in
oBaseline.MainBaselineFeatureLines.FeatureLineCollectionMap)
{

ed.WriteMessage("Feature Line Collection\n# Lines in
collection: {0}\n",

oFeatureLineCollection.Count);
foreach (FeatureLine oFeatureLine in

oFeatureLineCollection)
{

ed.WriteMessage("Feature line code: {0}\n",
oFeatureLine.CodeName);

// print out all point locations on the feature
line

foreach (FeatureLinePoint oFeatureLinePoint in
oFeatureLine.FeatureLinePoints)

{
ed.WriteMessage("Point: {0},{1},{2}\n",

oFeatureLinePoint.XYZ.X,
oFeatureLinePoint.XYZ.Y,
oFeatureLinePoint.XYZ.Z);

120 | Chapter 1 API Developer's Guide

}
}

}

Listing Feature Lines Along Offset Baselines

As there can be many offset baselines in a single main baseline, the list of all
feature lines along all offset baselines contains an extra layer. The
Baseline.OffsetBaselineFeatureLinesCol property contains a collection of
BaselineFeatureLines objects. These BaselineFeatureLines objects not only
contain the feature lines just as for the main baseline, but also contain
properties identifying which offset baseline each group of feature lines belong
to.

This sample shows how to modify the previous sample for feature lines along
offset baselines:

// Get all the offset feature lines:
foreach (BaselineFeatureLines oBaselineFeaturelines in
oBaseline.OffsetBaselineFeatureLinesCol)
{

foreach (FeatureLineCollection oFeatureLineCollection
in oBaselineFeaturelines.FeatureLineCollectionMap)

{
ed.WriteMessage("Feature Line Collection\n# Lines

in collection: {0}\n",
oFeatureLineCollection.Count);
foreach (FeatureLine oFeatureLine in

oFeatureLineCollection)
{

ed.WriteMessage("Feature line code: {0}\n",
oFeatureLine.CodeName);

// print out all point locations on the feature
line

foreach (FeatureLinePoint oFeatureLinePoint in
oFeatureLine.FeatureLinePoints)

{
ed.WriteMessage("Point: {0},{1},{2}\n",

oFeatureLinePoint.XYZ.X,
oFeatureLinePoint.XYZ.Y,
oFeatureLinePoint.XYZ.Z);

}

Corridors | 121

}

}
}

Each offset baseline and hardcoded offset baseline also has direct access to the
feature lines related to itself. The BaselineFeatureLines collection is accessed
through the RelatedOffsetBaselineFeatureLines property in both types of
offset baselines.

Corridor Surfaces

Corridor surfaces can represent the base upon which the corridor is constructed,
the top of the finished roadway, or other aspects of the corridor. Such surfaces
are represented by the Surface class and by the unrelated CorridorSurface
class. CorridorSurface objects contain corridor-specific information about
the surfaces, such as which feature line, point, and link codes were used to
create it.

Listing Corridor Surfaces

The collection of all corridor surfaces for each corridor is held in the the
Corridor.CorridorSurfaces property. Each corridor surface contains the
boundary of the surface and a list of all point, link, and feature line codes used
in the construction of the surface. Corridor surfaces also contain read-only
references to the surface style ID and section style ID used in drawing the
surface.

NOTE

The AutoCAD Civil 3D .NET API does not include methods for creating new
corridor surfaces or modifying existing corridor surfaces.

This sample lists all the corridor surfaces within a corridor and specifies the
point codes that make up each surface:

// List surfaces
foreach (CorridorSurface oCorridorSurface in
oCorridor.CorridorSurfaces)
{

122 | Chapter 1 API Developer's Guide

ed.WriteMessage("Corridor surface: {0}\n",
oCorridorSurface.Name);

// Get the point codes for the surface.
String[] oPointCodes = oCorridorSurface.PointCodes();

ed.WriteMessage("Surface point codes:\n");
foreach (String s in oPointCodes)
{

ed.WriteMessage("{0}\n", s);
}

}

Listing Surface Boundaries

Two different objects are used to define the limits of a corridor surface:
boundaries and masks. A boundary is a polygon representing the outer edge
of a surface or the inside edge of a hole in a surface. A mask is a polygon
representing the part of the surface that can be displayed. The collection of
all the boundaries of a surface are stored in the CorridorSurface.Boundaries
property and the collection of all masks are stored in the
CorridorSurface.Masks property.

Boundaries (of type CorridorSurfaceBoundary) and masks (of type
CorridorSurfaceMask) are both derived from the same base class
(CorridorSurfaceBaseMask) and both have similar methods and properties.
The array of points making up the border polygon is retrieved by calling the
PolygonPoints() method. If the border was originally defined by selecting
segments of feature lines, the collection of all such feature line components
are contained in the FeatureLineComponents property.

NOTE

The AutoCAD Civil 3D .NET API does not include methods for creating or
modifying corridor boundaries or masks.

This sample loops through all the boundaries of a corridor surface and displays
information about each:

// List boundaries
foreach (CorridorSurfaceBoundary oCorridorSurfaceBoundary

Corridors | 123

in oCorridorSurface.Boundaries)
{

if (oCorridorSurfaceBoundary.BoundaryType ==
CorridorSurfaceBoundaryType.InsideBoundary)

ed.WriteMessage("Inner Boundary: ");
else

ed.WriteMessage("Outer Boundary: ");

ed.WriteMessage(oCorridorSurfaceBoundary.Name);

// Get the points of the boundary polygon
Point3d[] oPoints =

oCorridorSurfaceBoundary.PolygonPoints();
ed.WriteMessage("\nNumber of points: {0}\n",

oPoints.Length);
// Print the location of the first point. Usually

corridors
// have a large number of boundary points, so we will

not
// bother printing all of them.
ed.WriteMessage("Point 1: {0},{1},{2}\n",

oPoints[0][0],
oPoints[0][1],
oPoints[0][2]);

// Display information about each feature
// line component in this surface boundary.
ed.WriteMessage("Feature line components \n Count:

{0}\n",
oCorridorSurfaceBoundary.FeatureLineComponents.Count);

foreach (FeatureLineComponent oFeatureLineComponent in
oCorridorSurfaceBoundary.FeatureLineComponents)

{
ed.WriteMessage("Code: {0}, Start station: {1},

End station: {2}\n",
oFeatureLineComponent.FeatureLine.CodeName,
oFeatureLineComponent.StartStation,
oFeatureLineComponent.EndStation);

}
}

124 | Chapter 1 API Developer's Guide

Computing Cut and Fill

The .NET API doesn notexpose surface functionality, so it isn’t possible to
calculate cut and fill volumes by comparing surfaces. However, you can perform
this task with the COM API. See for more information.

Styles

These style objects control the visual appearance of applied assemblies.

Assembly Style

The collection of all assembly style objects are found in the
CivilDocument.Styles.AssemblyStyles property. The assembly style object
contains properties for adjusting the marker types for the assembly attachment
points, and each of the standard MarkerType properties. While you can create
new styles and edit existing styles, you cannot assign a style to an existing
assembly using the AutoCAD Civil 3D .NET API.

using (Transaction ts =
Application.DocumentManager.MdiActiveDocument.

Database.TransactionManager.StartTransaction())
{

ObjectId objId =
doc.Styles.AssemblyStyles.Add("Style1");

AssemblyStyle oAssemblyStyle = ts.GetObject(objId,
OpenMode.ForWrite) as AssemblyStyle;

objId = oAssemblyStyle.MarkerStyleAtMainBaselineId;
MarkerStyle oMarker = ts.GetObject(objId,

OpenMode.ForWrite) as MarkerStyle;
oMarker.CustomMarkerStyle =

CustomMarkerType.CustomMarkerX;
oMarker.MarkerDisplayStylePlan.Color =

Color.FromColorIndex(ColorMethod.ByAci, 10);
oMarker.MarkerDisplayStylePlan.Visible = true;

ts.Commit();
}

Corridors | 125

Link Style

The collection of all link style objects are found in the
CivilDocument.Styles.LinkStyles property. This style object contains
properties for adjusting the visual display of assembly and subassembly links.

NOTE

Link style objects are not used directly with link objects, but are instead used
with roadway style sets.

// Add a new link style to the document:
objId = doc.Styles.LinkStyles.Add("Style2");
LinkStyle oLinkStyle = ts.GetObject(objId,
OpenMode.ForWrite) as LinkStyle;
oLinkStyle.LinkDisplayStylePlan.Color =
Color.FromColorIndex(ColorMethod.ByAci, 80);
oLinkStyle.LinkDisplayStylePlan.Visible = true;

ts.Commit();

Shape Style

The collection of all shape style objects are found in the
CivilDocument.ShapeStyles property. This style object contains properties
for adjusting the visual display of assembly and subassembly shapes, including
the outline and the inside area.

NOTE

Shape style objects are not used directly with shape objects, but are instead
used with roadway style sets.

// Create a new shape style and change it so that it has
// an orange border and a yellow hatch fill.
objId = doc.Styles.ShapeStyles.Add("Style3");
ShapeStyle oShapeStyle = ts.GetObject(objId,
OpenMode.ForWrite) as ShapeStyle;
// 50 = yellow
oShapeStyle.AreaFillDisplayStylePlan.Color =

126 | Chapter 1 API Developer's Guide

Color.FromColorIndex(ColorMethod.ByAci, 50);
oShapeStyle.AreaFillDisplayStylePlan.Visible = true;
oShapeStyle.AreaFillHatchDisplayStylePlan.HatchType =
HatchType.PreDefined;
oShapeStyle.AreaFillHatchDisplayStylePlan.Pattern = "LINE";
// 30 = orange
oShapeStyle.BorderDisplayStylePlan.Color =
Color.FromColorIndex(ColorMethod.ByAci, 30);
oShapeStyle.BorderDisplayStylePlan.Visible = true;

ts.Commit();

Roadway Style Sets

The visual display of applied assemblies is defined by roadway style sets, which
are a set of shape styles and link styles assigned to shapes and links that use
specified code strings. The collection of all style sets are found in the
CivilDocument.Styles.CodeSetStyles property. A style set is itself a collection
of CodeSetStyleItem objects. Each style set item has a
CodeSetStyleItem.CodeStyle property that can reference either an existing
shape style object or link shape object. New style set items are added to a style
set though the CodeSetStyleCollection.Add() method which takes parameters
describing the kind of style object, the code string, and the style object itself.

NOTE

You cannot set the CodeSetStyle to be the currently used style with the .NET
API. However, you can get the ObjectId for the currently used style by calling
CodeSetStyle.GetCurrentStyleSetId().

// Create a new style set using our previously created
styles.
objId = doc.Styles.ShapeStyles.Add("Style Set 1");
CodeSetStyle oCodeSetStyle = ts.GetObject(objId,
OpenMode.ForWrite) as CodeSetStyle;
oCodeSetStyle.Add("TOP", doc.Styles.LinkStyles["Style2"]);
oCodeSetStyle.Add("BASE", doc.Styles.ShapeStyles["Style3"]);

ts.Commit();

Corridors | 127

Points
This chapter covers creating and using Coordinated Geometry (COGO) Points,
exposed by the CogoPoint class, with the .NET API. It describes accessing the
collection of all points in the CivilDocument, adding and removing points,
assigning User Defined Properties (UDPs) to points, and working with
PointGroup objects to organize points. It also describes creating and applying
point styles and label styles to points.

Using the Points Collection

All points in a document are held in a CogoPointCollection object accessed
through the CivilDocument.CogoPoints property. In addition to the common
collection properties and methods, this collection also exposes methods for
working with large numbers of points at once. For example, points can be
added to the collection either individually, or from a Point3dCollection.

The following sample adds a collection of randomly generated points to the
document’s point collection, and then accesses each point in the collection
directly to calculate the average elevation:

[CommandMethod("C3DSAMPLES", "AverageCogoElevation",
CommandFlags.Modal)]
public void AverageCogoElevation()
{

using (Transaction tr = startTransaction())
{

// _civildoc is the active CivilDocument instance.

CogoPointCollection cogoPoints =
_civildoc.CogoPoints;

Point3d[] points = { new Point3d(4927, 3887, 150),
new Point3d(5101, 3660, 250), new Point3d(5144, 3743, 350)
};

Point3dCollection locations = new
Point3dCollection(points);

cogoPoints.Add(locations);

// Compute the average elevation of all the points

128 | Chapter 1 API Developer's Guide

in a document.
double avgElevation = 0;
foreach (ObjectId pointId in cogoPoints)
{

CogoPoint cogoPoint =
pointId.GetObject(OpenMode.ForRead) as CogoPoint;

avgElevation += cogoPoint.Elevation;
}

avgElevation /= cogoPoints.Count;
_editor.WriteMessage("Average elevation: {0}

\nNumber of points: {1}", avgElevation, cogoPoints.Count);

tr.Commit();
}

}

Using Points

Coordinated Geometry Points (COGO points) are more complex than AutoCAD
point nodes, which have only coordinate data. A CogoPoint object, in addition
to a location, also has properties such as a unique ID number, name, raw (field)
description, and full (expanded) description. The point number is unique,
and is automatically assigned when the point is created. You can change the
point number either by setting the PointNumber property directly, or by using
the Renumber() method. Setting the property directly will throw an exception
if another point exists with the specified value, while the Renumber() method
will use the settings for resolving point numbering conflicts to choose another
point number. You can also set the PointNumber property for multiple points
using the CogoPointCollection.SetPointNumber() method.

The full description property is read-only once a point is created.

The CogoPoint object’s Location property is read-only. However, you can read
and change the local position using the Easting, Northing and Elevation
properties. The point’s location can also be specified by using the Grideasting
and GridNorthing properties or the Latitude and Longitude properties,
depending on the coordinate and transformation settings of the drawing.

A CogoPoint object is either a drawing point or a project point. Project points
have the isProjectPoint property set to true, and have additional project
information contained by the IsCheckedOut and ProjectVersion properties.

Points | 129

Attempting to get or set these properties for points that have isProjectPoint
== false raises an exception, so it is a good idea to check that property first.

CogoPoint objects also have several read-only override properties that contain
values that have been overridden by PointGroup settings. These include
ElevationOverride, FullDescriptionOverride, LabelStyleIdOverride,
RawDescriptionOverride, and StyleIdOverride.

This sample adds a new point to the document’s collection of points and sets
some of its properties.

[CommandMethod("C3DSAMPLES", "CreatePoint",
CommandFlags.Modal)]
public void CreatePoint()
{

using (Transaction tr = startTransaction())
{

// _civildoc is the active CivilDocument instance.

Point3d location = new Point3d(4958, 4079, 200);
CogoPointCollection cogoPoints =

_civildoc.CogoPoints;
ObjectId pointId = cogoPoints.Add(location);
CogoPoint cogoPoint =

pointId.GetObject(OpenMode.ForWrite) as CogoPoint;
cogoPoint.PointName = "point1";
cogoPoint.RawDescription = "Point description";

tr.Commit();
}

}

Bulk Editing Points

The CogoPointCollection class provides several methods for changing the
properties of multiple points with a single action. Most of the Set<Property>()
methods have three versions:

1 Set the property for a single CogoPoint (identified by ObjectId) in the
collection .

2 Set the property for all points in a list to a single value .

130 | Chapter 1 API Developer's Guide

3 Set the property for all points in a list to a value in a corresponding list
of values.

The list of points can be a sub-collection of points, or you can pass the
CivilDocument.CogoPoints collection to process all points in the document.

Here is an example of setting Elevation, RawDescription and
DescriptionFormat properties for all points in the drawing using the bulk
editing methods.

// Change a couple of properties using bulk editing methods
cogoPoints.SetElevationByOffset(cogoPoints, 3.00);
cogoPoints.SetRawDescription(cogoPoints, "NEW_DESC");
// Sets Full Description = Raw Description:
cogoPoints.SetDescriptionFormat(cogoPoints, "$*");

Point User-Defined Properties

User-defined properties (UDPs) allow users to attach additional data to points.
(UDPs can also be assigned to Parcels). UDPs are organized into groups called
UDP Classifications, which in turn are assigned to PointGroups. UDPs can
also be “unclassified”. When a UDPClassification is associated with a
PointGroup object (using its UseCustomClassification() method), all the
UDP definitions in the UDPClassification are assigned to each point in the
PointGroup. UDP values are unique for each point, and can be changed
individually. Each point gets a UDP’s default value (if UseDefault is true for
the UDP) upon assignment.

Each instance of a UDP is a class derived from the UDP base class, with
additional properties depending on the data type. UDPDouble and UDPInteger
types have upper and lower bound properties, to express a range.
UDPEnumeration types have a GetEnumerationValues() method to get an array
of all defined values.

To create a UDP, you must first create and populate an
AttributeTypeInfo<type> object (there is one for each UDP type), and pass
it to the CreateUDP() method for an existing UDPClassification. UDPs have
a GUID as well as a name, and the name+GUID combination is guaranteed
to be a unique identifier. The CreateUDP() method takes an optional GUID
parameter, so that you can create UDPs with a specific name+GUID
combination. This allows you to create identical UDPs in multiple drawings.

For more information about user-defined properties and classifications, see
User-Defined Property Classifications in the AutoCAD Civil 3D User Guide.

Points | 131

This sample creates a new user-defined property classification for points called
“Example”, and then adds a new user-defined property with upper and lower
bounds and a default value:

[CommandMethod("C3DSAMPLES", "UDPExample",
CommandFlags.Modal)]
public void UDPExample()
{

using (Transaction tr = startTransaction())
{

// _civildoc is the active CivilDocument instance.

UDPClassification udpClassification =
_civildoc.PointUDPClassifications.Add("Example");

AttributeTypeInfoInt attributeTypeInfoInt = new
AttributeTypeInfoInt("Int UDP");

attributeTypeInfoInt.DefaultValue = 15;
attributeTypeInfoInt.UpperBoundValue = 20;
attributeTypeInfoInt.LowerBoundValue = 10;
UDP udp =

udpClassification.CreateUDP(attributeTypeInfoInt);

// assign a point group
ObjectId pointGroupId =

_civildoc.PointGroups.AllPointGroupsId;
PointGroup pointGroup =

pointGroupId.GetObject(OpenMode.ForWrite) as PointGroup;
pointGroup.UseCustomClassification("Example");

tr.Commit();
}

}

This example illustrates accessing the collection of all Point UDPClassifications
in a document, and then reading each UDP in each UDPClassification.

[CommandMethod("C3DSAMPLES", "ListUDPs",
CommandFlags.Modal)]
public void ListUDPs()
{

using (Transaction tr = startTransaction())
{

// _civildoc is the active CivilDocument instance.

132 | Chapter 1 API Developer's Guide

foreach (UDPClassification udpClassification in
_civildoc.PointUDPClassifications)

{
_editor.WriteMessage("\n\nUDP Classification:

{0}\n", udpClassification.Name);
foreach (UDP udp in udpClassification.UDPs)
{

_editor.WriteMessage(" * UDP name: {0}
guid: {1}, description: {2}, default value: {3}, use
default? {4}\n",

udp.Name, udp.Guid, udp.Description,
udp.DefaultValue, udp.UseDefaultValue);

_editor.WriteMessage("\tUDP type: {0}\n",
udp.GetType().ToString());

var udpType = udp.GetType().Name;
switch (udpType)
{

// Booleans and String types do not
define extra properties

case "UDPBoolean":
case "UDPString":

break;

case "UDPInteger":
UDPInteger udpInteger =

(UDPInteger)udp;
_editor.WriteMessage("\tUpper value:

{0}, inclusive? {1}, Lower bound value: {2}, inclusive?
{3}\n",

udpInteger.UpperBoundValue,
udpInteger.UpperBoundInclusive, udpInteger.LowerBoundValue,
udpInteger.LowerBoundInclusive);

break;

case "UDPDouble":
UDPDouble udpDouble =

(UDPDouble)udp;
_editor.WriteMessage("\tUpper value:

{0}, inclusive? {1}, Lower bound value: {2}, inclusive?
{3}\n",

udpDouble.UpperBoundValue,

Points | 133

udpDouble.UpperBoundInclusive, udpDouble.LowerBoundValue,
udpDouble.LowerBoundInclusive);

break;

case "UDPEnumeration":
UDPEnumeration udpEnumeration =

(UDPEnumeration)udp;
_editor.WriteMessage("\tEnumeration

values: {0}\n", udpEnumeration.GetEnumValues());
break;

}
}

}

tr.Commit();
}

}

Point Groups

A point group is a collection that defines a subset of the points in a document.
Points may be grouped for a number of reasons, such as points that share
common characteristics or are used to perform a common task (for example,
define a surface). A collection of all point groups in a drawing is held in a
document‘s CivilDocument.PointGroups property. Add a new point group by
using the CivilDocument.PointGroups.Add() method and specifying a unique
identifying string name. The ObjectId for a new, empty point group is
returned.

// _civildoc is the active CivilDocument instance.
ObjectId pointGroupId = _civildoc.PointGroups.Add("Example
Point Group");
PointGroup pointGroup =
pointGroupId.GetObject(OpenMode.ForRead) as PointGroup;

Using Point Groups

Once a point group has been created, you can perform actions upon all the
points in that group in a single operation. You can override point elevations,
descriptions, styles, and label styles.

134 | Chapter 1 API Developer's Guide

// Check to see if a particular point exists in the
PointGroup
ObjectId pointId = promptForEntity("Select a point",
typeof(CogoPoint));
CogoPoint cogoPoint = pointId.GetObject(OpenMode.ForRead)
as CogoPoint;

if (pointGroup.ContainsPoint(cogoPoint.PointNumber){
_editor.WriteMessage("Point {0} is not part of

PointGroup {1}",
cogoPoint.PointName, pointGroup.Name);

}

// Set the elevation of all points in the PointGroup to
100
pointGroup.ElevationOverride.FixedElevation=100;
pointGroup.ElevationOverride.ActiveOverrideType =
PointGroupOverrideType.FixedValue;
pointGroup.IsElevationOverriden = true;

Point groups can also be used to define or modify a TIN surface. The
TinSurface.PointGroupsDefinition property is a collection of point groups.
When a point group is added to the collection, every point in the point group
is added to the TIN surface.

Adding Points to Point Groups with Queries

Points can be selected and added to a PointGroup using either a standard
(StandardPointGroupQuery object) or custom (CustomPointGroupQuery object)
query, which both inherit from the PointGroupQuery base class.

StandardPointGroupQuery encapsulates the “basic method” of creating a query
using the GUI, which is described in the “Creating a Point Group Using the
Basic Method” section of the Civil 3D User Guide. This method uses the tabs
on the Create Point Group dialog to match points by raw descriptions,
include or exclude specific points or ranges of points, and to include points
from other point groups. To accomplish the same effect using the API, you
first create an instance of a StandardPointGroupQuery object, and then set
the various Include* and Exclude* properties to create the query.

StandardPointGroupQuery has these properties for building a query:
StandardPointGroupQuery Properties

Points | 135

Possible ValuesProperties

Any combination of, separated by commas:IncludeElevations

■ A single numberExcludeElevations

■ An elevation range specified by a lower
and upper bound separated by a hy-
phen (for example, 1-100)

■ A > or < followed by a number. This
specifies all elevations greater-than or
less-than the number.

Example: “<-100,1-100,110.01,>200” –
specifies all points whose elevations meet
one of the following criteria: less than -100,
equal to or between 1 and 100, equal to
110.01, or greater than 200.

One or more descriptions, separated by
commas. The * is a wildcard matching any
string.

IncludeFullDescriptions

ExcludeFullDescriptions

IncludeRawDescriptions
Example: “IP*” matches all descriptions
that start with IP

ExcludeRawDescriptions

One or more point names separated by
commas. The * is a wildcard matching any
string.

IncludeNames

ExcludeNames

Any combination of, separated by commas:IncludeNumbers

■ An individual point numberExcludeNumbers

■ A Point number range specified by a
lower and upper bound separated by
a hyphen (for example, 100-105).

All of the Include* properties are ORed together, and all the Exclude*
properties are ORed together to create the final query string. The example
below illustrates how the query string is built from properties:

// _civildoc is the active CivilDocument instance.
ObjectId pointGroupId = _civildoc.PointGroups.Add("Example
Point Group1");

136 | Chapter 1 API Developer's Guide

PointGroup pointGroup =
pointGroupId.GetObject(OpenMode.ForWrite) as PointGroup;

StandardPointGroupQuery standardQuery = new
StandardPointGroupQuery();
standardQuery.IncludeElevations = "100-200";
standardQuery.IncludeFullDescriptions = "FLO*";
standardQuery.IncludeNumbers = ">2200";
standardQuery.ExcludeElevations = "150-155";
standardQuery.ExcludeNames = "BRKL";
standardQuery.UseCaseSensitiveMatch = true;

pointGroup.SetQuery(standardQuery);
pointGroup.Update();

_editor.WriteMessage("Number of points selected: {0}\n
Query string: {1}\n\n",

pointGroup.PointsCount, standardQuery.QueryString);

// output:
// Query string: (FullDescription='FLO*' OR
PointElevation=100-200 OR
// PointNumber>2200) AND '' NOT (Name='BRKL' OR
PointElevation=150-155)

The CustomPointGroupQuery lets you specify a query string directly, and
requires a more advanced knowledge of query operators. This method of query
creation allows you to create nested queries that cannot be specified using the
StandardPointGroupQuery object.

Custom queries are made up of expressions, and expressions have three parts:

1 A property

2 A comparison operator: > < >= <= =

3 A value

Multiple expressions are separated by logical set operators: AND, OR and NOT.
Precedence of expressions and expression sets can be specified using
parentheses.

The precedence of evaluation in queries is:

1 Expressions in parentheses, with the innermost expressions evaluated
first.

Points | 137

2 NOT

3 Comparisons

4 AND

5 OR

The example below illustrates creating a point group and adding a custom
query to it:

ObjectId pointGroupId2 = _civildoc.PointGroups.Add("Example
Point Group2");
PointGroup pointGroup2 =
pointGroupId2.GetObject(OpenMode.ForWrite) as PointGroup;
CustomPointGroupQuery customQuery = new
CustomPointGroupQuery();
string queryString = "(RawDescription='GR*') AND
(PointElevation>=100 AND PointElevation<=300)";
customQuery.QueryString = queryString;
pointGroup2.SetQuery(customQuery);
pointGroup2.Update();
_editor.WriteMessage("PointGroup2: \n # points selected:
{0}\n",

pointGroup2.PointsCount);

Pending changes for a PointGroup can be accessed from the
PointGroup.GetPendingChanges() method, which returns a
PointGroupChangeInfo object. The pending change information for a
PointGroup is updated when:
■ A new point is added to the drawing that matches the query for the

PointGroup.

■ An existing point in the PointGroup is removed.

Note that changes are not registered when the query itself is changed.

The example below adds a point that matches the custom query illustrated
above, and removes a point from the PointGroup, registering both an added
and removed point change in the PointGroupChangeInfo for the PointGroup.

Point3d point3d = new Point3d(100,200,225); // elevation
will be matched
string rawDesc = "GRND"; // raw description will be matched
_civildoc.CogoPoints.Add(point3d, rawDesc);

// Point # 779 is in the point group:
_civildoc.CogoPoints.Remove(779);

138 | Chapter 1 API Developer's Guide

PointGroupChangeInfo pointGroupChangeInfo =
pointGroup2.GetPendingChanges();
_editor.WriteMessage("Point group {0} pending changes: \n
add: {1} \n remove: {2}\n",

pointGroup2.Name,
pointGroupChangeInfo.PointsToAdd.Length,
pointGroupChangeInfo.PointsToRemove.Length);

// changes are applied with update:
pointGroup2.Update();

For more information about point group queries, see Understanding Point
Group Queries in the .

Point Style

The PointStyle class defines how a point is drawn. Labels attached to
CogoPoints are styled with objects of type LabelStyle. This section covers
creating and applying point and label styles to CogoPoints. It also covers using
point description keys to match points by name and apply styles to them.

Creating Point Styles

A point style is a group of settings that define how a point is drawn. These
settings include marker style, marker color and line type, and label color and
line type. Point objects can use any of the point styles that are currently stored
in the document. Styles are assigned to a point through the point’s
CogotPoint.StyleId property. Existing point styles are stored in the
document’s CivilDocument.Styles.PointStyles collection.

You can also create custom styles and add them to the document’s collection
of point styles. First, add a new style to the document’s list of styles using the
CivilDocument.Styles.PointStyles.Add() method. This method returns the
ObjectId of a new style object that is set with all the properties of the default
style. You can then make the changes to the style object you require.

The display settings for PointStyle objects are accessed with the style’s
GetDisplay*(), GetLabelDisplay*() and GetMarkerDisplay*() methods for
the view mode (Model, Plan, Profile or Section) for the style.

Points | 139

The point marker type is set by the PointStyle’s MarkerType property, and
can be a symbol, custom marker, or an AutoCAD point style. Custom markers
are set using the CustomMarkerStyle and CustomMarkersuperimposeStyle
properties. Symbol markers are set using the MarkerSymbolName property,
which is a string that names an AutoCAD BLOCK symbol in the drawing.

Points assigned to PointGroups may have their styles overridden by the
PointGroup. You can check the overridden style ID using the
LabelStyleIdOverride and StyleIdOverride properties.

This sample creates a new points style, adjusts the style settings, and the assigns
the style to point “cogoPoint1”:

// Create a point style that uses a custom marker,
// a Plus sign inside a square.
ObjectId pointStyleId =
_civildoc.Styles.PointStyles.Add("Example Point Style");
PointStyle pointStyle =
pointStyleId.GetObject(OpenMode.ForWrite) as PointStyle;
pointStyle.MarkerType =
PointMarkerDisplayType.UseCustomMarker;
pointStyle.CustomMarkerStyle =
CustomMarkerType.CustomMarkerPlus;
pointStyle.CustomMarkerSuperimposeStyle =
CustomMarkerSuperimposeType.Square;

// Assign the style to a point object.
cogoPoint1.StyleId = pointStyleId;

Creating Point Label Styles

Any text labels or graphical markers displayed at the point location are set by
assigning a label style ObjectId to the CogoPoint.LabelStyleId property. The
collection of these label styles is accessed through the
CivilDocument.Styles.LabelStyles.PointLabelStyles property.

Point label styles can use the following property fields in the contents of any
text components:

Valid property fields for LabelStyle TextComponent Contents

<[Name(CP)]>

140 | Chapter 1 API Developer's Guide

Valid property fields for LabelStyle TextComponent Contents

<[Point Number]>

<[Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Raw Description(CP)]>

<[Full Description(CP)]>

<[Point Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Latitude(Udeg|FDMSdSp|P6|RN|DPSn|CU|AP|OF)]>

<[Longitude(Udeg|FDMSdSp|P6|RN|DPSn|CU|AP|OF)]>

<[Grid Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Grid Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Scale Factor(P3|RN|AP|OF)]>

<[Convergence(Udeg|FDMSdSp|P6|RN|AP|OF)]>

<[Survey Point]>

For more general information about creating and using label styles, see the
Label Styles (page 27) section.

Using Point Description Keys

Point description keys are a method for attaching style, label style, and
orientation to point locations in a drawing - possibly imported from a text
file which lacks such information. Keys are objects of type
PointDescriptionKey. The PointDescriptionKey.Code property is a pattern

Points | 141

matching code. If any new points are created with a description that matches
the code of an existing key, the point is assigned all the settings of that key.

The wildcards “?” and “*” are allowed in the code. Keys can contain either
constant scale or rotation values for points or can assign orientation values
depending on parameters passed through the description string. Point
description keys are held in sets, objects of type PointDescriptionKeySet.
The collection of all sets in a document are accessed with the
PointDescriptionKeySetCollection.GetPointDescriptionKeySets() static
method.

The collection of all key sets also exposes a SearchOrder property, which lets
you specify the order that key sets are searched for matches when description
keys are applied. Key sets at the beginning of the SearchOrder collection are
searched first and therefore have higher priority. In the example below, this
property is accessed, and the last item is moved to the first position.

// Create a Key Set in the collection of all Key Sets:
ObjectId pointDescriptionKeySetId =

PointDescriptionKeySetCollection.GetPointDescriptionKeySets(_acaddoc.Database).Add("Example
Key Set");
PointDescriptionKeySet pointDescriptionKeySet =
pointDescriptionKeySetId.GetObject(OpenMode.ForWrite) as
PointDescriptionKeySet;

// Create a new key in the set we just made. Match with
any description starting with "GRND".
ObjectId pointDescriptionKeyId =
pointDescriptionKeySet.Add("GRND*");
PointDescriptionKey pointDescriptionKey =
pointDescriptionKeyId.GetObject(OpenMode.ForWrite) as

PointDescriptionKey;

// Assign chosen styles and label styles to the key
pointDescriptionKey.StyleId = pointStyleId;
pointDescriptionKey.ApplyStyleId = true;
pointDescriptionKey.LabelStyleId = labelStyleId;
pointDescriptionKey.ApplyLabelStyleId = true;

// Turn off the scale override, and instead scale
// to whatever is passed as the first parameter
pointDescriptionKey.ApplyDrawingScale = false;
pointDescriptionKey.ScaleParameter = 1;
pointDescriptionKey.ApplyScaleParameter = true;

142 | Chapter 1 API Developer's Guide

pointDescriptionKey.ApplyScaleXY = true;

// Turn off the rotation override and rotate
// all points using the key 45 degrees clockwise
pointDescriptionKey.FixedMarkerRotation = 0.785398163; //
radians
pointDescriptionKey.RotationDirection =
RotationDirType.Clockwise;
pointDescriptionKey.ApplyFixedMarkerRotation = true;

// Before applying the description keys, we can set the
order the key sets are searched
// when point description keys are applied.
// In this example, we take the last item and make it the
first.
ObjectIdCollection pdKeySetIds =

PointDescriptionKeySetCollection.GetPointDescriptionKeySets(_acaddoc.Database).SearchOrder;
ObjectId keySetId = pdKeySetIds[pdKeySetIds.Count-1];
pdKeySetIds.Remove(keySetId);
pdKeySetIds.Insert(0, keySetId);
PointDescriptionKeySetCollection.GetPointDescriptionKeySets(_acaddoc.Database).SearchOrder
=
pdKeySetIds;

// Apply to point group
pointGroup.ApplyDescriptionKeys();

Creating Custom Subassemblies Using .NET

Overview

This chapter describes how to create a custom subassembly using Visual Basic
.NET. This is the currently supported and preferred method of creating custom
subassemblies.

This chapter covers design considerations, the structure of subassembly
programs, and an example subassembly in VB that you can use as a template
for your own custom subassemblies.

Creating Custom Subassemblies Using .NET | 143

Subassembly Changes

The “target mapping’ feature in AutoCAD Civil 3D 2013 has changed, which
affects how custom subassemblies are written. This feature now allows a
subassembly to target object types in addition to alignments and profiles
associated with the corridor that it requires to define its geometry. For more
information about this feature, see Setting and Editing Targets in the .

There are four changes to the way you write a custom subassembly:

1 New parameter types in ParamLogicalNameType

2 New target collections in corridorState

3 Targets are now objects

4 The CalcAlignmentOffsetToThisAlignment utility method is changed

New parameter types in ParamLogicalNameType

A subassembly can now target an offset target and elevation target (instead
of an alignment and a profile), which are represented by new parameter types
in ParamLogicalNameType. If you want to support the new target types in your
subassemblies, you need to replace:
■ ParamLogicalNameType.Alignment with

■ ParamLogicalNameType.OffsetTarget — offset targets that are
alignments, feature lines, survey figures and AutoCAD polylines OR

■ ParamLogicalNameType.OffsetTargetPipe — offset targets that are pipe
networks

■ ParamLogicalNameType.Profile with
■ ParamLogicalNameType.ElevationTarget — elevation targets that are

profiles, feature lines, survey figures and AutoCAD 3D polylines OR

■ ParamLogicalNameType.ElevationTargetPipe — elevation targets that
are pipe networks

New target collections in corridorState

To get the offset and elevation target collections from the corridorState
object, use ParamsOffsetTarget and ParamsElevationTarget instead of
ParamsAlignment and ParamsProfile. All the offset targets (including network
pipe offset targets) are in ParamsOffsetTarget, and all elevation targets

144 | Chapter 1 API Developer's Guide

(including network pipe elevation targets) are in ParamsElevationTarget.
Here’s an example from the BasicLaneTransition.vb sample in the Sample
VB.NET Subassembly (page 160) section below:

Dim oParamsLong As ParamLongCollection
oParamsLong = corridorState.ParamsLong

Dim oParamsOffsetTarget As
ParamOffsetTargetCollection

oParamsOffsetTarget =
corridorState.ParamsOffsetTarget

Targets are now objects

Targets are now objects, instead of alignment or profile IDs. Now
WidthOffsetTarget is defined for offset targets, and SlopeElevationTarget
is defined for elevation targets, so you can declare targets as objects instead
of IDs. Here’s an example from the BasicLaneTransition.vb sample in the Sample
VB.NET Subassembly (page 160) section below:

Dim offsetTarget As WidthOffsetTarget 'width or
offset target

offsetTarget = Nothing
Dim elevationTarget As SlopeElevationTarget 'slope

or elevation target
elevationTarget = Nothing

Changes to CalcAlignmentOffsetToThisAlignment()

The CalcAlignmentOffsetToThisAlignment() utility method now calculate
the offset from this alignment to the offset target. This method no longer
returns the station value; it now returns the XY coordinate of the offset target
at the point perpendicular to the alignment’s station.

You can also now use the SlopeElevationTarget.GetElevation method to
get an elevation on an elevation target directly, instead of using
CalcAlignmentOffsetToThisAlignment(). Here’s an example from the
BasicLaneTransition.vb sample in the Sample VB.NET Subassembly (page 160)
section below:

'get elevation on elevationTarget
Try

Creating Custom Subassemblies Using .NET | 145

dOffsetElev =
elevationTarget.GetElevation(oCurrentAlignmentId, _

corridorState.CurrentStation,
Utilities.GetSide(vSide))

Catch
Utilities.RecordWarning(corridorState,

_
CorridorError.LogicalNameNotFound,

_
"TargetHA", "BasicLaneTransition")

dOffsetElev =
corridorState.CurrentElevation + vWidth * vSlope

End Try

Designing Custom Subassemblies

This section describes the requirements for designing a custom subassembly.

Naming Custom Subassemblies

■ Do not use spaces or other special characters.

■ Use a combination of upper and lower case letters, with uppercase letters
reserved for the first character of each word.

■ Group subassemblies by making the type of component the first word. For
example, in the AutoCAD Civil 3D Corridor Modeling catalogs all lane
subassembly names begin with “Lane”, all shoulders with “Shoulder”, and
so on.

Attachment and Insertion Methodology

Most subassembly components have a single point of attachment and extend
in one direction or the other from that point. However, there are some
exceptions to this general rule.

146 | Chapter 1 API Developer's Guide

The list below describes the attachment and insertion methodology for three
categories of subassemblies: medians, components joining two roadways, and
rehabilitation and overlay.
■ Medians. Medians tend to be inserted in both the left and right directions

simultaneously about a centerline (which is not necessarily the corridor
baseline alignment). Furthermore, the attachment point may not be a
point on the median surface links. For example, the attachment point for
a depressed median subassembly may be above the median ditch at the
elevation of the inside edges-of-traveled-way.

■ Components Joining Two Roadways. When modeling separated
roadways in a single corridor model, it is often necessary to insert
intersection fill slopes, or to connect from one edge-of-roadway to another.
Typically, you assemble the components for as much of the first roadway
as possible, switch baselines and assemble the components for the second
roadway, then use special subassemblies to connect between the two
roadways. In this case, two attachment points are needed. Do this by
creating a subassembly with a normal attachment point on one side, and
which attaches to a previously defined marked point on the other.

■ Rehabilitation and Overlay. Typically, subassemblies that are used
to strip pavement, level, and overlay existing roads are placed based on
calculations involving the shape of the existing roadway section, rather
than using a design centerline alignment and profile. For example, a
pavement overlay subassembly may require a minimum vertical distance
from the existing pavement for a given design slope. A lane-widening
subassembly may need to attach to the existing edge-of-traveled-way and
match the existing lane slope.

User-defined vs. Hard-coded Parameters

Determine which of the geometric dimensions, behavior, and methodology
will be hard-coded into the subassembly, and which will be controlled by
user-defined input parameters.

One approach is to specify that a majority of items can be controlled by user
input. This can add time and complexity to using the subassembly. Another
approach is to make it so that it cannot be adapted to different situations.
Generally, widths, depths, and slopes should be variable, not fixed. A
compromise is to include a larger number of inputs, but provide default values
usable in most design situations.

A good example of where to use hard-coded dimensions is with structural
components, such as barriers and curb-and-gutter shapes. If there are five

Creating Custom Subassemblies Using .NET | 147

commonly-used variations of the same basic shape with different dimensions,
it may be better to provide five separate subassemblies with hard-coded
dimensions rather than making the user define the dimensions on a single
subassembly. For example, users may be comfortable selecting from separate
subassemblies for curb types A-E, which have predefined, hard-coded
dimensions. You can always provide a generic subassembly with variable
dimensions for scenarios where the common ones do not apply.

Input Parameter Types

The table below describes the various types of input parameters:

DescriptionInput Parameter

The cross-sectional horizontal distance between two points on
the roadway assembly. Widths are generally given as positive

Widths

numeric values, and extend in the direction of insertion (left or
right) of the subassembly. Many components that require a
width are likely candidates for using an alignment as an optional
target parameter. The width is then calculated at each station
to tie to the alignment, if one is given.

The cross-sectional horizontal distance from the corridor baseline
to a point on the roadway assembly. The difference between

Offsets

an Offset and a Width is that Widths are measured from some
point on the assembly, while Offsets are measured from the
corridor baseline. Positive and negative values indicate positions
right or left of the baseline. Components requiring an offset are
also likely to use an alignment to allow a calculated offset.

Lanes, shoulders, and other components usually have a slope
defined as ratio of rise-to-run. There are two common conven-

% Slopes

tions for how these are expressed. They can either be a unitless
ratio (-0.05), or a percent value (-5). Both of these examples
define a 5% slope downwards. The same convention should be
used for all subassemblies in a catalog. In some cases, you may
want the component to have a variable slope, tying to a profile.
The profile name can be given as a target parameter.

148 | Chapter 1 API Developer's Guide

DescriptionInput Parameter

Cut slopes, fill slopes, ditch side slopes, median slopes, and
many other roadway components are commonly expressed as

Ratio Slopes

a run-to-rise ratio, such as 4 : 1. These may be signed or un-
signed values, depending on circumstances. For example, a fill
slope is always downward, so it may not be necessary to force
the user to enter a value like “-4”.

In most cases, point, link, and shape codes should be hard-
coded to ensure that consistent codes are assigned across the

Point, Link, and Shape
Codes

entire assembly. The primary exception is with generic link
subassemblies that allow users to add links to the assembly as
needed. These might be used for paved or unpaved finish grade,
structural components, pavement subsurfaces, and many other
unanticipated components. In these scenarios, the end-user
assigns point, link, and shape codes that coordinate with the
overall assembly.

Superelevation Behavior and Subassemblies

Make sure you consider differences in component behavior, such as when the
roadway is in a normal crown condition or is in superelevation. Gutter and
median subassemblies may also be designed to exhibit different behaviors in
normal and superelevated sections.

The superelevation properties of the corridor alignment define the lane and
shoulder slopes at all stations on the roadway. However, the way these slopes
are applied depends on a combination of how the subassemblies are
manipulated in layout mode and the internal logic of the subassemblies.
Different agencies have varying methodologies. The code behind the
subassemblies makes it possible to adapt to just about any situation.

Most importantly you need to determine where the superelevation pivot point
is located, and how that point relates to the design profile grade line (PGL).
Pivot point/PGL combinations that are commonly encountered include:
■ Pivot point and PGL are both at the crown of road.

■ Pivot point and PGL are at the inside edge-of-traveled-way on a divided
road.

■ Pivot point and PGL are at one edge-of-traveled-way on an undivided road.

Creating Custom Subassemblies Using .NET | 149

■ Pivot point is at the edge-of-traveled-way on the inside of the curve, while
the PGL is at the centerline of the road.

■ On a divided road with crowned roadways, the PGL is at the crown points,
while the pivot point is at the inside edge-of-traveled-ways.

■ On a divided road with uncrowned roadways, the PGL and pivot point is
above the median at the centerline.

Whatever the situation, the subassemblies must be designed so that they can
be placed with the correct behavior.

Sometimes the roadway components have special behavior in superelevated
sections. Some examples of special superelevation behavior:
■ Broken Back Subbase. Some agencies put a break point in the subbase

layer on the high side of superelevation. The subbase parallels the finish
grade up to a certain point, then extends at a downward slope until it
intersects the shoulder or clear zone link.

■ Shoulder Breakover. Usually a maximum slope difference, or breakover,
must be maintained between the travel lane and the shoulder, or between
the paved and unpaved shoulder links.

■ Curbs-and-Gutters. Some agencies require that gutters on the high side
of a superelevated road tip downward toward the low side, while others
leave the gutters at their normal slope.

NOTE

When writing your custom subassembly, avoid writing code that makes
AutoCAD calls and interrupts AutoCAD Civil 3D subassembly operations
during runtime. For example, avoid building selection sets.

Axis of Rotation Pivot Point Calculation Notes

This section explains the methods that must be called when creating
subassemblies that use superelevation and support axis of rotation calculations.
■ If one subassembly in an assembly is specified as a potential pivot, all

subassemblies between it and the baseline that use superelevation must
report their superelevation cross slope data to the corridor using the
Autodesk.CIvil.Runtime.CorridorState method:

Public Sub SetAxisOfRotationInformation (ByVal
isPotentialPivot As Boolean, ByVal superElevationSlope
As Double, ByVal superElevationSlopeType As

150 | Chapter 1 API Developer's Guide

Autodesk.Civil.Land.SuperelevationCrossSegmentType, ByVal
isReversedSlope As Boolean)

superElevationSlope is the cross slope used in the subassembly. For axis of
rotation to work correctly, it must be the value obtained from lane type
superElevationSlopeType in the superelevation table. If the value obtained
from the table is adjusted in any way, axis of rotation will not work
properly.

isReversedSlope set to True indicates that the cross slope applied is the
negated value obtained from the superelevation table.

■ The LaneSuperelevationAOR subassembly, which is provided in the
AutoCAD Civil 3D content, supports axis of rotation pivot points. If
LaneSuperelevationAOR (or a custom subassembly that supports pivot
points) is not contained in the assembly, the pivot type specified in the
Calculate Superelevation wizard is ignored, and the Baseline Pivot Type is
applied. A custom subassembly can support axis of rotation pivot points
by passing in True for the isPotentialPivot argument when calling
SetAxisOfRotationInformation().

■ To determine the Centers pivots in a divided crowned roadway, the crown
points specified in the subassemblies supporting pivots are used. To specify
a crown point to be used in axis of rotation calculations when building
the corridor, use the Autodesk.Civil.Runtime.CorridorState method:

Public Sub SetAxisOfRotationCrownPoint (ByVal
nCrownPointIndex As UInteger)

To display the crown point in assembly layout mode, the subassembly
property "SE AOR Crown Point For Layout" must be set with the index of
the crown point. To set this property, call the following method in Utilities
class:

Public Shared Sub SetSEAORCrownPointForLayout (ByVal
corridorState As CorridorState, ByVal nCrownPoint As
Integer)

■ By default, the axis of rotation calculation assumes that the recorded cross
slope is applied to the full width of the subassembly in its calculation. The
starting offset will be the smallest offset in a subassembly drawn to the
right, and the largest offset for a subassembly drawn to the left. If the
subassembly is applying the cross slope to just a portion of the subassembly,
record the starting and ending offsets of this range with the corridor using
the Autodesk.Civil.Runtime.CorridorState method:

Creating Custom Subassemblies Using .NET | 151

Public Sub SetAxisOfRotationSERange (ByVal
dApplySE_StartOffset As Double, ByVal dApplySE_EndOffset
As Double)

■ Only one set of axis of rotation information can be recorded per assembly.
This means that the calculated delta Y value is the same no matter which
point in the subassembly is used as the attachment point. Therefore, if a
subassembly applies multiple cross slopes, or a single cross slope affects
only certain point in the subassembly, only the pivot location will be
correctly calculated and recorded to the corridor.

■ If a subassembly uses superelevation, but does not record the superelevation
cross slope data with the corridor, it should notify the corridor so that the
corridor can issue a warning that axis of rotation results may be unexpected.
To notify the corridor, call the following method in Utilities class:

Public Shared Sub SetSEAORUnsupportedTag (ByVal
corridorState As CorridorState)

If a subassembly conditionally supports axis of rotation, it may need to
clear the unsupported flag. To clear the flag, call the following method in
Utilities class:

Public Shared Sub ClearSEAORUnsupportedTag (ByVal
corridorState As CorridorState)

Creating Subassembly Help Files

Each subassembly included in the AutoCAD Civil 3D Corridor Modeling
catalog has a Help file that provides detailed construction and behavior
information. You can display the Help file for the AutoCAD Civil 3D Corridor
Modeling subassemblies using any of the following methods:
■ From a Tool Palette. Right-click a subassembly in a tool palette, then

click Help.

■ From a Tool Catalog. Right-click a subassembly in a tool catalog, then
click Help.

■ From the Subassembly Properties dialog box Parameters tab.
Right-click a subassembly in the Prospector tree, then click Properties ➤

Parameters tab ➤ Subassembly Help.

When creating custom subassemblies, you should also create a custom Help
file to accompany the subassembly. You can use a Microsoft Compiled HTML

152 | Chapter 1 API Developer's Guide

Help file (.chm) to create the subassembly Help file. The Help file content and
style should be similar to that in the AutoCAD Civil 3D Subassembly Reference
Help. The table below describes the sections that should be included, as a
minimum, in subassembly Help files. This information is required so that
users understand the subassembly behavior and intended use.

DescriptionSection

The name of the selected subassembly should appear prominently as
the top heading of the subassembly Help file.

Title

A brief description of the subassembly that includes the type of compon-
ent the subassembly creates (for example, a lane, median, or shoulder),
special features, and situations it is designed to cover.

Descriptions

The subassembly diagram should be a schematic showing the geometry
of the component that is created by the subassembly. Diagrams should

Subassembly
Diagram

label as many of the input parameters as feasible, especially those per-
taining to dimensions and slopes. You may need to include multiple
subassembly diagrams for different behavior and/or conditions in order
to include all of the possible input items. The subassembly diagram
should also show the subassembly reference point, which is the point
on the subassembly where it is attached when building an assembly
layout. It is useful to adopt diagramming conventions that help the user
understand the operations. For example, the subassemblies included in
the AutoCAD Civil 3D Corridor Modeling catalog use bold blue lines to
represent links that are added to the assembly by the subassembly. This
helps to show adjacent roadway components that the subassembly might
attach to in a lighter line with a background color. Ideally, dimension
lines and labels should also be a different color.

Describes where the attachment point is located relative to the sub-
assembly links.

Attachment

Describes each of the user-definable input parameters that can be spe-
cified when using the subassembly. These should precisely match the

Input Paramet-
ers

parameter names and order seen by the user when using the assembly
layout tool, and should describe the effect of each parameter. These are
best presented in a table that includes a description of each parameter,
the type of input expected, and default values for metric or imperial unit
projects. For input parameters for slope values, note that there are two
common ways of specifying slopes: as a percent value like -2%, or as a

Creating Custom Subassemblies Using .NET | 153

DescriptionSection

run-to-rise ratio like 4 : 1. Any slope parameter should clearly specify
which type is expected. In the subassemblies included in the AutoCAD
Civil 3D Corridor Modeling catalog, the convention is to precede the
word “Slope” with the “%” character in the parameter name if a percent
slope is expected. Otherwise a ratio value is required. Note the practice
of using positive numeric values for both cut and fill slopes. If a slope
parameter is known to be used only in a fill condition, it should not be
necessary for the user to have to specify a negative slope value. However,
in a more generic situation, for example with the LinkWidthAndSlope
subassembly, a signed value may be necessary.

Describes the parameters in the subassembly that can be mapped to
one or more target objects.

Target Para-
meters

Input parameters are defined when building an assembly in layout mode.
Target parameters are substitutions that can be made for input paramet-
ers when applying the assembly to a corridor model. Typically, sub-
assembly parameters that can use a target object to define a width or
an offset can use the following types of objects to define that width or
offset: alignments, AutoCAD polylines, feature lines, or survey figures.
Similarly, subassembly parameters that can use a target object to define
an elevation can use the following types of objects to define that eleva-
tion: profiles, AutoCAD 3D polylines, feature lines, or survey figures.
Subassemblies that can use a target object to define a surface can only
use a surface object to define that surface. A few subassemblies allow
you to use pipe network objects as targets, such as the TrenchPipe sub-
assemblies.
A typical scenario is a travel lane where the width is a numeric input
parameter, which can use an alignment as a target parameter to replace
the numeric width. The given numeric width is used when displaying
the lane in layout mode. If an alignment is given, the width is calculated
at each station during corridor modeling to tie to the offset of the
alignment. For more information, see Setting and Editing Targets in the
.

Describes the behavior of the subassembly in detail. If necessary, this
section should include diagrams showing different behaviors in different

Behavior

conditions. This section should provide both the subassembly program-
mer and the end user with all of the information needed to understand
exactly what the subassembly does in all circumstances. Subheadings
are recommended if the Behavior section covers several different topics.

154 | Chapter 1 API Developer's Guide

DescriptionSection

During the process of creating an assembly from subassemblies, also
known as the assembly layout mode, specific information such as align-

Layout Mode
Operation

ment offsets, superelevation slopes, profile elevations, and surface data,
are not known. The Layout Mode Operation section of the subassembly
Help file describes how the subassembly is displayed in the assembly
layout mode. Layout mode refers to an assembly that has not yet been
applied to a corridor. Some subassemblies behave differently in different
situations. For example, a Daylight type of subassembly may create dif-
ferent geometric shapes depending on whether it is in a cut or fill situ-
ation. Shoulders may behave differently for normal crown and superel-
evated roadways. In layout mode, the subassembly designer must specify
some arbitrary choices as to how the subassembly is displayed. It should
appear as much like the final result in the corridor model as possible.
Lanes and shoulders, for example, should be shown at typical normal
crown slopes. Where there is alternate geometry, such as for the cut and
fill daylight cases, both cases should be shown. Also, links that extend
to a surface should be shown with arrowheads indicating the direction
of extension.

A diagram illustrating layout mode behavior and visual representation
is useful if layout mode behavior and/or visual representation of the

Layout Mode
Diagram

subassembly differs significantly between layout mode when the assembly
and its associated subassemblies are applied to a corridor.

Describes the items that are hard-coded into the subassembly, including
dimensions, point codes, link codes, and shape codes. Common practice

Point, Link,
and Shape
Codes is to reference the point, link, and shape codes to labels on the coding

diagram.

The coding diagram has a twofold purpose. First, it labels the point, link,
and shape numbers referred to in the previous section. Secondly, it

Coding Dia-
gram

provides the subassembly programmer with a numbering scheme for
points, links, and shapes. These should correspond to the array indices
used in the script for points, links, and shapes. This is to make it easier
to later modify or add to the subassembly.

After creating the custom Help files for custom subassemblies, you must
reference the Help files in the tool catalog .atc file associated with the

Creating Custom Subassemblies Using .NET | 155

subassemblies. For more information, see Sample Tool Catalog ATC File (page
175).

Structure of Subassembly Programs

The Subassembly Template (SATemplate.vb)

All custom subassemblies are defined as classes that inherit from the
SATemplate class. SATemplate provides four methods that you can override in
your own class to provide functionality of your subassembly. They are described
in the following table:

Purpose for OverridingOverridable Method

Define the list of target parameters that appear in
the "Set All Logical Names" dialog box used when
creating a corridor model.

GetLogicalNamesImplement
(input: CorridorState)

Define the list of input parameters, including their
names, types, and default values.

GetInputParametersImplement
(input: CorridorState)

Define the list of output parameters, including their
names, types, and default values. If a parameter is

GetOutputParametersImplement
(input: CorridorState)

to be used for both input and output, that property
is specified in this method.

Must be overridden. Contains the code for ac-
cessing parameter values, adjusting the shape of

DrawImplement
(input: CorridorState)

the subassembly, and then adding the points, links,
and shapes that make up your subassembly to an
existing assembly.

SATemplate.vb is located in the <AutoCAD Civil 3D Install
Directory>\Sample\Civil 3D API\C3DStockSubAssemblies directory.

156 | Chapter 1 API Developer's Guide

The Corridor State Object

A reference to an object of type CorridorState is passed to each of the
SATemplate methods you override. The CorridorState object is the primary
interface between the custom subassembly and the collection of points, links,
and shapes of the current assembly which the subassembly is to connect to.
It provides references to the current alignment, profile, station, offset,
elevation, and style, which may affect the appearance of the subassembly. It
also includes several parameter buckets used for collecting parameters of types
boolean, long, double, string, alignment, profile, surface, and point. Each
parameter is defined by a literal name and a value.

The CorridorState methods provide useful calculation functions for corridor
design. These include the following:

Finds the intersection of a cross-sectional line with an offset
alignment.

IntersectAlignment

Finds the intersection of a cross-sectional line with a link on
the assembly.

IntersectLink

Finds the intersection of a cross-sectional line with a surface.IntersectSurface

Determines if a subassembly point is above or below a surface.IsAboveSurface

Constructs a set of cross section links from a surface.SampleSection

Converts between station, offset, elevation coordinates and
X,Y,Z coordinates.

SoeToXyz
XyzToSoe

Support Files (CodesSpecific.vb, Utilities.vb)

You can also use the two support files CodesSpecific.vb and Utilities.vb in your
subassembly.

CodesSpecific.vb provides the CodeType and AllCodes structures and the global
variable Code - an instance of an AllCodes structure with all code information
filled.

Creating Custom Subassemblies Using .NET | 157

Utilities.vb provides a series of shared helper functions for error handling,
computing subassembly geometry, attaching code strings, and other tasks.
For example, to report a “parameter not found” error to the AutoCAD Civil
3D event viewer, use the following line:

Utilities.RecordError(_
corridorState, _
CorridorError.ParameterNotFound, _
"Edge Offset", _
"BasicLaneTransition")

The following table lists all the functions within the Utility class:

DescriptionUtility function

Sends an error message to the Event Viewer.RecordError

Sends a warning to the Event Viewer.RecordWarning

For a given offset from an offset baseline, this
function computes the actual offset from the
base baseline.

AdjustOffset

Returns the version number of the subassembly
as specified in the .atc file.

GetVersion

Returns the assembly and the origin point for
the subassembly.

GetAlignmentAndOrigin

Given a surface Id, alignment Id, a station, and
an offset from the station, this returns the elev-
ation of the surface at that location.

CalcElevationOnSurface

Returns an array of points along a curve where
it will be tessellated, given a series of parameters

GetRoundingCurve

describing the curve and how it is to be tessel-
lated.

Calculates the offset from this alignment to an
offset target, and returns the XY coordinate of

CalcAlignmentOffsetToThisAlignment

158 | Chapter 1 API Developer's Guide

DescriptionUtility function

the offset target at the point perpendicular to
this alignment's station

Adds a series of code strings to a particular link.
The parameter i identifies which set of code

AddCodeToLink

strings to use. The parameter iLinks contains
the collection of all links in an applied sub-
assembly. The parameter linkIndex identifies
which link in the link collection is given the code
strings. The strArrCode parameter is a two-
dimensional array of code strings. The first di-
mension identifies which set of codes to use,
and the second dimension contains a variable-
length array of code strings.

Adds a series of code strings to a particular
point. The parameter i identifies which set of

AddCodeToPoint

code strings to use. The parameter iPoints
contains the collection of all points in an applied
subassembly. The parameter pointIndex
identifies which point in the point collection is
given the code strings. The strArrCode para-
meter is a two-dimensional array of code strings.
The first dimension identifies which set of codes
to use, and the second dimension contains a
variable-length array of code strings.

Returns True if the corridor is modeled in Im-
perial units, False if modeled in metric.

IsProjectUnitsFeet

Returns the value to go from the general units
of measurement to smaller units of measure-

GetProjectUnitsDivisor

ment. If the corridor is modeled in feet, this will
return 12 to allow you to compute the number
of inches. If the corridor is modeled in meters,
this will return 1000 to allow you to compute
the number of millimeters.

Creating Custom Subassemblies Using .NET | 159

DescriptionUtility function

Returns the percent slope of the alignment su-
perelevation at the specified assembly section.

GetSlope

The first parameter is a two-letter string indic-
ates the part of the roadway to use. The first
letter can be “S” for shoulder or “L” for lane.
The second letter can be “I” for inside or “O”
for outside. To determine the slope of the left
side of the road, set the fourth parameter to
True. To determine the slope of the right side,
set the fourth parameter to False.

Given arrays of X and Y locations and code
strings, this creates an array of Point objects

AddPoints

(AeccRoadwayPoint objects) and a
PointsCollection object (AeccRoadwayPo-
ints object).

Given the string name of a point, returns the
point object.

GetMarkedPoint

The CodesSpecific.vb and Utilities.vb files are located in the <AutoCAD Civil 3D
Install Directory>\Sample\Civil 3D API\C3DStockSubAssemblies directory.

Sample VB.NET Subassembly

The following class module defines the BasicLaneTransition subassembly
provided in the Stock Subassemblies catalog. The original source code for this
and all other subassemblies that come with AutoCAD Civil 3D can be found
in the <AutoCAD Civil 3D Install Directory>\Sample\Civil 3D
API\C3DStockSubAssemblies\Subassemblies directory.

Before reviewing the code you should familiarize yourself with the subassembly,
how it behaves in the cut and fill conditions, the point and link codes to be
assigned, and the point and link numbers specified in the subassembly coding
diagram. Refer to the BasicLaneTransition subassembly Help for this
information.

Option Explicit On

160 | Chapter 1 API Developer's Guide

Option Strict Off
Imports System.Math
Imports DBTransactionManager =
Autodesk.AutoCAD.DatabaseServices.TransactionManager
'

'

'

' Name: BasicLaneTransition
'
' Description: Creates a simple cross-sectional
representation of a corridor
' lane composed of a single closed shape.
Attachment origin
' is at top, most inside portion of lane.
The lane can
' transition its width and cross-slope based
on the position
' supplied by an optional horizontal and
vertical alignment.
'
' Logical Names: Name Type Optional Default
value Description
'
--
' TargetHA Alg yes none

Horizontal alignment to transition to
' TargetVA Profile yes none

Vertical alignment to transition to
'
' Parameters: Name Type Optional
Default Value Description
'
--
' Side long yes Right

specifies side to place SA on
' Width double yes 12.0

width of lane
' Depth double yes 0.667

depth of coarse
' Slope double yes -0.02

Creating Custom Subassemblies Using .NET | 161

cross-slope of lane
' TransitionType long yes 2

hold grade, move to offset HA
' InsertionPoint long yes kCrown

Specifies insertion point of the lane either at
(a) Crown or (b) Edge of Travel Way
' CrownPtOnInside Long no g_iTrue

Specifies that inside edge of travelway to be
coded as Crown
'

Public Class BasicLaneTransition

Inherits SATemplate
Private Enum InsertionPoint

kCrown = 0
kEdgeOfTravelWay = 1

End Enum
Private Enum TransitionTypes ' Transition types

supported
kHoldOffsetAndElevation = 0
kHoldElevationChangeOffset = 1
kHoldGradeChangeOffset = 2
kHoldOffsetChangeElevation = 3
kChangeOffsetAndElevation = 4

End Enum
'

--
' Default values for input parameters
Private Const SideDefault = Utilities.Right
Private Const InsertionPointDefault =

InsertionPoint.kCrown
Private Const CrownPtOnInsideDefault = Utilities.IFalse
Private Const LaneWidthDefault = 12.0#
Private Const LaneDepthDefault = 0.667
Private Const LaneSlopeDefault = -0.02 '0.25 inch

per foot
Private Const HoldOriginalPositionDefault =

TransitionTypes.kHoldOffsetAndElevation
Protected Overrides Sub GetLogicalNamesImplement(ByVal

corridorState As CorridorState)
MyBase.GetLogicalNamesImplement(corridorState)
' Retrieve parameter buckets from the corridor

state

162 | Chapter 1 API Developer's Guide

Dim oParamsLong As ParamLongCollection
oParamsLong = corridorState.ParamsLong
' Add the logical names we use in this script
Dim oParamLong As ParamLong
oParamLong = oParamsLong.Add("TargetHA",

ParamLogicalNameType.OffsetTarget)
oParamLong.DisplayName = "690"
oParamLong = oParamsLong.Add("TargetVA",

ParamLogicalNameType.ElevationTarget)
oParamLong.DisplayName = "691"

End Sub
Protected Overrides Sub

GetInputParametersImplement(ByVal corridorState As
CorridorState)

MyBase.GetInputParametersImplement(corridorState)
' Retrieve parameter buckets from the corridor

state
Dim oParamsLong As ParamLongCollection
oParamsLong = corridorState.ParamsLong
Dim oParamsDouble As ParamDoubleCollection
oParamsDouble = corridorState.ParamsDouble
' Add the input parameters we use in this script
oParamsLong.Add(Utilities.Side, SideDefault)
oParamsLong.Add("InsertionPoint",

InsertionPointDefault)
oParamsLong.Add("CrownPtOnInside",

CrownPtOnInsideDefault)
oParamsDouble.Add("Width", LaneWidthDefault)
oParamsDouble.Add("Depth", LaneDepthDefault)
oParamsDouble.Add("Slope", LaneSlopeDefault)
oParamsLong.Add("TransitionType",

HoldOriginalPositionDefault)
End Sub
Protected Overrides Sub DrawImplement(ByVal

corridorState As CorridorState)
' Retrieve parameter buckets from the corridor

state
Dim oParamsDouble As ParamDoubleCollection
oParamsDouble = corridorState.ParamsDouble
Dim oParamsLong As ParamLongCollection
oParamsLong = corridorState.ParamsLong
Dim oParamsOffsetTarget As

ParamOffsetTargetCollection

Creating Custom Subassemblies Using .NET | 163

oParamsOffsetTarget =
corridorState.ParamsOffsetTarget

Dim oParamsElevationTarget As
ParamElevationTargetCollection

oParamsElevationTarget =
corridorState.ParamsElevationTarget

'---
' flip about Y-axis
Dim vSide As Long
Try

vSide = oParamsLong.Value(Utilities.Side)
Catch

vSide = SideDefault
End Try
Dim dFlip As Double
dFlip = 1.0#
If vSide = Utilities.Left Then

dFlip = -1.0#
End If

'---
' Transition type
Dim vTransitionType As Long
Try

vTransitionType =
oParamsLong.Value("TransitionType")

Catch
vTransitionType = HoldOriginalPositionDefault

End Try
'---
' Insertion Ponit
Dim vInsertionPoint As Long
Try

vInsertionPoint =
oParamsLong.Value("InsertionPoint")

Catch
vInsertionPoint = InsertionPointDefault

End Try
Dim vCrownPtOnInside As Long
Try

vCrownPtOnInside =
oParamsLong.Value("CrownPtOnInside")

Catch
vCrownPtOnInside = CrownPtOnInsideDefault

164 | Chapter 1 API Developer's Guide

End Try
'---
' BasicLaneTransition dimensions
Dim vWidth As Double
Try

vWidth = oParamsDouble.Value("Width")
Catch

vWidth = LaneWidthDefault
End Try
Dim vDepth As Double
Try

vDepth = oParamsDouble.Value("Depth")
Catch

vDepth = LaneDepthDefault
End Try
Dim vSlope As Double
Try

vSlope = oParamsDouble.Value("Slope")
Catch

vSlope = LaneSlopeDefault
End Try

'---
' Get version, and convert values if necessary
Dim sVersion As String
sVersion = Utilities.GetVersion(corridorState)
If sVersion <> Utilities.R2005 Then

'need not change
Else

'R2005
'convert %slope to tangent value
vSlope = vSlope / 100

End If
Dim nVersion As Integer
nVersion = Utilities.GetVersionInt(corridorState)
If nVersion < 2010 Then

vCrownPtOnInside = Utilities.ITrue
End If

'---
' Check user input
If vWidth <= 0 Then

Utilities.RecordError(corridorState,
CorridorError.ValueShouldNotBeLessThanOrEqualToZero,
"Width", "BasicLaneTransition")

Creating Custom Subassemblies Using .NET | 165

vWidth = LaneWidthDefault
End If
If vDepth <= 0 Then

Utilities.RecordError(corridorState,
CorridorError.ValueShouldNotBeLessThanOrEqualToZero,
"Depth", "BasicLaneTransition")

vDepth = LaneDepthDefault
End If
' Calculate the current alignment and origin

according to the assembly offset
Dim oCurrentAlignmentId As ObjectId
Dim oOrigin As New PointInMem
Utilities.GetAlignmentAndOrigin(corridorState,

oCurrentAlignmentId, oOrigin)
'---
' Define codes for points, links and shapes
Dim sPointCodeArray(0 To 4, 0) As String
Dim sLinkCodeArray(0 To 2, 0 To 1) As String
Dim sShapeCodeArray(0 To 1) As String

FillCodesFromTable(sPointCodeArray, sLinkCodeArray,
sShapeCodeArray, vCrownPtOnInside)

'---
' Get alignment and profile we're currently working

from
Dim offsetTarget As WidthOffsetTarget 'width or

offset target
offsetTarget = Nothing
Dim elevationTarget As SlopeElevationTarget 'slope

or elvation target
elevationTarget = Nothing
Dim dOffsetToTargetHA As Double
Dim dOffsetElev As Double
If corridorState.Mode = CorridorMode.Layout Then

vTransitionType =
TransitionTypes.kHoldOffsetAndElevation

End If
Dim dXOnTarget As Double
Dim dYOnTarget As Double
Select Case vTransitionType

Case TransitionTypes.kHoldOffsetAndElevation
Case TransitionTypes.kHoldElevationChangeOffset

'oHA must exist
Try

166 | Chapter 1 API Developer's Guide

offsetTarget =
oParamsOffsetTarget.Value("TargetHA")

Catch
'Utilities.RecordError(corridorState,

CorridorError.ParameterNotFound, "Edge Offset",
"BasicLaneTransition")

'Exit Sub
End Try
'get offset to targetHA
If False =

Utilities.CalcAlignmentOffsetToThisAlignment(oCurrentAlignmentId,
corridorState.CurrentStation, offsetTarget,
Utilities.GetSide(vSide), dOffsetToTargetHA, dXOnTarget,
dYOnTarget) Then

Utilities.RecordWarning(corridorState,
CorridorError.LogicalNameNotFound, "TargetHA",
"BasicLaneTransition")

dOffsetToTargetHA = vWidth +
oOrigin.Offset

Else
If (dOffsetToTargetHA = oOrigin.Offset)

Or ((dOffsetToTargetHA > oOrigin.Offset) And (vSide =
Utilities.Left)) Or _

((dOffsetToTargetHA <
oOrigin.Offset) And (vSide = Utilities.Right)) Then

Utilities.RecordWarning(corridorState,
CorridorError.ValueInABadPosition, "TargetHA",
"BasicLaneTransition")

dOffsetToTargetHA = vWidth +
oOrigin.Offset

End If
End If

Case TransitionTypes.kHoldGradeChangeOffset
'oHA must exist
Try

offsetTarget =
oParamsOffsetTarget.Value("TargetHA")

Catch
'Utilities.RecordError(corridorState,

CorridorError.ParameterNotFound, "Edge Offset",
"BasicLaneTransition")

'Exit Sub
End Try

Creating Custom Subassemblies Using .NET | 167

'get offset to targetHA
If False =

Utilities.CalcAlignmentOffsetToThisAlignment(oCurrentAlignmentId,
corridorState.CurrentStation, offsetTarget,
Utilities.GetSide(vSide), dOffsetToTargetHA, dXOnTarget,
dYOnTarget) Then

Utilities.RecordWarning(corridorState,
CorridorError.LogicalNameNotFound, "TargetHA",
"BasicLaneTransition")

dOffsetToTargetHA = vWidth +
oOrigin.Offset

Else
If (((dOffsetToTargetHA >

oOrigin.Offset) And (vSide = Utilities.Left)) Or _
((dOffsetToTargetHA <

oOrigin.Offset) And (vSide = Utilities.Right))) Then
Utilities.RecordWarning(corridorState,

CorridorError.ValueInABadPosition, "TargetHA",
"BasicLaneTransition")

dOffsetToTargetHA = vWidth +
oOrigin.Offset

End If
End If

Case TransitionTypes.kHoldOffsetChangeElevation
'oVA must exist
Try

elevationTarget =
oParamsElevationTarget.Value("TargetVA")

Catch
'Utilities.RecordError(corridorState,

CorridorError.ParameterNotFound, "Edge Elevation",
"BasicLaneTransition")

'Exit Sub
End Try
Dim db As Database =

HostApplicationServices.WorkingDatabase
Dim tm As DBTransactionManager =

db.TransactionManager
Dim oProfile As Profile = Nothing
'get elevation on elevationTarget
Try

dOffsetElev =
elevationTarget.GetElevation(oCurrentAlignmentId,

168 | Chapter 1 API Developer's Guide

corridorState.CurrentStation, Utilities.GetSide(vSide))
Catch

Utilities.RecordWarning(corridorState,
CorridorError.LogicalNameNotFound, "TargetHA",
"BasicLaneTransition")

dOffsetElev =
corridorState.CurrentElevation + vWidth * vSlope

End Try
Case TransitionTypes.kChangeOffsetAndElevation

'both oHA and oVA must exist
Try

offsetTarget =
oParamsOffsetTarget.Value("TargetHA")

Catch
'Utilities.RecordError(corridorState,

CorridorError.ParameterNotFound, "Edge Offset",
"BasicLaneTransition")

'Exit Sub
End Try
Try

elevationTarget =
oParamsElevationTarget.Value("TargetVA")

Catch
'Utilities.RecordError(corridorState,

CorridorError.ParameterNotFound, "Edge Elevation",
"BasicLaneTransition")

'Exit Sub
End Try
'get elevation on elevationTarget
Try

dOffsetElev =
elevationTarget.GetElevation(oCurrentAlignmentId,
corridorState.CurrentStation, Utilities.GetSide(vSide))

Catch
Utilities.RecordWarning(corridorState,

CorridorError.LogicalNameNotFound, "TargetHA",
"BasicLaneTransition")

dOffsetElev =
corridorState.CurrentElevation + vWidth * vSlope

End Try
'get offset to targetHA
If False =

Utilities.CalcAlignmentOffsetToThisAlignment(oCurrentAlignmentId,

Creating Custom Subassemblies Using .NET | 169

corridorState.CurrentStation, offsetTarget,
Utilities.GetSide(vSide), dOffsetToTargetHA, dXOnTarget,
dYOnTarget) Then

Utilities.RecordWarning(corridorState,
CorridorError.LogicalNameNotFound, "TargetHA",
"BasicLaneTransition")

dOffsetToTargetHA = vWidth +
oOrigin.Offset

Else
If (dOffsetToTargetHA = oOrigin.Offset)

Or ((dOffsetToTargetHA > oOrigin.Offset) And (vSide =
Utilities.Left)) Or _

((dOffsetToTargetHA <
oOrigin.Offset) And (vSide = Utilities.Right)) Then

Utilities.RecordWarning(corridorState,
CorridorError.ValueInABadPosition, "TargetHA",
"BasicLaneTransition")

dOffsetToTargetHA = vWidth +
oOrigin.Offset

End If
End If

End Select
'---
' Create the subassembly points
Dim corridorPoints As PointCollection
corridorPoints = corridorState.Points
Dim dX As Double
Dim dy As Double
dX = 0.0#
dy = 0.0#
Dim oPoint1 As Point
oPoint1 = corridorPoints.Add(dX, dy, "")
' compute outside position of lane
Select Case vTransitionType

Case TransitionTypes.kHoldOffsetAndElevation
' hold original position (always used in

layout mode)
dX = vWidth
dy = Abs(vWidth) * vSlope

Case TransitionTypes.kHoldElevationChangeOffset
' hold original elevation, move offset to

that of TargetHA
'dX = Abs(dOffsetToTargetHA -

170 | Chapter 1 API Developer's Guide

corridorState.CurrentSubassemblyOffset)
dX = Abs(dOffsetToTargetHA - oOrigin.Offset)

dy = Abs(vWidth) * vSlope
Case TransitionTypes.kHoldGradeChangeOffset

' hold original grade, move offset to that
of TargetHA

' (also used if TargetVA is not defined)
'dX = Abs(dOffsetToTargetHA -

corridorState.CurrentSubassemblyOffset)
dX = Abs(dOffsetToTargetHA - oOrigin.Offset)

dy = Abs(dX) * vSlope
Case TransitionTypes.kHoldOffsetChangeElevation

' hold original offset, but change elevation
to that of TargetVA

dX = vWidth
'dY = dOffsetElev -

corridorState.CurrentSubassemblyElevation
dy = dOffsetElev - oOrigin.Elevation

Case TransitionTypes.kChangeOffsetAndElevation
' move position to that of TargetHA, and

elevation to that of TargetVA
dX = Abs(dOffsetToTargetHA - oOrigin.Offset)

dy = dOffsetElev - oOrigin.Elevation
End Select

'--
Dim dActualWidth As Double
dActualWidth = dX
Dim dActualSlope As Double
If 0 = dActualWidth Then

dActualSlope = 0.0#
Else

dActualSlope = dy / Abs(dActualWidth)
End If

'--
Dim oPoint2 As Point
oPoint2 = corridorPoints.Add(dX * dFlip, dy, "")
dX = dX - 0.001
dy = dy - vDepth
Dim oPoint3 As Point
oPoint3 = corridorPoints.Add(dX * dFlip, dy, "")
dX = 0.0#
dy = -vDepth
Dim oPoint4 As Point

Creating Custom Subassemblies Using .NET | 171

oPoint4 = corridorPoints.Add(dX, dy, "")
If vInsertionPoint = InsertionPoint.kCrown Then

Utilities.AddCodeToPoint(1, corridorPoints,
oPoint1.Index, sPointCodeArray)

Utilities.AddCodeToPoint(2, corridorPoints,
oPoint2.Index, sPointCodeArray)

Utilities.AddCodeToPoint(3, corridorPoints,
oPoint3.Index, sPointCodeArray)

Utilities.AddCodeToPoint(4, corridorPoints,
oPoint4.Index, sPointCodeArray)

Else
Utilities.AddCodeToPoint(2, corridorPoints,

oPoint1.Index, sPointCodeArray)
Utilities.AddCodeToPoint(1, corridorPoints,

oPoint2.Index, sPointCodeArray)
Utilities.AddCodeToPoint(4, corridorPoints,

oPoint3.Index, sPointCodeArray)
Utilities.AddCodeToPoint(3, corridorPoints,

oPoint4.Index, sPointCodeArray)
End If

'---
' Create the subassembly links
Dim oCorridorLinks As LinkCollection
oCorridorLinks = corridorState.Links
Dim oPoint(1) As Point
Dim oLink(3) As Link
oPoint(0) = oPoint1
oPoint(1) = oPoint2
oLink(0) = oCorridorLinks.Add(oPoint, "") 'L1
oPoint(0) = oPoint2
oPoint(1) = oPoint3
oLink(1) = oCorridorLinks.Add(oPoint, "") 'L2
oPoint(0) = oPoint3
oPoint(1) = oPoint4
oLink(2) = oCorridorLinks.Add(oPoint, "") 'L3
oPoint(0) = oPoint4
oPoint(1) = oPoint1
oLink(3) = oCorridorLinks.Add(oPoint, "") 'L4
Utilities.AddCodeToLink(1, oCorridorLinks,

oLink(0).Index, sLinkCodeArray)
Utilities.AddCodeToLink(2, oCorridorLinks,

oLink(2).Index, sLinkCodeArray)
'---

172 | Chapter 1 API Developer's Guide

' Create the subassembly shapes
Dim corridorShapes As ShapeCollection
corridorShapes = corridorState.Shapes
corridorShapes.Add(oLink, sShapeCodeArray(1))

'---
'---
' Write back all the Calculated values of the input

parameters into the RoadwayState object.
' Because they may be different from the default

design values,
' we should write them back to make sure that the

RoadwayState object
' contains the Actual information of the parameters.
oParamsLong.Add(Utilities.Side, vSide)
oParamsLong.Add("InsertionPoint", vInsertionPoint)
oParamsLong.Add("CrownPtOnInside", vCrownPtOnInside)
oParamsDouble.Add("Width", Math.Abs(dActualWidth))
oParamsDouble.Add("Depth", vDepth)
oParamsDouble.Add("Slope", dActualSlope)
oParamsLong.Add("TransitionType", vTransitionType)

End Sub
Protected Sub FillCodesFromTable(ByVal

sPointCodeArray(,) As String, ByVal sLinkCodeArray(,) As
String, ByVal sShapeCodeArray() As String, ByVal
CrownPtOnInside As Long)

If CrownPtOnInside = Utilities.ITrue Then
sPointCodeArray(1, 0) = Codes.Crown.Code

Else
sPointCodeArray(1, 0) = ""

End If
sPointCodeArray(2, 0) = Codes.ETW.Code
sPointCodeArray(3, 0) = Codes.ETWSubBase.Code 'P4
If CrownPtOnInside = Utilities.ITrue Then

sPointCodeArray(4, 0) = Codes.CrownSubBase.Code
'P3

Else
sPointCodeArray(4, 0) = "" 'P3

End If
sLinkCodeArray(1, 0) = Codes.Top.Code
sLinkCodeArray(1, 1) = Codes.Pave.Code
sLinkCodeArray(2, 0) = Codes.Datum.Code
sLinkCodeArray(2, 1) = Codes.SubBase.Code
sShapeCodeArray(1) = Codes.Pave1.Code

Creating Custom Subassemblies Using .NET | 173

End Sub
End Class

The Subassembly Tool Catalog

Overview

An Autodesk tool catalog organizes groups of customized subassemblies and
makes them available to AutoCAD Civil 3D users. Autodesk tool catalogs are
defined using xml-formatted files with an .atc (Autodesk Tool Catalog)
extension. You also need to create a catalog registry file as catalogs must be
registered in the Windows registry. Some items within the .atc and registry
files must contain unique identifiers known as GUIDs (Global Unique
Identifiers). New GUIDs can be created using the GuidGen.exe utility that is
included with many Microsoft development products and is freely available
for download from the Microsoft web site.

To create a tool catalog for a subassembly

1 Using Notepad or any other appropriate editor, create a plain ASCII text
file named <Name>Tools Catalog.atc, where <Name> is the name of this
new tool catalog. For information about the contents of the file, see
Creating a Tool Catalog ATC File (page 175).

NOTE

XML tags in ATC files are case-sensitive. Be sure that your tags match
the case of the tags described in this chapter.

2 Save the .atc file to the location where your tool catalogs are stored. The
default location is .

3 Create any optional files, such as images for icons displayed in the catalog
and help files for subassemblies, and place these files in appropriate
locations for reference.

4 Using Notepad or any other text editor, create a registry file for the tool
catalog with the extension .reg. For more information, see Creating a
Tool Catalog Registry File (page 186).

5 Register the tool catalog by double-clicking on the .reg file. Once
registered, the subassembly tool catalog will be displayed in the AutoCAD
Civil 3D Content Browser.

174 | Chapter 1 API Developer's Guide

Creating a Tool Catalog ATC File

Sample Tool Catalog ATC Files

The sample tool catalog .atc files define the contents and organization of an
Autodesk subassembly tool catalog. These are generally split into separate files
to keep files manageable: one listing all categories of tools and others listing
tools within a single category.

NOTE

XML tags in ATC files are case-sensitive. Make sure the tags in your files match
the case of the tags defined in this chapter.

Main Catalog File Example

The following is a portion of the file “Autodesk Civil 3D Metric Corridor
Catalog.atc.” It contains a list of tool categories. See the table following the
sample for descriptions of the contents. This excerpt only contains the “Getting
Started” category of tools.

1) <Catalog option="0">
2) <ItemID
idValue="{0D75EF58-D86B-44DF-B39E-CE39E96077EC}"/>
3) <Properties>
4) <ItemName resource="9250"
src="AeccStockSubassemblyScriptsRC.dll"/>
5) <Images option="0">
6) <Image cx="93" cy="123"
src=".\Images\AeccCorridorModel.png"/>
7) </Images>
8) <Description resource="9201"
src="AeccStockSubassemblyScriptsRC.dll"/>
9) <AccessRight>1</AccessRight>
10) <Time
createdUniversalDateTime="2003-01-22T00:31:56"
modifiedUniversalDateTime="2006-09-04T13:28:12"/>
11) </Properties>
12) <Source>
13) <Publisher>
14) <PublisherName>Autodesk</PublisherName>

Creating Custom Subassemblies Using .NET | 175

15) </Publisher>
16) </Source>
17) <Tools/>
18) <Palettes/>
19) <Packages/>
20) <Categories>
21) <Category option="0">
22) <ItemID
idValue="{4F5BFBF8-11E8-4479-99E0-4AA69B1DC292}"/>
23) <Url href=".\\C3D Metric Getting Started
Subassembly Catalog.atc"/>
24) <Properties>
25) <ItemName resource="9212"
src="AeccStockSubassemblyScriptsRC.dll"/>
26) <Images option="0">
27) <Image cx="93" cy="123"
src=".\Images\AeccGenericSubassemblies.png"/>
28) </Images>
29) <Description resource="9213"
src="AeccStockSubassemblyScriptsRC.dll"/>
30) <AccessRight>1</AccessRight>
31) </Properties>
32) <Source/>
33) </Category>
34)
35) <!-- Other category items omitted -->
36)
37) </Categories>
38) <StockTools/>
39) <Catalogs/>
40) </Catalog>

DescriptionLine Number

The <Catalog> section contains the entire contents of the catalog
file.

1-40

This <ItemID> defines the GUID for the catalog. The same GUID
must be used in the registry file to identify this catalog.

2

This section defines general properties of the catalog.3-11

176 | Chapter 1 API Developer's Guide

DescriptionLine Number

<ItemName> defines the name that appears beneath the catalog
icon in the catalog browser. In this case, we use a string resource to

4

support localization. You can also specify a constant string by using
the line “<ItemName>Name</ItemName>”.

<Images> defines the image file for the icon that appears for the
catalog in the catalog browser. Images used for catalogs and sub-

5-7

assemblies should be a 64-by-64 pixel image. Valid image file types
include .bmp, .gif, .jpg, and .png.

<Description> contains the string description for the catalog. In this
case, we use a string resource to support localization. You can also

8

specify a constant string by using the line “<Description>String</De-
scription>”.

<Time> defines the time and date the catalog was created in the
universal date/time format. This information is required, but not
used. Any date or time may be given.

10

<Source> defines the source or creator of the catalog.12-16

Empty definitions for Tools, Palettes, and Packages.17-19

The <Categories> group defines a list of categories, each of which
may contain sub-categories or subassembly tools.

20-36

Definition of the “Getting Started“ category. This block has been
designed to load all category information from a separate file. Cat-

21-33

egory information can also be placed within this file if you only want
one .atc file by using a <Category> section as described in the Tool
File Example (page 178)

<ItemID> defines the unique GUID for this category. It must be the
same GUID as in the separate category .atc file.

22

<Url> specifies the location of the category .atc file.23

Creating Custom Subassemblies Using .NET | 177

DescriptionLine Number

The properties of a category.24-31

<ItemName> defines the name of this category of tools. In this case,
we use a string resource to support localization. You can also specify

25

a constant string by using the line “<ItemName>Name</Item-
Name>”.

Sets the image used to identify the category to users.26-28

<Description> contains the string description for the category. In
this case, we use a string resource to support localization. You can

29

also specify a constant string by using the line “<Descrip-
tion>String</Description>”.

Empty definition for Source.32

Empty definition for StockTools39

Tool File Example

The following is a portion of the “Autodesk Metric Getting Started Subassembly
Catalog.atc” file. It contains all the tools in the “Getting Started” catalog. This
excerpt only contains the “BasicBarrier” tool.

1) <Category>
2) <ItemID
idValue="{4F5BFBF8-11E8-4479-99E0-4AA69B1DC292}"/>
3) <Properties>
4) <ItemName src="AeccStockSubassemblyScriptsRC.dll"
resource="9212"/>
5) <Images>
6) <Image cx="93" cy="123"
src=".\Images\AeccGenericSubassemblies.png"/>
7) </Images>
8) <Description
src="AeccStockSubassemblyScriptsRC.dll" resource="9213"/>
9) <AccessRight>1</AccessRight>
10) <Time

178 | Chapter 1 API Developer's Guide

createdUniversalDateTime="2002-09-16T14:23:31"
modifiedUniversalDateTime="2004-06-17T07:08:09"/>
11) </Properties>
12) <CustomData/>
13) <Source/>
14) <Palettes/>
15) <Packages/>
16) <Tools>
17) <Tool>
18) <ItemID
idValue="{F6F066F4-ABF2-4838-B007-17DFDDE2C869}"/>
19) <Properties>
20) <ItemName resource="101"
src="AeccStockSubassemblyScriptsRC.dll"/>
21) <Images>
22) <Image cx="64" cy="64"
src=".\Images\AeccBasicBarrier.png"/>
23) </Images>
24) <Description resource="102"
src="AeccStockSubassemblyScriptsRC.dll"/>
25) <Keywords>_barrier subassembly</Keywords>
26) <Help>
27) <HelpFile>.\Help\C3DStockSubassemblyHelp.chm</HelpFile>
28) <HelpCommand>HELP_HHWND_TOPIC</HelpCommand>
29) <HelpData>SA_BasicBarrier.htm</HelpData>
30) </Help>
31) <Time
createdUniversalDateTime="2002-04-05T21:58:00"
modifiedUniversalDateTime="2002-04-05T21:58:00"/>
32) </Properties>
33) <Source/>
34) <StockToolRef
idValue="{7F55AAC0-0256-48D7-BFA5-914702663FDE}"/>
35) <Data>
36) <AeccDbSubassembly>
37) <GeometryGenerateMode>UseDotNet</GeometryGenerateMode>
38) <DotNetClass
Assembly=".\C3DStockSubassemblies.dll">Subassembly.BasicBarrier</DotNetClass>
39) <Resource
Module="AeccStockSubassemblyScriptsRC.dll"/>
40) <Content
DownloadLocation="http://www.autodesk.com/subscriptionlogin"/>
41) <Params>

Creating Custom Subassemblies Using .NET | 179

42) <Version DataType="String"
DisplayName="Version" Description="Version">R2007</Version>
43) <TopWidth DataType="Double"
TypeInfo="16" DisplayName="105"
Description="106">0.15</TopWidth>
44) <MiddleWidth DataType="Double"
TypeInfo="16" DisplayName="107"
Description="108">0.225</MiddleWidth>
45) <CurbWidth DataType="Double"
TypeInfo="16" DisplayName="109"
Description="110">0.57</CurbWidth>
46) <BottomWidth DataType="Double"
TypeInfo="16" DisplayName="111"
Description="112">0.6</BottomWidth>
47) <TopHeight DataType="Double"
TypeInfo="16" DisplayName="113"
Description="114">0.9</TopHeight>
48) <MiddleHeight DataType="Double"
TypeInfo="16" DisplayName="115"
Description="116">0.45</MiddleHeight>
49) <CurbHeight DataType="Double"
TypeInfo="16" DisplayName="117"
Description="118">0.075</CurbHeight>
50) </Params>
51) </AeccDbSubassembly>
52) <Units>m</Units>
53) </Data>
54) </Tool>
55)
56) <!-- Other tool items omitted -->
57)
58) </Tools>
59) <StockTools/>
60) </Category>

DescriptionLine Number

A <Category> is a list of subassemblies.1-59

<ItemID> defines the unique GUID for this category. It must be the
same GUID as in the parent catalog .atc file.

2

180 | Chapter 1 API Developer's Guide

DescriptionLine Number

The properties of a category.3-11

<ItemName> defines the name of this category of tools. In this case,
we use a string resource to support localization. You can also specify

4

a constant string by using the line “<ItemName>Name</Item-
Name>”.

Sets the image used to identify the category to users.5-7

<Description> contains the string description for the category. In
this case, we use a string resource to support localization. You can

8

also specify a constant string by using the line “<Descrip-
tion>String</Description>”.

Empty definitions for Custom Data, Source, Palettes, Packages.12-15

<Tools> contains all the separate subassemblies.16-57

<Tool> represents a single subassembly.17-53

<ItemID> defines the unique GUID for this subassembly.18

The properties of the subassembly.19-32

<ItemName> defines the name of this subassembly. In this case, we
use a string resource to support localization. You can also specify a
constant string by using the line “<ItemName>Name</ItemName>”.

20

Sets the image used to identify the subassembly to users.21-23

<Description> defines the name of this subassembly. In this case,
we use a string resource to support localization. You can also specify

24

a constant string by using the line “<Description>String</Descrip-
tion>”.

Keywords describing the subassembly.25

Creating Custom Subassemblies Using .NET | 181

DescriptionLine Number

<HelpFile> defines the filename and path of the help file.27

<HelpCommand> defines the command used to display the help
file.

28

<HelpData> is the particular topic in the help file to display.29

<Time> defines the time and date the catalog was created in the
universal date/time format. This information is required, but not
used. Any date or time may be given.

31

Empty Source tag.33

<StockToolRef> defines a GUID specifically for catalog tools. This
must use the idVlaue of {7F55AAC0-0256-48D7-BFA5-
914702663FDE}

34

Describes the nature of the subassembly.35-52

Identifies the tool as a subassembly.36-50

<GeometryGenerateMode> is a new tag that describes the source
code of the subassembly. It can either have a value of “UseDotNet”
or “UseVBA”. If this tag is not used, “UseVBA” is assumed.

37

<DotNetClass> is a new tag that lists the .NET assembly and class
which contains the subassembly. The VBA equivalent is the <Macro>

38

tag. Note that all paths specified in the ATC file must be relative
paths to the ATC file itself.

The .dll containing the resource strings and images used by the
subassembly tool.

39

<Content> is a new tag that specifies a location where you can
download the subassembly if it isn’t located on the local machine.

40

If the subassembly hasn’t been downloaded, the location contained

182 | Chapter 1 API Developer's Guide

DescriptionLine Number

in the DownloadLocation attribute is displayed in the event
viewer.

<Params> defines the names of the input parameters associated with
the subassembly tool. This list appears in the Properties page of the

41-50

subassembly, in the order they appear in the .atc file. Each parameter
is defined on a single line.

Each parameter is described with the following:42-49
Parameter name - The internal name of the parameter (e.g.,
“CrownHeight”). This is the name that must be used when saving
or retrieving parameters to the parameter buckets.
DataType – Defines the type of variable used to store the parameter
value, such as Long, Double, or String. For more information, see
Tool Catalog Data Type Information (page 183).
DisplayName – Defines the name that is displayed for the parameter
in the subassembly Properties page. This is what the user sees to
identify each parameter.
Description – Provides a description of the input parameter. When
a parameter name is highlighted in the subassembly Properties page,
the description appears at the bottom of the page.
value – The default value for the parameter. This is the value that
appears for the parameter in the subassembly Properties page.

<Units> describes the type of units the subassembly expects. Valid
values are “m” for meters of ‘foot” for feet.

52

Tool Catalog Data Type Information

The following tables describe the data types that can be used to define the
variable that stores parameter values in the corridor modeling tool catalog
.atc file.

Boolean Data Types

DescriptionType StringData Type

0 = True; 1 = False.0Bool

Creating Custom Subassemblies Using .NET | 183

DescriptionType StringData Type

0 = Yes; 1 = No.1BoolNoYes

0 = Enabled; 1 = Disabled.5BoolDisabledEnabled

0 = On; 1 = Off.6BoolOffOn

0 = Right; 1 = Left.7BoolRightLeft

Long Data Types

DescriptionType StringData Type

Any integer0Long

Any non-zero integer1NonZeroLong

Zero or any positive integer2NonNegativeLong

Any non-zero positive integer3NonNegativeNonZeroLong

Zero or any negative integer4NonPositiveLong

Any non-zero negative integer5NonPositiveNonZeroLong

Double Data Types

DescriptionType StringData Types

Any double value0Double

Zero or any positive double value1NonNegativeDouble

Any non-zero positive double value2NonNegativeNonZeroDouble

Zero or any negative double value3NonPositiveDouble

184 | Chapter 1 API Developer's Guide

DescriptionType StringData Types

Any non-zero negative double
value

4NonPositiveNonZeroDouble

Any non-zero double value5NonZeroDouble

Slope or grade input values8Grade

Grade input values9TransparentCmdGrade

Slope input values10TransparentCmdSlope

Angular values14Angle

Convergence angular value15ConvergenceAngle

Distance values in feet or meters16Distance

Dimension values in inches or milli-
meters

17Dimension

Elevation values21Elevation

Percent values25Percent

Creating a Tool Catalog Cover Page

Use an .html file to create introductory content that will display when a user
clicks on this new catalog in the AutoCAD Civil 3D Content Browser. You
can use any html editor, and the cover page can be as simple or as
comprehensive as you like. Typically, the cover page gives an overview of the
tools supplied in the catalog, and a brief description of how they may be used.

By convention, cover pages are named <Name> - ToolCatalogCoverPage.html
where “<Name>” is the name of the new tool catalog. The location of the

Creating Custom Subassemblies Using .NET | 185

.html file is specified within the .atc file. This file is usually placed in the same
directory as the .atc files themselves.

Creating a Tool Catalog Registry File

Each subassembly tool catalog needs to be registered in the Windows registry
before it can be used by AutoCAD Civil 3D. One way to do this is to create a
.reg file, which is a text file containing the new keys, value names, and values
to be added to the registry. Double-clicking on the .reg file will modify the
registry. After this process, the .reg file is no longer needed.

The following is the contents of a .reg file that registers the Autodesk Civil 3D
Imperial Corridor Catalog.atc catalog file. See the table following the sample for
descriptions of the contents.

1) REGEDIT4
2)
3) [HKEY_CURRENT_USER\Software\Autodesk\Autodesk Content
Browser\60]
4)
5) [HKEY_CURRENT_USER\Software\Autodesk\Autodesk Content
Browser\60\RegisteredGroups]
6)
7) [HKEY_CURRENT_USER\Software\Autodesk\Autodesk Content
Browser\60\RegisteredGroups\Roads Group]
8) "ItemID"="{5BD79109-BC69-41eb-9AC8-7E9CD469C8D3}"
9) "ItemName"="Roads Group"
10)
11)
12) [HKEY_CURRENT_USER\Software\Autodesk\Autodesk Content
Browser\60\RegisteredCatalogs]
13)
14) [HKEY_CURRENT_USER\Software\Autodesk\Autodesk Content
Browser\60\RegisteredCatalogs\Autodesk Civil 3D Imperial
Corridor Catalog]
15) "ItemID"="{410D0B43-19B3-402f-AB41-05A6E174AA3F}"
16) "Image"=".\\Images\\AeccRoadway.png"
17) "Url"="C:\\Documents and Settings\\All
Users\\Application Data\\Autodesk\\C3D2010\\enu\\Tool
Catalogs\\Road Catalog\\Autodesk Civil 3D Imperial Corridor
Catalog.atc"
18) "DisplayName"="Civil 3D Subassemblies (Imperial Units)"

186 | Chapter 1 API Developer's Guide

19) "Description"="Imperial Units Subassemblies"
20) "Publisher"="Autodesk"
21) "ToolTip"="Autodesk Civil 3D Imperial Corridor Catalog"
22) "GroupType"="{5BD79109-BC69-41eb-9AC8-7E9CD469C8D3}"
23)
24)
25) [HKEY_CURRENT_USER\Software\Autodesk\AutoCAD\R18\ACAD-8000:409\AEC\60\General\Tools]
26) "ToolContentRoot"="C:\\Documents and Settings\\All
Users\\Application Data\\Autodesk\\C3D2010\\enu\\Tool
Catalogs\\Road Catalog"

DescriptionLine Number

Identifies the file as a registry edit file.1

These statements create a Group for the Autodesk Content Browser.
The group id name is “Roads Group”. Each group must have a unique

3-9

GUID for the “ItemID”. The Roads Group is already registered by
the AutoCAD Civil 3D installation. If you are adding a catalog to this
group, you should use the GUID shown in the example.

Identifies the item being registered as an Autodesk catalog for the
Autodesk Content Browser.

12

These statements define the Catalog Entry.14-22

“ItemId” must be a unique GUID for this catalog. This must match
the GUID for the Catalog ItemID value in the catalog .atc file.

15

“Image” must be a unique GUID for this catalog. This must match
the GUID for the Catalog ItemID value in the catalog .atc file.

16

“URL” is a pointer to the catalog .atc file that is being registered.17

“DisplayName” is the text that displays beneath the catalog icon in
the Autodesk Content Browser.

18

“Description” – description of the tool catalog.19

“Publisher” – name of the creator / publisher of the tool catalog.20

Creating Custom Subassemblies Using .NET | 187

DescriptionLine Number

“ToolTip” – the text that displays for the tooltip when the cursor is
hovered over the tool catalog in the Catalog Browser.

21

“GroupType” – the GUID that defines which the tool catalog belongs
to in the Catalog Browser. This GUID must match the one used for
the “ItemID” in the group definition.

22

The directory where the .atc catalog files are located.26

Installing Custom Subassemblies

Once you’ve created a custom subassembly, you can install it on other
AutoCAD Civil 3D users’ machines.

NOTE

It’s simpler to create a subassembly package file to distribute to users than to
install custom subassemblies manually. See Exporting Subassemblies Using a
Package File (page 189).

To install a custom subassembly:

1 Copy the compiled AutoCAD Civil 3D subassembly .dll library to its
destination directory. By default, libraries are located in <AutoCAD Civil
3D Install Directory>\Sample\Civil 3D API\C3DstockSubAssemblies.

2 Copy the tool catalog .atc files to its destination directory. The tool
catalog files are normally located in the directory. For information about
creating these, see Creating a Tool Catalog ATC File (page 175).

3 Copy optional files such as the image file representing the subassemblies
or the help file to their destination directory. Images are normally located
in , and help files are normally located in , although these can be any
directory as long as the .atc file has the correct relative path information.
For information about creating help files, see Creating Subassembly Help
Files (page 152)

4 Copy the catalog cover page .html file to its destination. Usually this is
the same location as the .atc file, although it can be any directory as long
as the .atc file has the correct relative path information. For information

188 | Chapter 1 API Developer's Guide

about creating cover pages, see Creating a Tool Catalog Cover Page (page
185).

5 Register the tool catalog using a registry (.reg) file. This .reg file must have
the correct paths to the .atc file and the catalog image file from steps 2)
and 3). For information about creating registry files, see Creating a Tool
Catalog Registry File (page 186)

Exporting Custom Subassemblies Using a
Package File

You can share custom subassemblies with others by copying the required files
to a package file.

Custom subassemblies that have been created using .NET or VBA can be
exported and imported using a package file. A package file contains all the
files necessary for the custom subassemblies to work. Once the package file is
created, users can import the package file into AutoCAD Civil 3D, and then
copy the custom subassemblies directly into a tool palette or catalog. For more
information about importing subassembly package files, see Sharing
Subassemblies in the .

Like other types of AutoCAD Civil 3D content, subassemblies can also be
shared with others through the Autodesk Civil Engineering Community site.
Go to http://civilcommunity.autodesk.com/ to access the Autodesk Civil
Engineering web site, then click on Content Sharing.

To create a package file, you must copy all of the files that make up the custom
subassembly or subassemblies into a folder. Create a .zip file of that folder,
and then change the file extension from .zip to .pkt.

NOTE

Subassemblies created from polylines cannot be included in a package file.
Package files are intended for sharing custom subassemblies that have been
created using .NET or VBA.

Naming the Package File

If you are sharing a single subassembly, it is recommended that you name the
package file the same name as the subassembly. For example, if you plan to
export a subassembly named OpenChannel, name the package file
OpenChannel.pkt. If you plan to export multiple subassemblies in a single

Creating Custom Subassemblies Using .NET | 189

http://civilcommunity.autodesk.com/

package file, give the folder a name that easily identifies the types of
subassemblies that are contained in it. For example, DitchSubassemblies.pkt.

Required Subassembly Files

The following table describes the files that must be included in a package file
to successfully export and import one or more subassemblies.

DescriptionFile

A valid .atc file that defines the shape and behavior of the subassembly or sub-
assemblies is required. You can have one or more .atc files included in the

.atc file(s)

package file. For example, you can have one .atc file that defines one or more
subassemblies, or you can have multiple .atc files, each of which defines one or
more subassemblies. If the package file contains multiple .atc files, each .atc file
must have a unique name. All the paths referenced in .atc file must be relative
paths, if they point to files in the same .pkt file.

A .dll file is required for subassemblies that are defined using .NET. A .dvb file
is required for subassemblies that are defined using VBA. A package file can
contain both .dll and .dvb files.

.dll or .dvb file(s)

A Help file is not required in order for a subassembly to function properly.
However, the Help file is needed for others to understand how to use the sub-

Help file(s)

assembly. Therefore, it is recommended that you always include a Help file with
each subassembly. The Help file for each subassembly is specified in the .atc file,
and can be any of the following formats: .dwf, .doc, .pdf, .txt, .chm, .hlp. For
more information, see Creating Subassembly Help Files (page 152).

An image file for each is displayed on the tool palette and is used to provide a
conceptual graphical representation of the subassembly shape.

Image file(s)

Exporting Custom Subassemblies Using a Package File

To create a package file

1 Copy all of the required subassembly files into a folder. Make sure that
folder contains only the files required for the subassembly or
subassemblies you plan to export.

2 Create a .zip file of the contents of that folder.

190 | Chapter 1 API Developer's Guide

3 Change the file extension from .zip to .pkt.

The package (.pkt) file is created and can be shared with other users.

Converting VBA Subassemblies to .NET
This chapter describes a process to convert existing custom subassemblies
written in COM/VBA to .NET.

Although VBA custom subassemblies are still supported in AutoCAD Civil 3D
2013, VBA support is deprecated and will be discontinued in a future release.
In addition, .NET subassemblies offer several advantages: they are easier to
write and maintain, and most importantly, they offer significant performance
improvements. On average, they perform about 50% faster than the equivalent
code in VBA, and the performance increase can be even higher in complex
drawings.

Once you have converted your custom subassemblies to .NET and imported
them into the catalog file, you will need to update the dependent assemblies
in your drawings, and re-build the corridors. See the last section in this
Appendix for some sample code that replaces old VBA subassemblies with
new .NET subassemblies.

Procedure

This section describes the steps required to convert a VBA subassembly to
VB.NET. Although this procedure only describes converting the subassembly
to VB.NET, you can use a similar approach to convert the subassembly to
another .NET language, such as C#.

Where applicable, a regular expression is suggested to automate some of the
changes required. In most cases, using regular expressions can reduce the time
required to port a custom subassembly. See the MSDN help topic on Regular
Expressions and Replace in Files for more information.

Create the Visual Basic.NET Subassembly Module

Start by creating the module for your subassembly. You can add a new module
to the C3DStockSubassemblies project, or you can create your own .NET
subassembly project and add the new class module there. New projects should

Converting VBA Subassemblies to .NET | 191

use the Visual Studio "Class Library" template, and should reference the
following files:
■ acdbmgd.dll

■ acmgd.dll

■ AecBaseMgd.dll

■ AeccDbMgd.dll

Be sure to include CodeSpecific.vb, SATemplate.vb, and Utilties.vb in your project
as well.

Add the following framework to the Visual Basic subassembly class module:

Public Class UserDefinedSA
Inherits SATemplate

' Member Variables.
Protected Overrides Sub GetLogicalNamesImplement(ByVal

corridorState As Autodesk.Civil.Runtime.CorridorState)
' Todo

End Sub
Protected Overrides Sub

GetInputParametersImplement(ByVal corridorState As
CorridorState)

' Todo
End Sub
Protected Overrides Sub

GetOutputParametersImplement(ByVal corridorState As
CorridorState)

' Todo
End Sub
Protected Overrides Sub DrawImplement(ByVal

corridorState As CorridorState)
' Todo

End Sub
End Class

Note that:
■ The class must inherit from SATemplate.

■ You must override the DrawImplement() method, otherwise the subassembly
will do nothing.

■ The other overridden methods may be removed if they are not used.

■ You can add your own functions and subroutines within the class's scope.

192 | Chapter 1 API Developer's Guide

Copy Subassembly Code

Copy the original code from the VBA module (*.bas) to the corresponding
place in the new class:

ToFrom

GetLogicalnamesImplement()UserdefinedSA_GetLogicalNames()

GetInputParametersImplement()UserdefinedSA _GetInputParamet-

ers()

GetOutputParametersImplement()UserdefinedSA _GetOutputParamet-

ers()

DrawImplement()UserdefinedSA()

Member variables sectionConst variables

Port the VBA Code to Visual Basic .NET Code

Now begin the porting work. The following sections outline the main steps
in porting. Code from the stock subassembly DaylightBench.vb is used as an
illustration.

Step 1: Import the necessary namespaces

Adding the namespaces Autodesk.Civil.Roadway and Autodesk.Civil is
recommended because members in these two namespaces are frequently used
in subassemblies. Your subassembly may require additional namespaces. These
are the namespaces imported in the stock Civil 3D subassemblies (from
C3DStockSubassemblies.vbproj):
■ Autodesk.Civil

■ Autodesk.Civil.ApplicationServices

■ Autodesk.Civil.DatabaseServices

■ Autodesk.Civil.Land

■ Autodesk.Civil.Land.DatabaseServices

Converting VBA Subassemblies to .NET | 193

■ Autodesk.Civil.Land.Settings

■ Autodesk.Civil.Roadway

■ Autodesk.Civil.Roadway.DatabaseServices

■ Autodesk.Civil.Roadway.Settings

■ Autodesk.Civil.Runtime

■ Autodesk.Civil.Settings

Step 2: Remove all On Error… statements

Remove the On Error statements in the GetLogicalNamesImplement(),
GetInputParametersImplement(), and GetOutputParametersImplement()
methods. Comment these statements out in DrawImplement (), because you
will re-use the code in Step 14.

Regular expression:

■ Find: On Error{.*}

■ Leave the Replace field blank if you want to delete these statements. Use
' On Error\1 if you only want to comment them out.

Step 3: Remove Exit Sub and Error Handler

Remove all the Exit Sub and Error Handler: statements at the end of each
subroutine. In VBA, you may see following code at the end of each subroutine
- remove it, or move it into the appropriate Catch statement when converting
error handling logic in step 14.

Exit Sub
ErrorHandler:
RecordError Err.Number, Err.Description, Err.Source

Regular expression:

■ Find: Exit Sub{ *}\n{ *}\n{ *}ErrorHandler\:{ *}\n{

*}RecordError.+{ *}\n{ *}{End Sub}

■ Replace: \8

Step 4: Remove oRwyState definition.

Remove the following code at the beginning of each subroutine:

194 | Chapter 1 API Developer's Guide

' Get the roadway state object
Dim oRwyState As AeccRoadwayState
Set oRwyState = GetRoadwayState()

The corridorState object is already passed in by the argument of the
subroutine, so it is not necessary to get it yourself.

Regular expression:

■ Find: {'.*}{ *}\n{ +}Dim.+As AeccRoadwayState{ *}\n{ *}.+=

GetRoadwayState\(\)

■ Replace: leave blank to delete these statements

Step 5: Replace oRwyState with corridorState

All instances of the variable oRwyState used in VBA should be renamed
corridorState in .NET. The corridorState variable is passed in by argument.

Regular expression:

■ Find: oRwyState

■ Replace: corridorState

Step 6: Check for errors when accessing parameter values

In VBA, the parameter Value() method returns null if the key does not exist.
In the .NET API, the same code will throw an exception. Where you access a
parameter, you need to use a Try / Catch block to catch this case:

' VBA:
vCutSlope = oParamsDouble.Value("CutSlope")
If IsEmpty(vCutSlope) Then vCutSlope = c_dCutSlopeDefault

This code can be changed to:

' .NET:
Try

vCutSlope = oParamsDouble.Value("CutSlope ")
Catch

vCutSlope = c_ dCutSlopeDefault
End Try

Converting VBA Subassemblies to .NET | 195

Regular expression:

■ Find: ^{.+ =.+\.Value\(.+\)}\n{ +}If IsEmpty.+Then{.+}

■ Replace: Try\n\1\nCatch\n\3\nEnd Try\n

Step 7: Update RecordError()

The global function RecordError() is replaced by Utilities.RecordError().

' VBA:
RecordError(aeccRoadwayErrorValueTooLarge,
"RoundingTesselation", "DaylightBench")

Change to:

'.NET:
Utilities.RecordError(corridorState,
CorridorError.ValueTooLarge, "RoundingTesselation",
"DaylightBench")

Regular expression:

■ Find: {Record}{Warning|Error}{\(}{aecc}{RoadwayError}

■ Replace: Utilities.Record\2\3roadwayState,RoadwayError.

Step 8: Replace global variables with Utilities variables.

In VBA subassembly code, you will see global variables such as g_iRight,
g_sSide, which have a "g_" prefix. Most of these global variables have been
moved to the Utilities class and renamed.

The following table lists some commonly used global variables and their
corresponding ones in the Utilities class. Refer to the definition of the
Utilities class for more information.

ToFrom

Utilities.Sideg_sSide

Utilities.Leftg_iLeft

196 | Chapter 1 API Developer's Guide

ToFrom

Utilities.Rightg_iRight

Utilities.ITrueg_iTrue

Utilities.RoundingOption.None-

Type

Rounding_Option.NoneType

Utilities.FillOrCut.FillSitu-

ation

CutSituation

Utilities.ShoulderSubbase-

Type.Subbase

SubbaseType

Step 9: Rename enumerations

In VBA subassembly code, nearly all the COM enumerations have an "aecc"
prefix, such as aeccParamLogicalNameTypeAlignment. Replace them with
corresponding .NET enumerations.

As a rule, the corresponding .NET enumerations are named by removing the
"aecc" prefix and making the detail category a child member. For example,
aeccParamLogicalNameTypeAlignment becomes
ParamLogicalNameType.Alignment.

The following table lists some commonly used COM enumerations and their
corresponding .NET enumerations.

ToFrom

ParamLogicalNameType.AlignmentaeccParamLogicalNameTypeAlign-

ment

CorridorMode.LayoutaeccRoadwayModeLayout

ParamAccessType.OutputaeccParamAccessOutput

Converting VBA Subassemblies to .NET | 197

Step 10: Rename types

Replace COM types with their corresponding .NET types.

The following table lists some commonly used COM types and their
corresponding .NET types.

ToFrom

ParamDoubleCollectionIAeccParamsDouble

LinkCollectionIAeccRoadwayLinks

ParamIAeccParam

LinkAeccRoadwayLink

ParamLongAeccParamLong

Regular expressions:

1 Convert IAeccParamsAlignment and AeccParamsAlignment to
ParamAlignmentCollection

■ Find: { }I*AeccParams{.+}{ |\n}

■ Replace: \1Param\2Collection\3

2 Convert: IAeccRoadwayLinks to LinkCollection

■ Find: { }I*AeccRoadway{.*}s{ |\n}

■ Replace: \1\2Collection\3

3 Convert AeccRoadwayLink to Link

■ Find: { }(I|())AeccRoadway{Link|Shape}{ |\n}

■ Replace: \1\2\3

4 Convert AeccParamLong to ParamLong

■ Find: { }I*AeccParam{Long|Bool|Double|Point|String|()}{ |\n}

■ Replace: \1Param\2\3

198 | Chapter 1 API Developer's Guide

These four regular expressions do not cover all the required changes, so you
will have to make additional changes manually.

Step 11: Change Object to build-in types

Where the subassembly uses Object, it should be changed to a built-in type,
as Object is not type-safe.

' .NET Before:
Dim vSide As Object
Try

vSide = oParamsLong.Value(Utilities.Side)
Catch

vSide = SideDefault
End Try

' .NET After:
Dim vSide As Long
Try

vSide = oParamsLong.Value(Utilities.Side)
Catch

vSide = SideDefault
End Try

Step 12: Update code variables to use .NET naming

Remove the g_All, g_s and s prefixes in each variable name to match the new
convention for code names.

ToFrom

Codes.HingeCut.Codeg_AllCodes.g_sHinge_Cut.sCode

Codes.Daylight.Codeg_AllCodes.g_sDaylight.sCode

Codes.DaylightCut.Codeg_AllCodes.g_sDaylight_Cut.sCode

Regular expression:

■ Find: g_All{Codes\.}g_s{.+\.}s{.+}

■ Replace: \1\2\3

Converting VBA Subassemblies to .NET | 199

Step 13: Update array definitions

In VBA, many arrays are defined with a lower bound at index “1”. This is not
allowed in .NET, so you should modify their definitions.

In most situations, you can just modify the array definition do not need to
make any other changes. The array element 0 is defined but left unused.

' .NET Before:
Dim sPointCodeArray(1 To 9, 0 To 1) As String

' .NET After:
Dim sPointCodeArray(0 To 9, 0 To 1) As String

If this array is passed as an argument to a method, you will need to do more
work. In this case, the array is most likely used from index “0”. You need to
modify all the code that uses this array to take into account the change in
index numbering.

Step 14: Modify error handling

In VBA, On Error Resume Next and On Error GoTo ErrorHandler statements
are used to handle errors. But in .NET, exceptions are used instead. Modify all
cases where errors are detected to use Try…Catch blocks.

' VBA:
On Error Resume Next
Dim oTargetDTM As IAeccSurface
Set oTargetDTM = oParamsSurface.Value("TargetDTM")
If oTargetDTM Is Nothing Then

' Error handling code goes here
Exit Sub

End If
On Error GoTo ErrorHandler

Change error handling to:

' .NET:
Dim oTargetDTMId As ObjectId
Try

oTargetDTMId = oParamsSurface.Value("TargetDTM")
Catch

' Error handling code goes here

200 | Chapter 1 API Developer's Guide

Exit Sub
End Try

Step 15: New rules for database objects

In the COM API, the arguments and return values all refer to a database object
instance. However, in the .NET API, arguments and return values are the
ObjectId of the database object, not the object itself.

' VBA:
Dim oTargetDTM As IAeccSurface
Set oTargetDTM = oParamsSurface.Value("TargetDTM")

In .NET this would be:

' .NET:
Dim oTargetDTMId As ObjectId
Try

oTargetDTMId = oParamsSurface.Value("TargetDTM")
Catch
End Try

Then, to use the database object's instance, you have to use
TransactionManager.GetObject() to open the database object.

' VBA:
Dim oCurrentAlignment As AeccAlignment
GetAlignmentAndOrigin(oRwyState, oCurrentAlignment, oOrigin)

In .NET:

' .NET:
Dim currentAlignmentId As ObjectId
Dim currentAlignment As Alignment
Utilities.GetAlignmentAndOrigin(corridorState,
currentAlignmentId, origin)
' ...
Dim db As Database =
Autodesk.AutoCAD.DatabaseServices.HostApplicationServices.WorkingDatabase
Dim tm As
Autodesk.AutoCAD.DatabaseServices.TransactionManager =
db.TransactionManager

Converting VBA Subassemblies to .NET | 201

currentAlignment = tm.GetObject(currentAlignmentId,
OpenMode.ForRead, false, false)

Final Adjustments

The above rules cover the majority of changes needed to convert VBA code
to working Visual Basic .NET code. Depending on the nature of your
subassembly, there may still be some syntax errors.

Installing the New Subassembly

The Autodesk Tool Catalog files (.atc files, found in
[DataLocation]\Autodesk\C3D 2011\enu\Tool Catalogs\Road Catalog) need to
be modified in order to list your new subassembly in the Civil 3D Subassembly
Catalog.

NOTE

DataLocation in the path above depends on the operating system:
■ On Windows XP it is C:\Documents and Settings\All Users\Application Data\

■ On Windows Vista and Windows 7, it is C:\ProgramData\Autodesk\

The .atc file format for .NET subassemblies is largely the same as for VBA
subassemblies except that two new tags are used:

<GeometryGenerateMode>UseDotNet</GeometryGenerateMode>

<GeometryGenerateMode> tells Civil 3D that you are using a .NET subassembly.
It is placed within the <Tool> tag.<DotNetClass
Assembly="%AECCCONTENT_DIR%\C3DStockSubassemblies.dll">Subassembly.NewCurb</DotNetClass>

<DotNetClass> is used instead of <Macro> tag when using .NET subassemblies

Replacing the VBA Subassembly

Once the VBA custom subassembly has been ported to .NET and installed in
a catalog file, drawings need to be updated to use the new code. Below is an
example .NET macro that performs this task. This macro gets a subassembly
by name (“VBASubassembly”). It then creates a new SubassemblyGenerator
object, passing in the mode (“UseDotNet”), the dll in which the new

202 | Chapter 1 API Developer's Guide

subassembly is located, the name of the .NET subassembly. Finally it sets the
subassembly GeometryGenerator parameter to the new SubassemblyGenerator.
When the transaction is committed, the subassembly is replaced.

[CommandMethod("ConvertVbaSA")]
public void ConvertVbaSA()
{

using(Transaction trans =
m_transactionManger.StartTransaction())

{
ObjectId saId =

Autodesk.Civil.ApplicationServices.CivilApplication.ActiveDocument.SubassemblyCollection["VBASubassembly"];
Subassembly sa = trans.GetObject(saId,

OpenMode.ForWrite) as Subassembly;
SubassemblyGenerator genData = new

SubassemblyGenerator(SubassemblyGeometryGenerateMode.UseDotNet,
"C3DStockSubassemblies.dll",
"Subassembly.DotNetSubassembly");

sa.GeometryGenerator = genData;
trans.Commit();
}

}

Legacy COM API
This section of the Developer's Guide contains chapters covering the legacy
COM API. Where possible, the newer .NET API should be used for performance
reasons. However, the .NET API does not cover all Civil 3D functionality, and
you may want to use features that are only available in COM. You can access
the COM API using interop - see Limitations and Using Interop (page 19).

Using VBA in AutoCAD Civil 3D

The following AutoCAD Civil 3D command-line instructions enable you to
interact with the Visual Basic programming environment and loaded VBA
macros.

Legacy COM API | 203

NOTE

VBA support is not included with AutoCAD Civil 3D by default, and must be
obtained as a separate download.

■ VBAMAN - Displays a dialog box allowing you to load, unload, edit,
embed, extract, edit, and save copies of VBA applications.

■ VBAIDE - Displays the Visual Basic programming environment.

■ VBARUN - Displays a dialog box where you can choose a macro to run
from all the available subroutines.

■ -VBARUN<module.macro> - Runs a particular macro from the command
line.

■ VBALOAD - Loads a global VBA project into the current work session.
After entering this instruction, you are presented with a file selection dialog
box.

■ -VBALOAD<full path and filename> - Loads a particular project from the
command line. If the path contains spaces, you need to type quotes around
the path and filename string.

■ VBAUNLOAD - Unloads an existing VBA project. After entering this
instruction, you are prompted to type in the full path and filename of the
project. If the path contains spaces, you need to type quotes around the
path and filename string.

■ VBASTMT - Executes a VBA statement on the command line. A statement
generally occupies a single line, although you can use a colon (:) to include
more than one statement on a line. VBA statements are executed in the
context of the current drawing.

VBA projects are usually stored in separate .dvb files, which allow macros to
interact with many separate AutoCAD Civil 3D drawings.

Root Objects and Common Concepts in COM

Root Objects

This section explains how to acquire references to the base objects which are
required for all applications using the COM API. It also explains the uses of
the application, document, and database objects and how to use collections,
which are commonly used throughout the COM API.

204 | Chapter 1 API Developer's Guide

Object Hierarchy

Root Object Model

Accessing Application and Document Objects

The root object in the AutoCAD Civil 3D COM hierarchy is the
AeccApplication object. It contains information about the main application
window, base AutoCAD objects, and a collection of all open documents.
AeccApplication is inherited from the AutoCAD object AcadApplication. See
the AutoCAD ObjectARX documentation for information about all inherited
methods and properties.

The AeccApplication object is accessed by first using the exposed ThisDrawing
object, an AutoCAD object of type AcadDocument. Its
AcadDocument.Application property returns the AutoCAD AcadApplication
object. From this point, use COM Automation to get the desired AutoCAD
Civil 3DAeccApplication object.

This example demonstrates the process of accessing the AeccApplication and
AeccDocument objects:

Dim oAcadApp As AcadApplication
Set oAcadApp = ThisDrawing.Application
' Specify the COM name of the object we want to access.
' Note that this always accesses the most recent version
' of AutoCAD Civil 3D installed.
Const sCivilAppName = "AeccXUiLand.AeccApplication.6.0"
Dim oCivilApp As AeccApplication
Set oCivilApp = oAcadApp.GetInterfaceObject(sCivilAppName)

Legacy COM API | 205

' Now we can use the AeccApplication object.
' Get the AeccDocument representing the currently
' active drawing.
Dim oDocument As AeccDocument
Set oDocument = oCivilApp.ActiveDocument
' Set the viewport of the current drawing so that all
' drawing elements are visible.
oCivilApp.ZoomExtents

This sample gets the objects from AutoCAD Civil 3D 2009. To gain access to
the libraries of an older version, use the version number of the desired libraries
to the COM object name. For example, to make a program that works with
AutoCAD Civil 3D 2007, replace:

Const sCivilAppName = "AeccXUiLand.AeccApplication.4.0"

with the following line of code:

Const sCivilAppName = "AeccXUiLand.AeccApplication.6.0"

The application object contains references to all open documents in the
AeccApplication.Documents collection and the
AeccApplication.ActiveDocument property. AeccDocument is inherited from
the AutoCAD object AcadDocument. See the AutoCAD ObjectARX
documentation for information on all inherited methods and properties.

Using Collections Within the Document Object

The document object not only contains collections of all AutoCAD Civil 3D
drawing elements (such as surfaces and alignments) but all objects that modify
those elements (such as styles and label styles). These collections have the
same core set of methods: Count, Item, Remove, and Add. Count represents the
number of items in the collection. Item returns an object from the collection,
usually specified by the identification number or the name for the object.
Remove deletes a specified item from the collection. Add creates a new item,
adds it to the collection, and returns a reference to the newly created item.
This item is already set with default values as defined by the document ambient
settings.

This example creates a new point style:

Dim oPointStyle As AeccPointStyle

206 | Chapter 1 API Developer's Guide

Set oPointStyle = oAeccDocument.PointStyles.Add("Name")
' Now a new point style is added to the collection of
styles,
' and we can modify it by setting the properties
' of the oPointStyle object.
oPointStyle.Elevation = 114.6

If you attempt to add a new element with properties that match an already
existing element, try to access an item that does not exist, or remove an item
that does not exist or is in use, an error will result. You should trap the error
and respond accordingly.

The following sample demonstrates one method of dealing with such errors:

' Try to access the style named "Name".
Dim oPointStyle As AeccPointStyle
On Error Resume Next
Set oPointStyle = oAeccDocument.PointStyles.Item("Name")
' Turn off error handling as soon as we no longer need it.
On Error Goto 0

' If there was a problem retrieving the item, then
' the oPointStyle object will remain empty. Check if that
' is the case. If so, it is most likely because the item
' does not exist. Try making a new one.
If (oPointStyle Is Nothing) Then

Set oPointStyle = oAeccDocument.PointStyles.Add("Name")
End If

Accessing and Using the Database Object

Each document has an associated database object of type AeccDatabase that
is accessed through the AeccDocument.Database property. The database object
is inherited from the AutoCAD ObjectARX object AcadDatabase. The
AeccDatabase object contains references to all the same AutoCAD Civil 3D
entities as the AeccDocument object. However, it is the only object that contains
references to base AutoCAD entities. See the AutoCAD ObjectARX
documentation for more information.

' Add a polyline to the drawing's collection of objects.
Dim oPolyline As AcadPolyline
Dim dPoints(0 To 8) As Double

Legacy COM API | 207

dPoints(0) = 1000: dPoints(1) = 1000: dPoints(2) = 0
dPoints(3) = 1000: dPoints(4) = 4000: dPoints(5) = 0
dPoints(6) = 4000: dPoints(7) = 4000: dPoints(8) = 0
' The database is where all such objects are stored.
Set oPolyline =
oDocument.Database.ModelSpace.AddPolyline(dPoints)
oPolyline.Closed = True

The AeccDatabase object also has an AddEvent() method, that lets you send
an event to the Event Viewer in the AutoCAD Civil 3D user interface:

Dim oAeccApp As AeccApplication
Set oAeccApp =
ThisDrawing.Application.GetInterfaceObject("AeccXUiLand.AeccApplication.6.0")
oAeccApp.Init ThisDrawing.Application
Dim oDatabase As AeccDatabase
Set oDatabase = oAeccApp.ActiveDocument.Database
oDatabase.AddEvent aeccEventMessageError, "PipeLengthRule",
"Parameter Bad"

Ambient Settings

This section explains the purpose and use of the document settings objects,
and covers changing general and specific settings.

208 | Chapter 1 API Developer's Guide

Object Hierarchy

Ambient Settings Object Model

Changing General and Specific Settings

Ambient settings are default properties and styles that apply to the drawing
as a whole or to objects when they are first created. The document’s settings

Legacy COM API | 209

are accessed through the properties of the AeccSettingsRoot object, which is
obtained from the AeccDocument.Settings property. There are settings for
objects and commands. The object properties define the settings for items in
general, or of particular classes of items, such as alignments, gradings, parcels,
points, profiles, profile views, sample lines, sections, section views, and surfaces.
Although each of these objects are unique, they all share some common
features:

DescriptionProperty Name

Specifies the default styles and label styles.StyleSettings

Specifies the common attributes for labels.LabelStyleDefaults

Specifies the standard pattern of names.NameTemplate

Specifies which units of measurement are used and dis-
played.

AmbientSettings

Not on all objects. Optional. Specifies item-specific default
values.

CreationSettings

The command settings apply to commands, and correspond to the settings
in the Commands folder for each item in the AutoCAD Civil 3DToolspace
Settings Tab.

The following sample determines what angle units are used for all displays
related to points:

Dim oPointSettings as AeccSettingsPoint
Set oPointSettings = oDocument.Settings.PointSettings
Dim oAmbientSettings as AeccSettingsAmbient
Set oAmbientSettings = oPointSettings.AmbientSettings
Dim oAngleUnit as AeccAngleUnitType
Set oAngleUnit = oAmbientSettings.AngleSettings.Unit.Value

If (oAngleUnit = aeccAngleUnitDegree) Then
' Units are displayed in degrees

ElseIf (oAngleUnit = aeccAngleUnitRadian) Then
' Units are displayed in radians

Else

210 | Chapter 1 API Developer's Guide

' Units are displayed in gradians
End If

Label Styles

This section explains common features of label styles. It covers creating a new
label style object, defining a label style, and using property fields in label style
text strings. Details specific to each construct are covered in the appropriate
chapters.

Legacy COM API | 211

Object Hierarchy

Label Style Object Model

Creating a Label Style Object

All types of annotation for AutoCAD Civil 3D elements are governed by label
styles, which are objects of type AeccLabelStyle. A label style can include any
number of text labels, tick marks, lines, markers, and direction arrows.

212 | Chapter 1 API Developer's Guide

The following example creates a new label style object that can be used with
points:

Dim oLabelStyle As AeccLabelStyle
Set oLabelStyle = oDocument.PointLabelStyles.Add _
("New Label Style for Points")

Defining a Label Style

A label style consists of collections of different features of a label. The properties
containing these collections are: AeccLabelStyle.BlockComponents for symbols,
AeccLabelStyle.DirectionArrowComponents for direction arrows,
AeccLabelStyle.LineComponents for lines, AeccLabelStyle.TextComponents
for text, and AeccLabelStyle.TickComponents for both major and minor tick
marks. Not all of these may have meaning depending on the label style type.
For example, adding a tick mark component to a label style meant for a point
has no visible effect. Label styles also depend on graphical objects that may
or may not be part of the current document. For example, if the style references
a block that is not part of the current document, then the specified block or
tick components are not shown.

To add a feature to a label style, add a new component to the corresponding
collection. Then set the properties of that component to the appropriate
values. Always make sure to set the Visible property to True.

' Add a line to the collection of lines in our label style.
Dim oLabelStyleLineComponent As AeccLabelStyleLineComponent
Set oLabelStyleLineComponent = oLabelStyle.LineComponents
_
.Add("New Line")

' Now the line can be changed to suit our purpose.
oLabelStyleLineComponent.Visibility = True
oLabelStyleLineComponent.color = 40 ' orange-yellow
oLabelStyleLineComponent.Angle = 2.094 ' radians, = 120
deg
' Negative lengths are allowed. They mean the line
' is drawn in the opposite direction of the angle
' specified.
oLabelStyleLineComponent.Length = -0.015

Legacy COM API | 213

oLabelStyleLineComponent.StartPointXOffset = 0.005
oLabelStyleLineComponent.StartPointYOffset = -0.005

When first created, the label style object is set according to the ambient
settings. Because of this, a new label style object may already contain features.
If you are creating a new label style object, be sure to check for such existing
features or your style might contain unintended elements.

' Check to see if text components already exist in the
' collection. If any do, just modify the first text
' feature instead of making a new one.
Dim oLabelStyleTextComponent As AeccLabelStyleTextComponent
If (oLabelStyle.TextComponents.Count > 0) Then

Set oLabelStyleTextComponent = oLabelStyle _
.TextComponents.Item(0)

Else
Set oLabelStyleTextComponent = oLabelStyle _
.TextComponents.Add("New Text")

End If

The ambient settings also define which units are used. If you are creating an
application designed to work with different drawings, you should take ambient
settings into account or labels may demonstrate unexpected behavior in each
document.

Using Property Fields in Label Style Text

Text within a label is designated by the
AeccLabelStyleTextComponent.Contents property, a string value. Of course,
text labels are most useful if they can provide some sort of information that
is unique to each particular item being labeled. This is accomplished by
specifying property fields within the string. These property fields are of the
form “<[Property name(modifier 1|[..] modifier n)]>”. Modifier values are optional
and can be in any order. Any number of property fields can be combined with
normal text in the Contents property.

In this example, a string component of a label is modified to show design
speeds and station values for a point along an alignment:

Dim oTextComponent As AeccLabelStyleTextComponent
Set oTextComponent = oLabelStyle.TextComponents.Item(0)

214 | Chapter 1 API Developer's Guide

oTextComponent.Contents = "SPD=<[Design
Speed(P0|RN|AP|Sn)]>"
oTextComponent.Contents = oTextComponent.Contents & _
"STA=<[Station Value(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>"

Valid property fields for each element are listed in the appropriate chapter.

Sharing Syles Between Drawings

Label styles, like all style objects, can be shared between drawings. To do this,
call the style’s exportTo method, targeting the drawing you want to add the
style to. In this example, the first style in the MajorStationLabelStyles
collection is exported from the active drawing to another open drawing named
Drawing1.dwg:

Dim oDocument As AeccDocument
Set oDocument = oCivilApp.ActiveDocument
Dim dbDestination As AeccDatabase
Set dbDestination =
oCivilApp.Documents("Drawing1.dwg").Database
Call
oDocument.AlignmentLabelStyles.MajorStationLabelStyles(0).ExportTo(dbDestination)

Legacy COM API | 215

Survey in COM

Object Hierarchy

216 | Chapter 1 API Developer's Guide

Survey Object Model

Root Objects

This section describes how to gain access to the survey-specific versions of the
root document and database objects. It covers the use of ambient settings,
user settings, and the equipment database. It also describes the creation of
survey projects, which contain networks and figures, and provide access to
survey points.

Obtaining Survey-Specific Root Objects

Applications that perform survey operations require special versions of the
base objects representing the application and document. The
AeccSurveyApplication object is identical to the AeccApplication it is
inherited from except that its AeccSurveyApplication.ActiveDocument
property returns an object of type AeccSurveyDocument instead of
AeccDocument. The AeccSurveyDocument object contains collections of
survey-related items, such as projects and equipment databases in addition
to all of the methods and properties of AeccDocument.

When using survey root objects, be sure to reference the “Autodesk Civil
Engineering Survey 6.0 Object Library” (AeccXSurvey.tlb) and “Autodesk Civil
Engineering UI Survey 6.0 Object Library” (AeccXUISurvey.tlb) libraries.

This sample demonstrates how to retrieve the survey root objects:

Dim oApp As AcadApplication
Set oApp = ThisDrawing.Application
Dim sAppName As String
sAppName = "AeccXUiSurvey.AeccSurveyApplication"
Dim oSurveyApplication As AeccSurveyApplication
Set oSurveyApplication = oApp.GetInterfaceObject(sAppName)

' Get a reference to the currently active document.
Dim oSurveyDocument As AeccSurveyDocument
Set oSurveyDocument = oSurveyApplication.ActiveDocument

Legacy COM API | 217

Changing Survey-Specific Ambient Settings

Ambient settings for a survey document are held in the
AeccSurveyDocument.Settings property, an object of type
AeccSurveySettingsRoot. AeccSurveySettingsRoot inherits all the properties
of the AeccSettingsRoot class from which it is derived. Ambient settings allow
you to get and set the units and default property settings of survey objects.
This is done through the AeccSurveySettingsRoot.SurveySettings, which
contains a standard AeccSettingsAmbient object.

Changing Survey User Settings

The survey document also provides access to the survey user settings object.
User settings are not specific to a particular document but are tied to a
particular user, and all documents a user creates or loads will use the same
settings. Survey user settings manage the visibility and appearance of prism
sites, backsight lines, foresight lines, and baselines. Survey user settings also
control how network and figure previews are shown, and under what
conditions points, figures, and observations are automatically erased or
exported. These settings also allow you to determine or set which figure prefix
database, equipment database, or item of equipment is currently in use. The
survey user settings object is retrieved through the
AeccSurveyDocument.GetUserSettings method, which returns an
AeccSurveyUserSettings object. To apply any changes made to the user
settings, pass the modified AeccSurveyUserSettings object to the
AeccSurveyDocument.UpdateUserSettings method.

Dim oUserSettings As AeccSurveyUserSettings
Set oUserSettings = oSurveyDocument.GetUserSettings

' Modify and examine the current settings.
With oUserSettings

.ShowBaseline = True
Dim oColor As New AcadAcCmColor
oColor.SetRGB 255, 165, 0 ' bright orange
Set .BaselineColor = oColor
.EraseAllFigures = False
Debug.Print "Default layer:"; .DefaultFigureLayer

End with

218 | Chapter 1 API Developer's Guide

' Save the changes to the user settings object.
oSurveyDocument.UpdateUserSettings oUserSettings

Using the Equipment Database

The equipment database contains a list of equipment used to gather surveying
data. The information about each item of equipment is used in least squares
and other computations. A collection of all equipment lists is contained in
the AeccSurveyDocument.EquipmentDatabases property. Each equipment
database is a collection of individual items of equipment. An equipment
database is an object of type AeccSurveyEquipmentDatabase, and contains
methods for searching the list of equipment and for copying lists from other
databases.

Each item of equipment is represented by an AeccSurveyEquipment object,
which contains properties describing aspects of the equipment, including the
name and description, how the instrument measures angles, the unit types
for angle and distance, Electronic Distance Meter settings, prism accuracy and
offset, and the accuracy of the instrument.

This sample program displays selected information about each equipment
item in the document’s database:

Dim oEquipDatabases As AeccSurveyEquipmentDatabases
Dim oEquipDatabase As AeccSurveyEquipmentDatabase
Dim oEquipment As AeccSurveyEquipment

Set oEquipDatabases = oSurveyDocument.EquipmentDatabases
For Each oEquipDatabase In oEquipDatabases

Debug.Print "Database: "; oEquipDatabase.Name
Debug.Print

For Each oEquipment In oEquipDatabase
With oEquipment

Debug.Print "----"
Debug.Print "Item: "; .Name; " Id: "; .Id
Debug.Print " Description: "; .Description
Debug.Print " Angle Type: "; .AngleType
Debug.Print " Angle Unit: "; .AngleUnit
Debug.Print " Azimuth Std: "; .AzimuthStandard
Debug.Print " Wave Constant: "; .CarrierWaveConstant
Debug.Print " Center Standard: "; .CenterStandard

Legacy COM API | 219

Debug.Print " Circle Standard: "; .CircleStandard
Debug.Print " Coordinate Std: "; .CoordinateStandard
Debug.Print " Distance Unit: "; .DistanceUnit
Debug.Print " Edm Error: "; .EdmMmError; "mm"
Debug.Print " Edm Error: "; .EdmPpmError; "ppm"
Debug.Print " Edm Offset: "; .EdmOffset
Debug.Print " Elevation Std: "; .ElevationStandard
Debug.Print " H Collimation: "; .HorizontalCollimation
Debug.Print " Is Prism Tilted: "; CStr(.IsTiltedPrism)
Debug.Print " Measuring Device: "; .MeasuringDevice
Debug.Print " Pointing Std: "; .PointingStandard
Debug.Print " Prism Constant: "; .PrismConstant
Debug.Print " Prism Offset: "; .PrismOffset
Debug.Print " Prism Std: "; .PrismStandard
Debug.Print " Revision: "; .Revision
Debug.Print " Target Std: "; .TargetStandard
Debug.Print " Theodolite Std: "; .TheodoliteStandard
Debug.Print " Vertical Angle Type: ";

.VerticalAngleType
Debug.Print " V Collimation: "; .VerticalCollimation
Debug.Print

End With
Next

Next

Creating a Survey Project

The survey database is the high-level construct that contains collections of
networks and figures, and provides access to survey points. Throughout the
API, survey databases are called “projects.” The collection of all projects in a
document are held in the AeccSurveyDocument.Projects property. Once
created, a project cannot be removed from this collection using API methods.
The only way to remove a survey project is to delete the Project folder and
refresh the collection. When a new project is created, a unique GUID
identifying the project is generated.

This sample creates a new survey project with the name “Proj01”:

Dim oSurveyProject As AeccSurveyProject
Set oSurveyProject =
oSurveyDocument.Projects.Create("Proj01")

220 | Chapter 1 API Developer's Guide

' Print the next available survey point Id available.
Debug.Print "Next available Id:"; _
oSurveyProject.GetNextWritablePointNumber()

Adjusting Survey Project Settings

A survey project has a group of properties accessed through the survey project
settings object. Survey project settings define what measurement units are
used, what angle types are used, and the precision of each measurement. It
records what kinds of adjustments are made to observations, and the types
and accuracy of traverse analyses and angle balancing. It also has methods
for converting between metric units and the units of the ambient settings,
and between easting and northing and longitude and latitude. The project
settings object is retrieved through the
AeccSurveyProject.GetProjectSettings method, which returns an
AeccSurveyProjectSettings object. To apply any changes made to the project
settings, pass the modified AeccSurveyProjectSettings object to the
AeccSurveyProject.UpdateProjectSettings method.

Dim oProjectSettings As AeccSurveyProjectSettings
Set oProjectSettings = oSurveyProject.GetProjectSettings()

' Modify and examine the current settings.
With oProjectSettings

.AngleType = aeccSurveyAngleTypeAzimuth
Debug.Print "Sea level correction? :";

.SeaLevelCorrection
End With

' Save the changes to the project settings object.
oSurveyProject.UpdateProjectSettings oProjectSettings

Accessing Extended Properties

Survey root objects can have extended properties associated with them.
LandXML extended properties are used to import and export Survey LandXML
attributes or collections of elements. For example, in the LandXML schema,
a CgPoint element (a SurveyPoint) within a CgPoints collection (a
SurveyPointGroup), may contain a DTMAttribute where its enumeration value
can be used to aid the user in determining whether the point should be

Legacy COM API | 221

included in a surface definition. User-defined extended properties can be used
to define additional attributes beyond those defined by the LandXML schema.
For an example of standard LandXML extended properties, see the
C:\Documents and Settings\All Users\Application
Data\Autodesk\C3D2012\enu\Survey\LandXML - Standard.sdx_deffile.

The AeccSurveyFigure, AeccSurveyNetwork, AeccSurveyPoint, and
AeccSurveyProject objects each have a LandXMLXPropertiesRoot property,
which gives you access to the AeccSurveyLandXMLXPropertiesRoot for that
object. Those objects also each have a UserDefinedXProperties object, which
gives you access to the AeccSurveyUserDefinedXProperties for that object.

Survey Network

A network represents the spatial framework of a survey. Each network contains
a collection of control points, directions, setups, and non-control points. It
also contains information on how these objects are related, such as how the
control points and setups are connected relative to one another.

Creating a Survey Network

Survey networks are created through the Create method of the
AeccSurveyProject.Networks collection.

Dim oSurveyNetwork As AeccSurveyNetwork
Set oSurveyNetwork =
oSurveyProject.Networks.Create("Net_01")

Adding Control Points to a Network

Control points are the “known” or “fixed” locations that other survey points
are based from. The collection of control points in a network is held in the
AeccSurveyNetwork.ControlPoints property. New control points can be added
to the network through the collection’s Create method. Create adds a new
point with the specified features to the AeccSurveyControlPoints collection
and returns a reference to the newly created AeccSurveyControlPoint object.

' Get collection of all control points.

222 | Chapter 1 API Developer's Guide

Dim oControlPoints As AeccSurveyControlPoints
Set oControlPoints = oSurveyNetwork.ControlPoints

' Create a control point with an id number of 3001 at
' the location 5000.0m, 5000.0m, elevation 100.0m.
Dim oControlPoint As AeccSurveyControlPoint
Set oControlPoint = oControlPoints.Create(_
3001, _
"ControlPoint_01", _
"Description of control point", _
5000#, _
5000#, _
100#)

Adding Directions to a Network

A direction is a “known” or “fixed” direction (either azimuth or bearing) from
a control point to another point reference. The point reference may be observed
at a later time in the survey, or it may never actually be occupied by a setup.
This can happen if the reference point is a mountain top or tower or some
other location where survey equipment cannot physically be placed but the
direction from the control point to that location is known. An entire survey
network can be defined from a single control point and a single direction.

The collection of directions in a network is held in the
AeccNetwork.Directions property. New directions can be added to the network
through the collection’s Create method. Create adds a new direction between
two points at the specified angle to the AeccSurveyDirections collection and
returns a reference to the newly created AeccSurveyDirection object.

' Get collection of all directions.
Dim oDirections As AeccSurveyDirections
Set oDirections = oSurveyNetwork.Directions

' Create a direction from point 3001 to the (not yet
' existing) point 3004 at an angle of 45.0 degrees azimuth.
Dim oDirection As AeccSurveyDirection
' 0.785398163 = 40 degrees in radians
Set oDirection = oDirections.Create(_
3001, _
3004, _

Legacy COM API | 223

0.785398163, _
aeccSurveyDirectionTypeAzimuth)

Adding Setups to a Network

A setup represents a survey instrument session made in the field. The
instrument is set up on a control point or a previously observed point, and a
reference direction (backsight) is made to another point. Locations on the
Earth’s surface are then determined with surveying methods relative to the
setup and the direction of the backsight. These locations are called
“observations”, and are represented by an AeccSurveyObservation object.
Each setup object contains a collection of observation objects. An observation
object is composed of any or all of the following measurements: angle, distance,
vertical, latitude, longitude, northing, easting, or elevation. The observation
object also has a series of properties describing the nature of the observation
equipment.

The collection of setups in a network is held in the AeccNetwork.Setups
property. New setups can be added to the network through the collection’s
Create method. Create adds a new setup at the specified location to the
AeccSurveySetups collection and returns a reference to the newly created
AeccSurveySetup object.

This sample creates a setup at the location of point 3001 using the location
of point 3004 as the backsight. It then creates an observation to another
location, which is given the identification “3002”.

Dim oSetups As AeccSurveySetups
Dim oSetup1 As AeccSurveySetup

Set oSetups = oSurveyNetwork.Setups
' Create a setup at 3001 with a backsight at 3004 (the
' backsight direction should be calculated automatically).
Set oSetup1 = oSetups.Create(3001, 3004)
Debug.Print "Direction:"; oSetup1.BacksightDirection
Debug.Print "Orientation:"; oSetup1.BacksightOrientation
' Now any observation angle is based on the line
' from 3001 to 3004.

Dim oObservations As AeccSurveyObservations
Set oObservations = oSetup1.Observations
Dim oObservation1 As AeccSurveyObservation

224 | Chapter 1 API Developer's Guide

' On setup "Station:3001, Backsight:3004" create an
observation
' of point 3002.
' Angle = 90 degrees (1.57079633 radians)
' Angle Type = Angle
' Distance = 100#
' Distance Type = Slope
' Vertical = 90 degrees (1.57079633 radians)
' Vertical Type = Vertical Angle
' Target Height = 0#
' Target Type = Prism
Set oObservation1 = oObservations.Create(_
3002, _
aeccSurveyAngleTypeAngle, _
1.57079633, _
aeccSurveyDistanceTypeSlope, _
100#, _
aeccSurveyVerticalTypeVerticalAngle, _
1.57079633, _
aeccSurveyTargetTypePrism, _
0#, _
"From setup <Station:3001, Backsight:3004> to Point 3002")

' From this survey equipment data, the location of point
' 3002 can be determined:
Debug.Print "Point 3002 at:"; oObservation1.Easting;
Debug.Print ", "; oObservation1.Northing

Adding Non-control Points to a Network

A survey network also contains a collection of non-control points, which
represent points within a survey network whose location is determined by
observation, but are not connected to other survey observations and remain
unaffected by a network analysis. These non-control points are represented
by objects of type AeccNonControlPoint, and are defined by an easting,
northing, and an optional elevation. The collection of all non-control points
in a survey network are held in the AeccSurveyNetwork.NonControlPoints
property.

' Create a non-control point with an id number of 3006 at

Legacy COM API | 225

' the location 4950.0, 5000.0, elevation 100.0.
Dim oNonControlPt As AeccSurveyNonControlPoint
Set oNonControlPt = oSurveyNetwork.NonControlPoints.Create(
_
3006,
"NonControlPoint_01",
"Description of non-control point",
4950#,
5000#,
100#)

A non-control point may be promoted to a control point if you reference the
point as a control point when creating a traverse, or reference the point as a
setup to make observations to other points that may affect locations during
an analysis.

Creating Paths for Traverse Analysis

A traverse is a path through survey points. A traverse starts at a control point,
continues through other survey points, and either returns to the original
control point (a “closed” loop) or ends at another control point (an “open”
loop). These paths are used for traverse analysis, which are methods for
determining the amount of error in the locations and directions of survey
points. The API provides methods for creating and examining traverse paths,
but it does not provide methods for performing a traverse analysis.

The collection of all traverses in a network are stored in the
AeccSurveyNetwork.Traverses property. A single traverse is represented by
an object of type AeccSurveyTraverse. New traverses are created using the
collection’s Create method. This method requires the identification number
of the starting control point, a backsight for that point, the final control point
reached, and an array of the identification numbers of all intermediate points.

This sample creates a traverse starting at control point 3001, continuing though
points 3002, 3003, and 3004, and finishing back at the starting control point
3001. The user can then perform a traverse analysis based on this closed loop.

Dim oTraverse As AeccSurveyTraverse
Dim lStations(0 To 2) As Long
lStations(0) = 3002: lStations(1) = 3003; lStations(2) =
3004
Set oTraverse = oSurveyNetwork.Traverses.Create(_
"Traverse_01", _

226 | Chapter 1 API Developer's Guide

3001, _
3004, _
3001, _
lStations)

Adding Survey Data to the Drawing

Adding elements or modifying information in a survey network object changes
the survey database but does not automatically change the drawing. After you
are done adding points, directions, and other elements that have a graphical
element, call the AeccSurveyNetwork.AddToDrawing method to create AutoCAD
elements that correspond to the survey network data. This is equivalent to
the AutoCAD Civil 3D command “Insert Into Drawing”.

oSurveyNetwork.AddToDrawing

Getting Survey Network Drawing Objects

You can get and manipulate the AutoCAD drawing objects that make up a
survey network from the AutoCAD Civil 3D user interface. The drawing objects
are represented by the AeccSurveyNetworkEntity object. For example, this
code prompts the user to select the survey network, tests whether it is the
survey network object, and then prints some information about it:

Dim objPart As AeccSurveyNetworkEntity
Dim objEnt As AcadObject
Dim objAcadEnt As AcadEntity
Dim varPick As Variant
ThisDrawing.Utility.GetEntity objEnt, varPick, "Select the
Survey Network"
If TypeOf objEnt Is AeccSurveyNetworkEntity Then

Set objPart = objEnt
Debug.Print objPart.Name, TypeName(objPart)

ElseIf TypeOf objEnt Is AcadEntity Then
Set objAcadEnt = objEnt
Debug.Print objAcadEnt.Name, TypeName(objAcadEnt)

End If

Legacy COM API | 227

Figures

Figures are a group of connected lines and arcs that have meaning within a
survey. A figure can represent a fence, building, road, parcel, or similar object.
Unlike a normal polyline, a vertex in a figure can reference a survey point. If
a referenced survey point is moved, vertices in the figure are moved as well.
The first line or arc added to the figure sets the location all other lines and
arcs will be drawn from. Each line and arc added to a figure is in turn based
on the endpoint of the previous element. The position of the last endpoint
can be determined from the read-only properties
AeccSurveyFigure.LastPointX and AeccSurveyFigure.LastPointY.

Creating a Figure Object

A collection of all figures in the survey database are stored in the
AeccSurveyProject.Figures property. New figures are made using the
collection’s Create method.

Dim oFigure As AeccSurveyFigure
Set oFigure = oSurveyProject.Figures.Create("Figure_01")

Adding Lines to a Figure

Each line added to a figure is drawn from the endpoint of the previous line
or arc. The new line can be drawn to a particular point location, for a distance
along an absolute azimuth, or for a distance along an azimuth relative to the
direction of the previous line. If the figure has no lines or arcs, then the first
line added will only set the point that the next line or arc is drawn from.

AddLineByPoint

AddLineByPoint adds a line to the figure to the specified point location. An
optional parameter can specify a survey point to reference so that whenever
it changes the figure vertex will change as well.

' Draw a line to the location of survey point 3001.
Dim oPoint1 As AeccSurveyPoint
Set oPoint1 = oSurveyProject.GetPointByNumber(3001)

228 | Chapter 1 API Developer's Guide

oFigure.AddLineByPoint oPoint1.Easting, oPoint1.Northing,
3001

AddLineByAzimuthDistance

AddLineByAzimuthDistance adds a line to the figure of the specified length
and of the specified angle from the major axis of the survey project.

' Draw a line 30 meters long at 10 degrees from the major
axis.
oFigure.AddLineByAzimuthDistance 0.17453, 30

AddLineByDeltaAzimuthDistance

AddLineByDeltaAzimuthDistance adds a line to the figure of the specified
length and of the specified angle from the endpoint of the previous line.

' Draw a line 20 meters long at 270 degrees from the
' previous line.
oFigure.AddLineByDeltaAzimuthDistance 4.7124, 20

Adding Arcs to a Figure

Each arc added to a figure is drawn from the endpoint of the previous line or
arc. AddArc adds a segment of a circle to the figure to the specified point
location. The shape of the arc is defined by the Radius, Bulge, and CenterX
and CenterY parameters. The Bulge parameter defines what fraction of a circle
the arc comprises. If the Radius parameter is zero or negative the arc is curved
in the clockwise direction, otherwise the arc is curved in the counter-clockwise
direction. An optional parameter can specify a survey point to reference so
that whenever it changes the arc endpoint will change as well.

' Create a clockwise arc comprising of roughly half a circle

' that ends at survey point 3001.
oFigure.AddArc 10, 1.7, 0, 0, oPoint1.Easting, _
oPoint1.Northing, , 3001

Legacy COM API | 229

Adding Figures to the Drawing

Adding lines and arcs to a figure changes the survey database but does not
automatically change the drawing. After you are done adding elements to the
figure, call the AeccSurveyFigure.AddToDrawing method to create AutoCAD
elements that correspond to the figure. This is equivalent to the AutoCAD
Civil 3D command “Insert Into Drawing”.

Figures and AutoCAD Civil 3D

A figure can influence AutoCAD Civil 3D objects such as parcels and TIN
surfaces. If the AeccSurveyFigure.IsLotLine property is set to True, then
parcel segments are created for each figure line and arc when the figure is
added to the drawing. If any set of parcel segments creates closed figures, then
a parcel is formed. You can assign the parcel segments to a particular site by
setting the AeccSurveyFigure.Site property - otherwise, a new site named
“Survey Site” is created automatically. The figure still remains in the survey
database, and deleting the figure removes all associated parcel segments from
the drawing.

A figure can also form a breakline that defines how surfaces are triangulated.
This is accomplished by setting the AeccSurveyFigure.IsBreakline property
to True

Creating a Figure Style

A figure style controls the visual appearance of figures. The
AeccSurveyFigureStyle object has AeccDisplayStyle properties for controlling
the color, line type, and visibility of lines and of markers at the figure
endpoints, the figure midpoint, at line vertices. The types of markers used are
controlled by separate AeccMarkerStyle properties for the start, mid, and end
points of the figure, and for all vertexes. Markers can also be drawn at a normal
alignment to the orientation of the figure by setting the
IsAlignAdditionalMarkersWithFigure, IsAlignMidPointMarkersWithFigure,
IsAlignStartAndEndPointMarkersWithFigure, and
IsAlignVertexMarkersWithFigure properties to True for the appropriate type
of marker.

Additional markers can also be placed along the figure. The nature of these
additional markers is set by the

230 | Chapter 1 API Developer's Guide

AeccSurveyFigureStyle.AdditionalMarkersPlacementMethod property. If the
placement method is set for interval placement, then a new marker is placed
every n units apart where n is the value of the
AeccSurveyFigureStyle.AdditionalMarkersInterval property. If the
placement method is set for divided placement, then the figure is divided into
n parts of equal length where n is the value of the
AeccSurveyFigureStyle.AdditionalMarkersDivideFigureBy property. A
marker is placed at each part, including the figure start and end points. If the
placement method is set for continuous, then the markers are placed exactly
one marker’s width apart along the length of the figure.

You can determine the style of figure drawing by examining the
FigureDisplayMode property. There are three ways a figure can be visualized:
using figure elevations, flattening the figure to a single elevation, or
exaggerating figure elevations. If the figure is flattened to a single elevation,
the elevation can be read from the FlattenFigureElevation property. If the
figure elevations are exaggerated when displayed, the amount of exaggerations
is held in the read-only FigureElevationScaleFactor property.

All figure styles are stored in the AeccSurveyDocument.FigureStyle collection.
The figure object’s AeccSurveyFigure.Style property takes the string name
of the style to use.

This sample creates a new figure style object and adjusts some of the style
settings:

Dim oFigureStyles As AeccSurveyFigureStyles
Dim oFigureStyle As AeccSurveyFigureStyle
Set oFigureStyles = oSurveyDocument.FigureStyles
Set oFigureStyle = oFigureStyles.Add(sStylename)

' Set the style so that additional markers are visible,
' blue, and drawn every 20 units along the figure.
With oFigureStyle

.AdditionalMarkersDisplayStylePlan.Visible = True

.AdditionalMarkersDisplayStylePlan.Color = 150 ' blue

.AdditionalMarkersPlacementMethod = _
aeccSurveyAdditionalMarkerPlacementMethodAtInterval

.AdditionalMarkersInterval = 20
End With

' Assign the style to a figure.
oFigure.Style = oFigureStyle.Name

Legacy COM API | 231

Using the Figure Prefix Database

A figure read from a fieldbook file can have a letter prefix signifying what
object or concept the figure represents. This figure prefix describes the style
and property settings to use with the figure. A list of figure prefixes is stored
in AeccSurveyFigurePrefixDatabase objects. The collection of all databases
in the document are stored in the AeccSurveyDocument.FigurePrefixDatabases
property. New figure prefixes and databases are added through the parent
collection’s Create method. Once a prefix or database is created, it becomes
a permanent part of the figure prefix database and it is not lost upon loading
a new document or running a new instance of AutoCAD Civil 3D. Because of
this, it is important to check for existing prefix databases and prefixes by name
before trying to create new ones. The
AeccSurveyFigurePrefixDatabases.FindItem method can be used to search
for an existing database id or name.

NOTE

The similarly named AeccSurveyFigurePrefixDatabase.FindItem can only
be used to search for the identification numbers of prefixes within a database
- to find a prefix by name, use the
AeccSurveyFigurePrefixDatabase.GetMatchedFigurePrefix method.

This sample creates a new figure prefix database and a new figure prefix. It
switches the current database to the newly created one, and sets an existing
figure to use the new prefix’s style.

' Get a reference to all the prefix databases.
Dim oPrefixDatabases As AeccSurveyFigurePrefixDatabases
Set oPrefixDatabases = oSurveyDocument.FigurePrefixDatabases

' See if our database already exists. If it does not,
' create a new one.
Dim oPrefixDatabase As AeccSurveyFigurePrefixDatabase
Set oPrefixDatabase = oPrefixDatabases.FindItem("NewDB")
If (oPrefixDatabase Is Nothing) Then

Set oPrefixDatabase = oPrefixDatabases.Create("NewDB")
End If

' See if our figure prefix already exists. If it does not,
' create a new figure prefix.
Dim oSurveyFigurePrefix As AeccSurveyFigurePrefix

232 | Chapter 1 API Developer's Guide

On Error Resume Next
Set oSurveyFigurePrefix = _
oPrefixDatabase.GetMatchedFigurePrefix("BV")

On Error GoTo 0
If (oSurveyFigurePrefix Is Nothing) Then

Set oSurveyFigurePrefix = oPrefixDatabase.Create("BV")
End If

' Set the properties of the prefix.
oSurveyFigurePrefix.Style = _
oSurveyDocument.FigureStyles(0).Name

oSurveyFigurePrefix.IsLotLine = True
oSurveyFigurePrefix.IsBreakline = True
oSurveyFigurePrefix.Layer = "0"
oSurveyFigurePrefix.Save

You can set a figure to use a prefix style manually by using the
AeccSurveyFigure.InitializeFromFigurePrefix method. It searches through
the current prefix database for a prefix name that matches the first part of the
name of the figure. For example, a figure with the name “BV 01” matches a
prefix with the name “BV”. The current prefix database can be determined
through the CurrentFigurePrefixDatabase property of the document’s survey
user settings. The following code shows the correct method for doing this:

Dim oUserSettings As AeccSurveyUserSettings
Dim CurrentDatabase As String
Set oUserSettings = oSurveyDocument.GetUserSettings
CurrentDatabase = oUserSettings.CurrentFigurePrefixDatabase

You can change the current database by setting the
CurrentFigurePrefixDatabase property to the new name and then updating
the survey user settings:

oUserSettings.CurrentFigurePrefixDatabase = "NewDB"
oSurveyDocument.UpdateUserSettings oUserSettings

Sample Program

SurveySample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Survey\SurveySample.dvb

Legacy COM API | 233

This sample creates a simple survey from hard-coded data using control points,
setups, directions, and figures. A survey style is created and applied. The
ambient settings and other global settings are demonstrated.

Points in COM

Object Hierarchy

Points Object Model

Points

This section covers the collection of all points in a document, accessing points
stored in a file, and the use of the point object.

234 | Chapter 1 API Developer's Guide

Using the Points Collection

All points in a document are held in the AeccDocument.Points property, an
object of type AeccPoints. Besides the usual collection properties and methods,
the Points object also has methods for dealing with large numbers of points
at once. An array of positions can be added using the AeccPoints.AddMultiple
method.

The following example adds a series of points to the AeccDocument.Points
collection using AddMultiple and then accesses points in the collection directly:

' This adds an array of point locations to the document's
' points collection.
Dim lNumAdded As Long
Const NUM_LOCATIONS As Long = 3
' One dimensional array, 3 for each point location.
Dim dLocations(0 To (3 * NUM_LOCATIONS) - 1) As Double
' One point per line
dLocations(0) = 4927: dLocations(1) = 3887: dLocations(2)
= 150
dLocations(3) = 5101: dLocations(4) = 3660: dLocations(5)
= 250
dLocations(6) = 5144: dLocations(7) = 3743: dLocations(8)
= 350
lNumAdded = oPoints.AddMultiple(NUM_LOCATIONS, dLocations,
0)

' This computes the average elevation of all points in a
document.
Dim oPoints As AeccPoints
Dim i As Long
Dim avgElevation As Double
Set oPoints = g_oAeccDocument.Points
For i = 0 To oPoints.Count - 1

avgElevation = avgElevation + oPoints.Item(i).Elevation
Next i
avgElevation = avgElevation / oPoints.Count
MsgBox "Average elevation: "& avgElevation & _
vbNewLine & "Number of points: " & oPoints.Count

Legacy COM API | 235

Accessing Points in a File

The AeccPoints object also has methods for reading and writing point locations
in a file. The AeccPoints.ImportPoints method creates points from locations
stored in a text file. The AeccPoints.ExportPoints method writes point
locations to a text file.

The second parameter of the ImportPoints and ExportPoints methods is a
string that describes how the point values are stored in the file. The following
table lists some commonly available file formats. You can create other formats
by using the Point File Format dialog box.

Point File Formats

Format of values in the fileString Literal

Easting, Northing, ElevationENZ (comma delimited)

Northing Easting ElevationNEZ (space delimited)

Northing, Easting, ElevationNEZ (comma delimited)

Point# Easting Northing ElevationPENZ (space delimited)

Point#, Easting, Northing, ElevationPENZ (comma delimited)

Point# Easting Northing Elevation DescriptionPENZD (space delimited)

Point#, Easting, Northing, Elevation, DescriptionPENZD (comma delimited)

Point# Northing EastingPNE (space delimited)

Point#, Northing, EastingPNE (comma delimited)

Point# Northing Easting ElevationPNEZ (space delimited)

Point#, Northing, Easting, ElevationPNEZ (comma delimited)

Point# Northing Easting Elevation DescriptionPNEZD (space delimited)

236 | Chapter 1 API Developer's Guide

Format of values in the fileString Literal

Point#, Northing, Easting, Elevation, DescriptionPNEZD (comma delimited)

Easting Northing ElevationENZ (space delimited)

Point# Northing Easting Elevation DescriptionAutodesk Uploadable File

The third parameter of the ImportPoints method is an object of type
AeccPointImportOptions, which can be set to perform actions as the data is
being loaded. For example, you can add offsets to the point positions or
elevations, determine which points to read from the file, or specify the point
group where the points are placed. The third parameter of the ExportPoints
method is of the similar AeccPointExportOptions type.

This example demonstrates the ImportPoints and ExportPoints methods:

Dim oPoints As AeccPoints
Dim oImportOptions As New AeccPointImportOptions
Dim sFilename As String
Dim sFileFormat As String
Dim iCount As Integer

Set oPoints = oDocument.Points
sFilename = "C:\My Documents\SamplePointFile.txt"
sFileFormat = "PENZ (space delimited)"
oImportOptions.PointDuplicateResolution =
aeccPointDuplicateOverwrite
iCount = oPoints.ImportPoints(sFilename, sFileFormat,
oImportOptions)

' Export the files to a separate file.
Dim oExportOptions As New AeccPointExportOptions
sFilename = "C:\My Documents\SamplePointFile2.txt"
oExportOptions.ExpandCoordinateData = True
oPoints.ExportPoints sFilename, sFileFormat, oExportOptions

Legacy COM API | 237

NOTE

When you add points using the ImportPoints method, it is possible that the
point numbers will conflict with those that already exist in the drawing. In
such cases, the user is given an option to renumber the point numbers from
the file, or to cancel the operation which will result with a Visual Basic error.
An application that uses ImportPoints should take this into account.

Using Points

Each individual point is represented by an object of type AeccPoint. The point
object contains the identification number, description, and location for the
point. The identification number, held in the Point.Number property, is unique
and is automatically assigned when the point is first created. It cannot be
changed. The read-only Point.FullDescription property is only meaningful
when the point is read from a file that contains description information.

You can access the local position through either the AeccPoint.Easting and
AeccPoint.Northing properties or by using the AeccPoint.Location property,
a three-element array containing the easting, northing, and elevation. The
point’s location can also be specified by using the AeccPoint.Grideasting
and AeccPoint.GridNorthing properties or the AeccPoint.Latitude and
AeccPoint.Longitude properties, depending on the coordinate settings of the
drawing.

This sample adds a new point to the document’s collection of points and sets
some of its properties.

Dim oPoints As AeccPoints
Set oPoints = g_oAeccDocument.Points
Dim oPoint1 As AeccPoint
Dim dLocation(0 To 2) As Double
dLocation(0) = 4958
dLocation(1) = 4078
Set oPoint1 = oPoints.Add(dLocation)
oPoint1.Name = "point1"
oPoint1.RawDescription = "Point Description"

238 | Chapter 1 API Developer's Guide

Point User-Defined Properties

Point objects can have user-defined properties associated with them, and the
properties can be organized into user-defined classifications, or are put into
an “Unclassified” classification. You can create new classifications and
user-defined properties via the API, though you can’t access the values of
existing user-defined properties attached to points. For more information
about user-defined properties and classifications, see User-Defined Property
Classifications in the .

This sample creates a new user-defined property classification for points called
“Example”, and then adds a new user-defined property with upper and lower
bounds and a default value:

Dim oApp As AcadApplication
Set oApp = ThisDrawing.Application
' NOTE - Always specify the version number.
Const sAppName = "AeccXUiLand.AeccApplication.6.0"
Set g_vCivilApp = oApp.GetInterfaceObject(sAppName)
Set g_oDocument = g_vCivilApp.ActiveDocument
Set g_oAeccDb = g_oDocument.Database
Dim oUDPClass As AeccUserDefinedPropertyClassification
Dim oUDPProp As AeccUserDefinedProperty
'Create a user-defined parcel property classification
Set oUDPClass =
g_oAeccDb.PointUserDefinedPropertyClassifications.Add("Example")
' Add a Property to our new classification An integer using
upper
' and lower bound limits of 10 and 20 with a default value
of 15
Set oUDPProp = oUDPClass.UserDefinedProperties.Add("Extra
Data", _
"Some Extra Data", aeccUDPPropertyFieldTypeInteger,

True, False, 10, True, _
False, 20, True, 15, Null)

Style

This section covers the creation of point styles and point-specific features of
the point label style object. It also explains point description keys, which are
used to assign styles to points read from a text file.

Legacy COM API | 239

Creating Point Styles

A point style is a group of settings that define how a point is drawn. These
settings include marker style, marker color and line type, and label color and
line type. Point objects can use any of the point styles that are currently stored
in the document. Styles are assigned to a point through the point’s
AeccPoint.Style property. Existing point styles are stored in the document’s
AeccDocument.PointStyles property.

You can also create custom styles and add them to the document’s collection
of point styles. First, add a new style to the document’s list of styles using the
AeccDocument.PointStyles.Add method. This method returns a new style
object that is set with all the properties of the default style. You can then make
the changes to the style object you require.

This sample creates a new points style, adjusts the style settings, and the assigns
the style to point “Point1”:

' Create the style objects to use.
Dim oPointStyles As AeccPointStyles
Dim oPointStyle As AeccPointStyle

Set oPointStyles = oDocument.PointStyles

' Add the style to the document's collection of point
styles.
Set oPointStyle = oPointStyles.Add("Sample Point Style")

' This style substitutes the normal point marker
' with a dot with a circle around it.
oPointStyle.MarkerType = aeccUseCustomMarker
oPointStyle.CustomMarkerStyle = aeccCustomMarkerDot
oPointStyle.CustomMarkerSuperimposeStyle = _
aeccCustomMarkerSuperimposeCircle

' Now set the point to use this style.
oPoint1.Style = oPointStyle

240 | Chapter 1 API Developer's Guide

Creating Point Label Styles

Any text labels or graphical markers displayed at the point location are set by
assigning a label style object to the AeccPoint.LabelStyle property. The
collection of these label styles is accessed through the
AeccDocument.PointLabelStyle property.

Point label styles can use the following property fields in the contents of any
text components:

Valid property fields for AeccLabelStyleTextComponent.Contents

<[Name(CP)]>

<[Point Number]>

<[Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Raw Description(CP)]>

<[Full Description(CP)]>

<[Point Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Latitude(Udeg|FDMSdSp|P6|RN|DPSn|CU|AP|OF)]>

<[Longitude(Udeg|FDMSdSp|P6|RN|DPSn|CU|AP|OF)]>

<[Grid Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Grid Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Scale Factor(P3|RN|AP|OF)]>

<[Convergence(Udeg|FDMSdSp|P6|RN|AP|OF)]>

Legacy COM API | 241

Valid property fields for AeccLabelStyleTextComponent.Contents

<[Survey Point]>

Label styles are described in detail in the chapter 1 section Label Styles (page
211).

Using Point Description Keys

Point description keys are a method for attaching style, label style, and
orientation to point locations in a drawing - possibly imported from a text
file which lacks such information. Keys are objects of type
AeccPointDescriptionKey. The AeccPointDescriptionKey.Name property is
a pattern matching code. If any new points are created with a description that
matches the name of an existing key, the point is assigned all the settings of
that key.

The wildcards “?” and “*” are allowed in the name. Keys can contain either
constant scale or rotation values for points or can assign orientation values
depending on parameters passed through the description string. Point
description keys are held in sets, objects of type AeccPointDescriptionKeySet.
The collection of all sets in a document are held in the document’s
AeccDocument.PointDescriptionKeySets property.

' Create a key set in the document's collection
' of sets.
Dim oPointDescriptionKeySet As AeccPointDescriptionKeySet
Set oPointDescriptionKeySet = _
oDocument.PointDescriptionKeySets.Add("Sample Key Set")

' Create a new key in the set we just made. Match with
' any description beginning with "SMP".
Dim oPointDescriptionKey As AeccPointDescriptionKey
Set oPointDescriptionKey =
oPointDescriptionKeySet.Add("SAMP*")

' Assign chosen styles and label styles to the key.
oPointDescriptionKey.PointStyle = oPointStyle
oPointDescriptionKey.OverridePointStyle = True
oPointDescriptionKey.PointLabelStyle = oLabelStyle
oPointDescriptionKey.OverridePointLabelStyle = True

242 | Chapter 1 API Developer's Guide

' Turn off the scale override, and instead scale
' to whatever is passed as the first parameter.
oPointDescriptionKey.OverrideScaleParameter = False
oPointDescriptionKey.UseDrawingScale = False
oPointDescriptionKey.ScaleParameter = 1
oPointDescriptionKey.ScaleXY = True

' And turn on the rotation override, and rotate
' all points using this key 45 degrees clockwise.
oPointDescriptionKey.OverrideFixedRotation = True
oPointDescriptionKey.FixedRotation = 0.785398163 ' radians
oPointDescriptionKey.ClockwiseRotation = True

The following is the contents of a text file in “PENZD (comma delimited)”
format with point information, a description, and parameter. This creates two
points using the previously defined SAMP* description key, resulting in point
markers four times normal size.

2000,3700.0,4900.0,150.0,SAMPLE 4
2001,3750.0,4950.0,150.0,SAMPLE 4

When a text file is loaded using Points.ImportPoints, the first alphanumeric
element in a point’s description is compared to the names of all point
description keys. If a match is found, the point’s settings are adjusted to match
the description key. Any parameters to pass to the key are added after the
description, separated by spaces. If using parameters, use a comma delimited
file format or else any parameters will be ignored. This process only takes place
when points are read from a file - after a point is created, setting the
AeccPoint.RawDescription property does nothing to change the point’s style.

Point Groups

This section explains the creation and use of point groups, which is a named
subset of the points in a document.

Creating Point Groups

A point group is a collection that contains a subset of the points in a document.
A collection of all point groups is held in a document‘s
AeccDocument.PointGroups property. Add a new point group by using the

Legacy COM API | 243

AeccDocument.PointGroups.Add method and specifying a unique identifying
string name. A new empty point group is returned.

' Get the collection of all point groups from the document.
Dim oPtGroups As AeccPointGroups
Dim oPtGroup As AeccPointGroup
Set oPtGroups = oAeccDocument.PointGroups

' Add our group to the collection of groups.
Set oPtGroup = oPtGroups.Add("Sample point group")

Adding Points to a Point Group Using QueryBuilder

Points can be placed into a point group by using the QueryBuilder, which is
a mechanism for selecting from among all the points in the document. The
AeccPointGroup.QueryBuilder property is an object of type
AeccPointGroupQueryBuilder, and contains many different properties that
allow including or excluding points based on a specific criteria. These properties
are:

ExcludeElevationsInlcudeElevations

ExcludeFullDescriptionsIncludeFullDescriptions

ExcludeNamesIncludeNames

ExcludeNumbersIncludeNumbers

ExcludeRawDescriptionsIncludeRawDescriptions

IncludePointGroups

Each of these properties is a string that describes the selection criteria used.
As many properties may be used as needed to make your selection. Any
property left blank has no affect on the selection.

The properties that query string properties of points (FullDescription, Name,
RawDescription) consist of a comma-separated list of possible strings to match
against. Each element in that list may contain the wildcards “?” and “*”. The

244 | Chapter 1 API Developer's Guide

properties that deal with number properties of points consist of a comma
delineated list of specific numbers or ranges of numbers (two values separated
by a hyphen, such as “100-200”). The properties that deal with elevation
consist of a comma delineated list of specific elevations, ranges of elevation,
upper limits (a less-than symbol followed by a value, such as “<500”), or lower
limits (a greater-than symbol followed by a value, such as “>100”).

' Add points to the point group using the QueryBuilder.

' Add point 1 and point 2 to the point group.
oPtGroup.QueryBuilder.IncludeNames = "po?nt1,point2"
' Add point 3 to the point group by using its number.
oPtGroup.QueryBuilder.IncludeNumbers = "3"
' You can also use wildcards. The following would
' select all points with a name beginning with "poi".
oPtGroup.QueryBuilder.IncludeNames = "poi*"
' Exclude those points with an elevation above 300.
oPtGroup.QueryBuilder.ExcludeElevations = ">300"
' And include those points with identification numbers
' 100 through 200 inclusive, and point number 206.
oPtGroup.QueryBuilder.IncludeNumbers = "100-200,206"

To create a group that contains every point in the document, set the boolean
AeccPointGroup.InlcudeAllPoints property to True.

Using Point Groups

Once a point group has been created, you can perform actions upon all the
points in that group in a single operation. You can override point elevations,
descriptions, styles, and label styles.

' Check to see if a particular point exists in the group.
If (oPtGroup.ContainsPoint(oPoint1.Number) = False) Then

Debug.Print oPoint1.Name & " is not in the point group."
End If

' Set the elevation of all the points in the group to 100.
oPtGroup.Elevation = 100
oPtGroup.OverrideElevation = True

Point groups can also be used to define or modify a TIN surface. The
AeccTinSurface.PointGroups property is a collection of point groups. When

Legacy COM API | 245

a point group is added to the collection, every point in the point group is
added to the TIN surface.

' oTinSurf is a valid object of type AeccTinSurface.
' oPointGroup is a valid object of type AeccPointGroup.
oTinSurf.PointGroups.Add oPointGroup

Sample Program

SurfacePointsSample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\SurfacePoints\SurfacePointsSample.dvb

The sample code from this section can be found in context in the
SurfacePointsSample.dvb program. The Points module contains functions that
load points from a text file, create points manually, use description keys, deal
with point groups, and use points to modify a surface. The PointStyles module
demonstrates the creation of a point style and a point label style.

246 | Chapter 1 API Developer's Guide

Surfaces in COM

Object Hierarchy

Legacy COM API | 247

Using the Surfaces Collection

All surfaces in a drawing are located in the AeccDocument.Surfaces collection.
Each surface in the collection can be accessed through the AeccSurfaces.Item
method, which takes either an integer index or the string name of the surface.
The AeccSurfaces.Item method returns a generic reference of type
AeccSurface, so you need to check the AeccSurface.Type property to actually
determine what kind of surface it is.

This sample examines each surface in the drawing and reports what kind of
surface it is:

Dim oSurface As AeccSurface
Dim i As Integer

For i = 0 To oAeccDocument.Surfaces.Count - 1
Set oSurface = oAeccDocument.Surfaces.Item(i)
Select Case (oSurface.Type)

Case aecckGridSurface:
Dim oGridSurface As AeccGridSurface
Set oGridSurface = oSurface
Debug.Print oGridSurface.Name & ": Grid"

Case aecckTinSurface:
Dim oTinSurface As AeccTinSurface
Set oTinSurface = oSurface
Debug.Print oTinSurface.Name & ": TIN"

Case aecckGridVolumeSurface:
Dim oGridVolume As AeccGridVolumeSurface
Set oGridVolume = oSurface
Debug.Print oGridVolume.Name & ": Grid Volume"

Case aecckTinVolumeSurface:
Dim oTinVolume As AeccTinVolumeSurface
Set oTinVolume = oSurface
Debug.Print oTinVolume.Name & ": TIN Valume"

End Select
Next i

248 | Chapter 1 API Developer's Guide

Creating a Surface

This section covers the various methods for creating surfaces. Loading surfaces
from LandXML files, .TIN files, or DEM files is explained. It also demonstrates
creating new TIN, grid, and volume surfaces.

Creating a Surface From a LandXML File

A surface saved as a LandXML file can be loaded using the
AeccSurfaces.ImportXML method. The file also describes the kind of surface
to be created, so you do not need to know beforehand. After the surface has
been loaded, you can examine the AeccSurface.Type property and assign the
generic surface reference to a more specific type.

Dim oSurface As AeccSurface
Dim sFileName As String
sFileName = "C:\My Documents\EG.xml"
Set oSurface = oAeccDocument.Surfaces.ImportXML(sFileName)

Dim oTinSurface as AeccTinSurface
If (oSurface.Type = aecckTinSurface) Then

Set oTinSurface = oSurface
End If

Creating a TIN Surface

Creating a Surface From a .tin File

The AeccSurfaces.ImportTIN method can create a new TIN surface from a
binary .tin file.

Dim oTinSurface As AeccTinSurface
Dim sFileName As String
sFileName = "C:\My Documents\EG.tin"
oTinSurface = oAeccDocument.Surfaces.ImportTIN(sFileName)

Legacy COM API | 249

Creating a Surface Using AddTinSurface

You can also create empty TIN surfaces by adding to the document’s collection
of surfaces through the AeccSurfaces.AddTinSurface method. This method
requires preparing an object of type AeccTinCreationData. It is important to
specify every property of the AeccTinCreationData object to avoid errors.

' Create a blank surface using the first layer in the
' document's collection of layers and the first
' surface style in the document's collection of
' surface styles.
Dim oTinSurface As AeccTinSurface
Dim oTinData As New AeccTinCreationData

oTinData.Name = "EG"
oTinData.Description = "Sample TIN Surface"
oTinData.Layer = oAeccDocument.Layers.Item(0).Name
oTinData.BaseLayer = oAeccDocument.Layers.Item(0).Name
oTinData.Style = oAeccDocument.SurfaceStyles.Item(0).Name
Set oTinSurface = oAeccDocument.Surfaces
.AddTinSurface(oTinData)

Creating a Grid Surface

Creating a Surface From a DEM File

A grid surface can be generated from a DEM file using the
AeccSurfaces.ImportDEM method.

NOTE

The conversion process between the raster information and a surface can be
slow. Be sure to indicate this to the user.

Dim oGridSurface As AeccGridSurface
Dim sFileName As String
sFileName = "C:\My Documents\file.dem"
oGridSurface = oAeccDocument.Surfaces.ImportDEM(sFileName)

250 | Chapter 1 API Developer's Guide

Creating a Surface From AddGridSurface

A blank grid surface can be created using the AeccSurfaces.AddGridSurface
method. Before you can use this method you need to prepare an object of
type AeccGridCreationData, which describes the nature of the surface to be
created. It is important to specify every property of the AeccGridCreationData
object to avoid errors. Units for XSpacing, YSpacing and Orientation are
specified in the ambient settings.

Dim oGridSurface As AeccGridSurface
Dim oGridCreationData As New AeccGridCreationData

oGridData.Name = "Sample Grid Surface"
oGridData.Description = "Grid Surface"
oGridData.BaseLayer = oAeccDocument.Layers.Item(0).Name
oGridData.Layer = oAeccDocument.Layers.Item(0).Name
oGridData.Orientation = 0#
oGridData.XSpacing = 100#
oGridData.YSpacing = 100#
oGridData.Style = oAeccDocument.SurfaceStyles.Item(0).Name
Set oGridSurface = oAeccDocument.Surfaces _
.AddGridSurface(oGridData)

Creating a Volume Surface

A volume surface represents the mathematical difference between two TIN
surfaces or between two grid surfaces in the document. It is created using the
AeccSurfaces.AddTinVolumeSurface or AeccSurfaces.AddGridVolumeSurface
methods. Each of these methods require the creation of objects
(AeccGridVolumeCreationData or AeccTinVolumeCreationData) that describe
the new volume surface. It is important to specify every property of these
objects to avoid errors. Units for XSpacing, YSpacing and Orientation are
specified in the ambient settings.

This sample demonstrates the creation of a TIN volume surface from two
existing surfaces, oTinSurfaceL and oTinSurfaceH:

' Get the names of the layer and style to be used.
Dim sLayerName as String
sLayerName = g_oAeccDocument.Layers.Item(0).Name
Dim sStyleName as String

Legacy COM API | 251

sStyleName = oAeccDocument.SurfaceStyles.Item(0).Name

' Create a AeccTinVolumeCreationData object and set all
its
' properties.
Dim oTinVolumeCreationData As New AeccTinVolumeCreationData
oTinVolumeCreationData.Name = "VS"
oTinVolumeCreationData.BaseLayer = sLayerName
oTinVolumeCreationData.Layer = sLayerName
Set oTinVolumeCreationData.BaseSurface = oTinSurfaceL
Set oTinVolumeCreationData.ComparisonSurface = oTinSurfaceH
oTinVolumeCreationData.Style =
oTinVolumeCreationData.Description = "Volume Surface"

' Create a new TIN volume surface.
Dim oTinVolumeSurface As AeccTinVolumeSurface
Set oTinVolumeSurface = oAeccDocument.Surfaces _
.AddTinVolumeSurface(oTinVolumeCreationData)

Working with Surfaces

This section covers the various methods for modifying or examining all types
of surfaces. This includes adding a boundary, adding information to an existing
surface from a DEM file, and using snapshots to improve surface performance.

Adding a Boundary

A boundary is a closed polyline that defines the visibility of surface triangles
within it. A boundary can hide all triangles outside it, hide all triangles inside
it, or show triangles inside it that would otherwise be hidden. Boundaries also
change surface statistics such as area and number of triangles. Boundaries can
either be “destructive” (totally hiding triangles that cross the boundary) or
“non-destructive” (clipping triangle edges at the point where they cross the
boundary). Normally, TIN surfaces use non-destructive boundaries, while grid
surfaces can only have destructive boundaries:

252 | Chapter 1 API Developer's Guide

Legacy COM API | 253

Non-destructive Boundary

Destructive Boundary

All boundaries applied to a surface are stored in the AeccSurface.Boundaries
collection. The boundary itself is defined by an AutoCAD entity such as a
closed POLYLINE or POLYGON. The height of the entity plays no part in how
surface triangles are clipped, so you can use 2D entities. This entity can also
contain curves, but the boundary always consists of lines. How these lines are
tessellated is defined by the mid-ordinate distance, which is the maximum
distance between a curve and the lines that are generated to approximate it:

254 | Chapter 1 API Developer's Guide

Mid-ordinate Distance

This sample adds a square outside boundary to a surface:

' First we need an AutoCAD entity (in this case a polyline)
' which describes the boundary location.
Dim oPoly As AcadPolyline
Dim dPoints(0 To 11) As Double
dPoints(0) = 1000: dPoints(1) = 1000: dPoints(2) = 0
dPoints(3) = 1000: dPoints(4) = 4000: dPoints(5) = 0
dPoints(6) = 4000: dPoints(7) = 4000: dPoints(8) = 0
dPoints(9) = 4000: dPoints(10) = 1000: dPoints(11) = 0

Legacy COM API | 255

Set oPoly = oAeccDocument.Database.ModelSpace _
.AddPolyline(dPoints)

oPoly.Closed = True

' The name of the boundary object.
Dim sName as String
sName = "Sample Boundary"
' The third parameter describes what the boundary does
' to triangles inside it. The fourth parameter is True
' if you want non-destructive boundary or false otherwise.
' The final parameter is the mid-ordinate distance.
Dim oNewBoundary As AeccSurfaceBoundary
Set oNewBoundary = oSurface.Boundaries.Add(oPoly, sName,
_
aeccBoundaryOuter, True, 10.5)

NOTE

Any operation that causes the formation of new triangles (such as adding
points or breaklines to a TIN surface) may result in triangles that cross existing
boundary lines. Boundaries should always be added after every other operation
that adds points to a surface.

Adding Data from DEM Files

Any number of DEM files can be added to existing grid and TIN surfaces.
When a DEM file is added to the AeccGridSurface.DEMFiles or
AeccTinSurface.DEMFiles collection, its information is converted to an evenly
spaced lattice of triangles that is added to the surface.

oTinSurface.DEMFiles.Add("C:\My Documents\file.dem")

Improving Performance By Using Snapshots

A surface is made up of all the operations that modified the surface’s triangles.
If you rebuild the surface, re-performing all these operations can be slow.
Snapshots can improve performance by recording all the triangles in a surface.
Subsequent rebuilds start from the data of the snapshot, thus saving time by
not performing complicated calculations that have already been done once.

256 | Chapter 1 API Developer's Guide

Surfaces have CreateSnapshot, RebuildSnapshot, and RemoveSnapshot methods.
Both CreateSnapshot and RebuildSnapshot will overwrite an existing snapshot.

TIP

RebuildSnapshot will cause an error if the snapshot does not exist.
CreateSnapshot and RebuildSnapshot can also cause errors if the surface is
out-of-date.

Finding Intersections

When working with surfaces, it can be useful to determine where a vector
intersects with a surface, which you can do with the surface’s
IntersectPointWithSurface() method. For example, you can determine if
the top of a structure is visible from a point on the surface, or whether one
point on the surface is visible from another point. This example tests whether
a vector starting at (20424.7541, 20518.0409, 100) pointing in direction (0.6,
0.4, -0.5) intersects with the first surface in the drawing, and if it does, it prints
out the intersection location:

Dim objSurf As AeccSurface
Dim varStartPt As Variant, varDir As Variant, varIntPt As
Variant
Dim darrStart(2) As Double
Dim darrDir(2) As Double
darrStart(0) = 20424.7541
darrStart(1) = 20518.0409
darrStart(2) = 100
darrDir(0) = 0.6
darrDir(1) = 0.4
darrDir(2) = -0.5
varStartPt = darrStart
varDir = darrDir
Set objSurf = g_oAeccDoc.Surfaces(0)
varIntPt = objSurf.IntersectPointWithSurface(varStartPt,
varDir)
If UBound(varIntPt) = 2 Then

Debug.Print varIntPt(0), varIntPt(1), varIntPt(2)
End If

Legacy COM API | 257

Working with TIN Surfaces

This section covers the various methods for modifying or examining existing
TIN surfaces. This includes adding new point data directly, adding breaklines,
and adding contours.

Adding Point Data to a TIN Surface

There are two techniques for adding points that are unique to TIN surfaces:
using point files and using point groups.

Adding Points Using Point Files

The AeccTinSurface.PointFiles collection contains the names of text files
that contain point information. These text files must consist only of lines
containing the point number, easting, northing, and elevation delineated by
spaces. Except for comment lines beginning with “#”, any other information
will result in an error. Unlike TIN or LandXML files, text files do not contain
a list of faces - the points are automatically joined into a series of triangles
based on the settings of the AeccTinSurface.DefinitionProperties property.

' Add points from a .txt file to an existing TIN surface.
sFileName = "C:\My Documents\points.txt"
oTinSurface.PointFiles.Add sFileName

Adding Points Using Point Groups

You can manually add points to a TIN surface by adding point groups to the
AeccTinSurface.PointGroups collection.

' Make a surface consisting of 30 random points. To do
' this, first add 30 points to the document's collection
' of points, then make a point group from those points.
' Finally, add that point group to the surface.
Dim i As Integer
For i = 0 To 29

Dim pt(0 To 2) As Double

258 | Chapter 1 API Developer's Guide

pt(0) = Int(5000 * Rnd())
pt(1) = Int(5000 * Rnd())
pt(2) = Int(200 * Rnd())
Dim oPoint As AeccPoint
Set oPoint = oAeccDocument.Points.Add(pt)
oPoint.Name = "Point" & CStr(i)

Next i

Dim oPtGroup As AeccPointGroup
Set oPtGroup = oAeccDocument.PointtGroups.Add("Random
group")
' Add all points with a name beginning with "Point"
oPtGroup.QueryBuilder.IncludeNames = "point*"
' Add the point group to the surface.
oTinSurface.PointGroups.Add oPtGroup
oTinSurface.Update

You can also add points to a surface by adding contour lines. See Adding
Contours to a TIN Surface (page 263).

All points that make up a surface can be retrieved from the read-only
AeccTinSurface.Points property, which is an array of locations.

' Print the location (easting, northing, and elevation)
' of the 1000th point.
Dim vLocation as Variant
vLocation = oTinSurface.Points(1000)

' Now vLocation contains a 3 element array of doubles.
Debug.Print "Easting:"; vLocation(0)
Debug.Print "Northing:"; vLocation(1)
Debug.Print "Elevation:"; vLocation(2)

Adding a Breakline to a TIN Surface

Breaklines are used to shape the triangulation of a TIN surface. Each TIN surface
has a collection of breaklines contained in the AeccTinSurface.Breaklines
property. There are different kinds of breaklines, and each is created in a
slightly different way.

Legacy COM API | 259

NOTE

For more information about breaklines, see Breaklines in the AutoCAD Civil
3D User’s Guide.

Adding a Standard Breakline

A standard breakline consists of an array of 3D lines or polylines. Each line
endpoint becomes a point in the surface and surface triangles around the
breakline are redone. If the polyline contains curves, then the curve is
tessellated based on the mid-ordinate distance parameter.

' Create the polyline basis for the breakline.
Dim o3DPoly as Acad3DPolyline
Dim dPoints(0 To 8) As Double
dPoints(0) = 1200: dPoints(1) = 1200: dPoints(2) = 150
dPoints(3) = 2000: dPoints(4) = 3000: dPoints(5) = 120
dPoints(6) = 3000: dPoints(7) = 2000: dPoints(8) = 100
Set o3DPoly = oAeccDocument.Database.ModelSpace _
.Add3DPoly(dPoints)

o3DPoly.Closed = False
Dim oBreakline As AeccSurfaceBreakline
Dim vBLines As Variant
' This has to be an array, even if we only have one entity.
Dim oEntityArray(0) As AcadEntity
Set oEntityArray(0) = oAeccDocument.Database.ModelSpace _
.Add3DPoly(dPoints)

Set oBreakline = oTinSurface.Breaklines.AddStandardBreakline
_
(oEntityArray, "Sample Standard Break", 1#)

Adding a Proximity Breakline

A proximity breakline does not add new points to a surface. Instead, the nearest
surface point to each breakline endpoint is used. The triangles that make up
a surface are then recomputed making sure those points are connected. A
proximity breakline is created using the same fashion as standard breaklines
except you call AeccSurfaceBreaklines.AddProximityBreakline instead of
AeccSurfaceBreaklines.AddStandardBreakline.

260 | Chapter 1 API Developer's Guide

Set oBreakline =
oTinSurface.Breaklines.AddProximityBreakline(_
oEntityArray, _
"Sample Proximity Break", _
1#)

Adding a Non-destructive Breakline

A non-destructive breakline does not remove any triangle edges. It places new
points along the breakline at each intersection with a triangle edge and new
triangles are computed. Again, it is created like standard breaklines are created
except you call the AeccSurfaceBreaklines.AddNonDestructiveBreakline
method.

Set oBreakline = oTinSurface.Breaklines _
.AddNonDestructiveBreakline(_
oEntityArray, _
"Sample Non-Destructive Break", _
1#)

Adding a Wall Breakline

A wall breakline is used when the height of the surface on one side of the
breakline is different than the other side. This method creates two breaklines,
one for the top of the wall and one for the bottom. However, you cannot have
a perfectly vertical wall in a TIN surface. The first breakline is placed along
the path specified by the BreaklineEntities parameter, and the second breakline
is very slightly offset to one side and raised or lowered by a relative elevation.
Among the parameters of the wall breakline creation method are an array of
wall elevations and an array describing to which side the height-adjusted
breakline is placed. The wall at each entity endpoint is offset to the right if
the value is set to True and to the left of the value is set to False where “right”
and “left” refer to directions as you walk along the breakline from the start
point to the end.

' This is an array of arrays of elevations, one array of
' elevations per entity.
Dim vElevations(0) As Variant

Legacy COM API | 261

' These are the elevations of the wall at each endpoint in
' the polyline entity.
Dim dElevations(3) As Double
' This is an array of ooleans, one for each entity.
Dim bOffsets(0) As Boolean

dElevations(0) = 30.5: dElevations(1) = 93.3
dElevations(2) = 93.3: dElevations(3) = 46.2
vElevations(0) = dElevations
' Raise the surface at the right side of the breakline.
bOffsets(0) = True: bOffsets(1) = True
bOffsets(2) = True: bOffsets(3) = True

Set oBreakline = oTinSurf.Breaklines.AddWallBreakline _
(oEntityArray, _
"Sample Wall Break", _
1#, _
vElevations, _
bOffsets)

Importing Breaklines from a File

You can import breaklines from a file in .FLT format, using
AeccSurfaceBreaklines.AddBreaklineFromFile(). When you import the file,
you need to specify whether to maintain the file link, or break the link:
■ aeccBreaklineFileMaintainLink: Reads the breaklines from the FLT file

when they are added and when the surface is rebuilt.

■ aeccBreaklineFileBreakLink: All breaklines in the FLT file are copied into
the surface as Add Breakline operations.

For more information about these options, see Importing Breaklines from a
File in the .

This sample shows how to import breaklines from a file named eg1.flt, and to
get the first newly created breakline:

Dim oBrkLine As AeccSurfaceBreakline
Set oBrkLine = brkLines.AddBreaklineFromFile("New
Breakline", "C:\eg1.flt", 10#,
aeccBreaklineFileBreakLink)(0)

262 | Chapter 1 API Developer's Guide

Adding Contours to a TIN Surface

A contour is an open or closed entity that describes the altitude of the surface
along the entity. Contours must have a constant altitude. The z value of the
first point of the entity is used as the altitude of entire entity, no matter what
is specified in the following points. Contours also have settings that can adjust
the number of points added to the surface - when you create a contour, you
specify a weeding distance, a weeding angle, and a distance parameter. Points
in the contour are removed if the distance between the points before and after
is less than the weeding distance and if the angle between the lines before
and after is less than the weeding angle. Each line segment is split into equal
sections with a length no greater than the supplemental distance parameter.
Any curves in the entity are also tessellated according to the mid-ordinate
distance, just like breaklines. The supplemental distance value has precedence
over the weeding values, so it is possible that the final contour will have line
segments smaller than the weeding parameters specify.

For more information about weeding and countours, see Weeding and
Supplementing Factors for Contours in the .

A TIN surface has a collection of contours in the AeccTinSurface.Contours
property. The following sample demonstrates adding a contour to a surface:

Dim dPoints(0 To 8) As Double ' 3 points
Dim o3DPoly As AcadPolyline

dPoints(0) = 2500: dPoints(1) = 1500: dPoints(2) = 100
dPoints(3) = 2600: dPoints(4) = 1600: dPoints(5) = 100
' It does not matter that we specify a Z value of 50. It
' is still located at an altitude of 100, just like
' the first point.
dPoints(6) = 2400: dPoints(7) = 1600: dPoints(8) = 50
Set o3DPoly = oAeccDocument.Database.ModelSpace _
.AddPolyline(dPoints)

o3DPoly.Closed = False
Dim oEntities(0) As AcadEntity
Set oEntities(0) = o3DPoly

Dim dWeedDist as Double
Dim dWeedAngle as Double
Dim dDist as Double
Dim dMidOrdDist as Double
dWeedDist = 55.5

Legacy COM API | 263

dWeedAngle = 0.0698 ' 0.0698 radians = 4 degrees
dDist = 85.5
dMidOrdDist = 1#
Dim oNewContour As AeccSurfaceContour
Set oNewContour = oTinSurf.Contours.Add(oEntities, _
"Sample Contour", dWeedDist, dWeedAngle, dDist,

dMidOrdDist)

Extracting Contours from a TIN Surface

You can extract a contour (or contours) from a surface in a given elevation
range as AutoCAD entities. This example extracts the contours between 90
and 95, and prints out the entity type for each one.

NOTE

The contours that you wish to extract must be visible in the drawing for this
example to work.

...
Dim z As Double
Dim objSurf As AeccSurface
Set objSurf = g_oAeccDoc.Surfaces(0)
Dim varObjects As Variant
Dim objEnt As AcadEntity
Dim iCtr As Integer, iLow As Integer, iHigh As Integer
varObjects =
objSurf.ExtractContour(aeccDisplayOrientationPlan,
aeccSFMajorContours, 90, 95)
iLow = LBound(varObjects)
iHigh = UBound(varObjects)
For iCtr = iLow To iHigh

Set objEnt = varObjects(iCtr)
Debug.Print TypeName(objEnt)

Next iCtr

Surface Style

This section explains the creation and application of surface styles.

264 | Chapter 1 API Developer's Guide

Creating a Style

All surface styles are stored in the AeccDocument.SurfaceStyles collection,
an object of type AeccSurfaceStyles. To create a new style, call the
AeccSurfaceStyles.Add method with the name of your new style. It is initially
set according to the document’s ambient settings.

Dim oSurfaceStyle As AeccSurfaceStyle
oSurfaceStyle = oDocument.SurfaceStyles.Add("New Style")

Changing a Surface Style

A surface style consists of different objects governing the appearance of
boundaries, contours, direction analysis, elevation analysis, grids, points, slope
arrows, triangles, and watershed analysis. Usually a single style only displays
some of these objects. When initially created, a style is set according to the
document’s ambient settings and may show some unwanted style elements.
Always set the visibility properties of all style elements to ensure the style
behaves as you expect.

' Change the style so that it displays surface triangles,
' major contour lines, and any boundaries along the outside
' edge, but nothing else.
oSurfaceStyle.TriangleStyle.DisplayStylePlan.Visible = True
oSurfaceStyle.BoundaryStyle.DisplayExteriorBoundaries =
True
oSurfaceStyle.BoundaryStyle.DisplayStylePlan.Visible = True
oSurfaceStyle.ContourStyle.MajorContourDisplayStylePlan _
.Visible = True

oSurfaceStyle.PointStyle.DisplayStylePlan.Visible = False
oSurfaceStyle.BoundaryStyle.DisplayInteriorBoundaries =
False
oSurfaceStyle.ContourStyle.MinorContourDisplayStylePlan _
.Visible = False

oSurfaceStyle.ContourStyle.UserContourDisplayStylePlan _
.Visible = False

oSurfaceStyle.GridStyle.DisplayStylePlan.Visible = False
oSurfaceStyle.DirectionStyle.DisplayStylePlan.Visible =
False

Legacy COM API | 265

oSurfaceStyle.ElevationStyle.DisplayStylePlan.Visible =
False
oSurfaceStyle.SlopeStyle.DisplayStylePlan.Visible = False
oSurfaceStyle.SlopeArrowStyle.DisplayStylePlan.Visible =
False
oSurfaceStyle.WatershedStyle.DisplayStylePlan.Visible =
False

' This must be repeated for all Model display styles as
well.

Assigning a Style to a Surface

Set the AeccSurface.Style property to the name of the style you wish to use.

' The surface is displayed according to the
' oSurfaceStyle style we have just created.
oSurface.Style = oSurfaceStyle.Name

Performing Surface Analysis

This section shows you how to perform an elevation analysis and a watershed
analysis.

Creating an Elevation Analysis

An elevation analysis creates a 2-dimensional projection of a surface and then
add bands of color indicating ranges of altitude. The analysis is managed by
an object of type AeccSurfaceAnalysisElevation, located in the
AeccSurface.SurfaceAnalysis.ElevationAnalysis property. This object
contains a method for creating elevation regions and a read-only collection
containing these regions. The method, CalculateElevationRegions, creates
a series of contiguous regions each representing a portion of the surface’s total
elevation. Each time it is called it discards all existing elevation regions for
the surface and creates a new collection of regions. The collection,
ElevationRegions, lets you modify the color, minimum elevation, and
maximum elevation of each region. Always check the number of regions
through the AeccSurfaceAnalysisElevation.ElevationRegions.Count

266 | Chapter 1 API Developer's Guide

property as CalculateElevationRegions may create fewer regions than
specified by the first parameter.

CalculateElevationRegions creates regions according to the statistical method
specified in the AeccSurfaceStyle.ElevationStyle.GroupValuesBy property.
The elevation style object also contains other means of modifying how
elevation analyses are made, such as using one of the preset color schemes.

This sample creates an elevation analysis for a surface using shades of green:

Dim oSurfaceAnalysisElevation As
AeccSurfaceAnalysisElevation
Set oSurfaceAnalysisElevation = oSurface.SurfaceAnalysis
_
.ElevationAnalysis

Dim oElevationRegions As AeccElevationRegions
Set oElevationRegions = oSurfaceAnalysisElevation _
.CalculateElevationRegions(6, False)

' See exactly how many regions were created.
Debug.Print oSurfaceAnalysisElevation.ElevationRegions.Count

oElevationRegions.Item(0).Color = 80 ' bright green
oElevationRegions.Item(1).Color = 82
oElevationRegions.Item(2).Color = 84
oElevationRegions.Item(3).Color = 86
oElevationRegions.Item(4).Color = 88 ' dark green

' Adjust the range of one of the regions.
oElevationRegions.Item(2).MaximumElevation = _
oElevationRegions.Item(2).MaximumElevation - 5

Many elevation analysis features can be modified through the surface style -
see the Surface Style (page 264) section. For example, you can choose from
among a number of pre-set color schemes.

Creating a Watershed Analysis

A watershed analysis predicts how water will flow over and off a surface. The
analysis is managed by an object of type AeccSurfaceAnalysisWatershed held
in the AeccSurface.SurfaceAnalysis.WatershedAnalysis property. The
analysis is created by calling the
AeccSurfaceAnalysisWatershed.CalculateWatersheds method. This splits

Legacy COM API | 267

the surface into separate regions, each with its own drain target or targets.
The set of all these regions are held in the
AeccSurfaceAnalysisWatershed.WatershedRegions collection.

You have some control over how the regions are split. If the boolean
AeccSurfaceAnalysisWatershed.MergeAdjacentBoundaries property is set to
True, then regions along the boundary are merged into one region if their
boundary points or segments touch. If a depression on the surface has a
minimum average depth smaller than the value of the
AeccSurfaceAnalysisWatershed.MergeDepression property, then the
depression does not become its own region and is combined with the region
it drains into.

oSurface.SurfaceAnalysis.WatershedAnalysis _
.MergeAdjacentBoundaries = True

oSurface.SurfaceAnalysis.WatershedAnalysis _
.MergeDepression = 10.65

Types of Watershed Regions

Depending on the nature of the drain target, each watershed region is a
different type derived from AeccWatershedRegion. (For more information
about watershed region types, see Types of Watersheds in the). By checking
the Type property of each object in the
AeccSurfaceAnalysisWatershed.WatershedRegions collection, you can then
determine the specific type of each region.

' Compute water drainage over the surface.
oSurface.SurfaceAnalysis.WatershedAnalysis _
.CalculateWatersheds

' Extract information from each watershed region.
' Loop through all the regions in the WatershedRegions
' collection. For each region, determine its
' specific type. Once we cast each region object to this
' specific type, we can learn how water drains over the
' surface.
Dim oWSAnalysis As AeccWatershedRegions
Set oWSAnalysis = oSurface.SurfaceAnalysis.WatershedAnalysis
_
.WatershedRegions

Dim i as Integer

268 | Chapter 1 API Developer's Guide

For i = 0 To oWSAnalysis.Count - 1
Select Case (oWSAnalysis.Item(i).Type)
Case aeccWatershedBoundaryPoint

Dim oWSPoint As AeccWatershedRegionBoundaryPoint
Set oWSPoint = oWSAnalysis.Item(i)

Case aeccWatershedBoundarySegment
Dim oWSSegment As AeccWatershedRegionBoundarySegment
Set oWSSegment = oWSAnalysis.Item(i)

Case aeccWatershedDepression
Dim oWSDepression As AeccWatershedRegionDepression
Set oWSDepression = oWSAnalysis.Item(i)

Case aeccWatershedFlat
Dim oWSFlat As AeccWatershedRegionFlat
Set oWSFlat = oWSAnalysis.Item(i)

Case aeccWatershedMultiDrain
Dim oWSMulti As AeccWatershedRegionMultiRegionDrain
Set oWSMulti = oWSAnalysis.Item(i)

Case aeccWatershedMultiDrainNotch
Dim oWSNotch As

AeccWatershedRegionMultiRegionDrainNotch
Set oWSNotch = oWSAnalysis.Item(i)

Case Else 'aeccWatershedUnknownSink

End Select
Next i

Objects derived from AeccWatershedRegion have other common features.
They all have an identification number in the AeccWatershedRegion.Id
property. They also have a AeccWatershedRegion.Boundary property, which
contains a 2-dimensional array containing the points of a closed polygon
enclosing the region.

Dim vBound As Variant
vBound = oWSAnalysis.Item(i).BoundaryLine
For j = 0 To UBound(vBound)

' Print the X, Y and Z coordinates of a border point.
Debug.Print vBound(j, 0), vBound(j, 1), vBound(j, 2)

Next j

Legacy COM API | 269

Boundary Point Regions

In a region of type AeccWatershedBoundaryPoint, water reaches the boundary
of a surface at a single point. The X, Y, and Z coordinates of this point are
held in a variant array in the
AeccWatershedBoundaryPoint.BoundaryDrainPoint property.

Dim oWSPoint As AeccWatershedRegionBoundaryPoint
Set oWSPoint = oWSAnalysis.Item(i)
Dim vDrainPoint As Variant
vDrainPoint = oWSPoint.BoundaryDrainPoint
Debug.Print "This region drains to point: " & vDrainPoint(0)
_
& ", " & vDrainPoint(1) & ", " & vDrainPoint(2)

Boundary Segment Regions

Regions of type aeccWatershedBoundarySegment represent areas where water
flows out of a surface along a series of line segments. The end points of these
line segments are held in a 2-dimensional array of doubles in the
aeccWatershedBoundarySegment.BoundaryDrainSegment property. The first
dimension of this array represents each point and the second dimension are
the X, Y, and Z coordinates of the points.

Dim oWSSegment As AeccWatershedRegionBoundarySegment
Set oWSBoundarySegment = oWSAnalysis.Item(i)
Dim vDrainSegments as Variant
vDrainSegments = oWSBoundarySegment.BoundaryDrainSegment

Dim j as Integer
Debug.Print "This region drains through the following"
Debug.Print "line segments:"
For j = 0 To UBound(vDrainSegments, 1) - 1

Debug.Print vDrainSegments(j, 0) & ", " _
& vDrainSegments(j, 1) & ", " _
& vDrainSegments(j, 2) & " to ";

Debug.Print vDrainSegments(j + 1, 0) & ", " _
& vDrainSegments(j + 1, 1) _
& ", " & vDrainSegments(j + 1, 2)

Next j

270 | Chapter 1 API Developer's Guide

Depression Regions

A region of type aeccWatershedDepression represents an area of the surface
that water does not normally leave. It is possible for the depression to fill and
then drain into other regions. The lowest points on the region edge where
this overflow may take place and the regions that the water drains into are
kept in the aeccWatershedDepression.Drains collection.

Dim oWSDepression As AeccWatershedRegionDepression
Set oWSDepression = oWSAnalysis.Item(i)
Dim oDrains As AeccWatershedDrains
Set oDrains = oWSDepression.Drains

For j = 0 To oDrains.Count - 1
' See what kind of drain targets we have.
If (UBound(oDrains.Item(j).Targets) = -1) Then

' This depression drains outside the surface.
Debug.Print "Drain through point: " & _
oDrains.Item(j).Location(0) & ", " & _
oDrains.Item(j).Location(1) & ", " & _

oDrains.Item(j).Location(2) & _
" to the surface boundary."

Else
' This depression can drain into other regions.
Dim lTargets() As Long
lTargets = oDrains.Item(j).Targets
sTargets = CStr(lTargets(0))
Dim k as Integer
For k = 1 To UBound(lTargets)

sTargets = sTargets & ", " & CStr(lTargets(k))
Next k
Debug.Print "Drain through point: " & _
oDrains.Item(j).Location(0) & ", " & _
oDrains.Item(j).Location(1) & ", " & _
oDrains.Item(j).Location(2) & _
" into the following regions: " & sTargets

Endif
Next j

Flat Regions

A flat area that only drains into one region is combined into that region. If a
flat surface drains into multiple regions, then it is created as a separate region

Legacy COM API | 271

of type AeccWatershedRegionFlat. The only feature of flat regions is an array
of all drain targets.

Dim oWSFlat As AeccWatershedRegionFlat
Set oWSFlat = oWSAnalysis.Item(i)

varDrainsInto = oWSFlat.DrainsInto
sTargets = CStr(varDrainsInto(0))
For k = 1 To UBound(varDrainsInto)

sTargets = sTargets & ", " & CStr(varDrainsInto(k))
Next k
Debug.Print "This region drains into regions " & sTargets

Multiple Drain Regions (Point)

A region of the surface may drain through a point into many different regions.
Such regions are represented by an object of type
AeccWatershedRegionMultiRegionDrain. These regions have properties
containing the point water drains through and a collection of all regions into
which water flows.

Dim oWSMulti As AeccWatershedRegionMultiRegionDrain
Set oWSMulti = oWSAnalysis.Item(i)

' vDrainPoint is a single point, like BoundaryPoint
vDrainPoint = oWSMulti.DrainPoint
' varDrainsInto is an array of variants, each a region ID.
varDrainsInto = oWSMulti.DrainsInto
sTargets = CStr(varDrainsInto(0))
For k = 1 To UBound(varDrainsInto)

sTargets = sTargets & ", " & CStr(varDrainsInto(k))
Next k

Debug.Print "This region drains to point: " & vDrainPoint(0)
_
& ", " & vDrainPoint(1) & ", " & vDrainPoint(2) _
& " and into the following regions: " & sTargets

Multiple Drain Regions (Notch)

A region can also drain into many other regions through a series of line
segments. These regions are represented by an object of type

272 | Chapter 1 API Developer's Guide

AeccWatershedRegionMultiRegionDrainNotch and they keep both a list of all
regions this region drains into and a list of all segments this region drains
through.

Dim oWSNotch As AeccWatershedRegionMultiRegionDrainNotch
Set oWSNotch = oWSAnalysis.Item(i)
' vDrainSegments is a 2-dimensional array, like
BoundarySegment.
Dim vDrainSegments As Variant
vDrainSegments = oWSNotch.DrainSegment
' varDrainsInto is an array of region IDs.
Dim varDrainsInto As Variant
varDrainsInto = oWSNotch.DrainsInto

sTargets = CStr(varDrainsInto(0))
For k = 1 To UBound(varDrainsInto)

sTargets = sTargets & ", " & CStr(varDrainsInto(k))
Next k
Debug.Print "This region drains through these segments: "
For j = 0 To UBound(vDrainSegments, 1) - 1

Debug.Print vDrainSegments(j, 0) & ", " _
& vDrainSegments(j, 1) & ", " _
& vDrainSegments(j, 2) & " to ";

Debug.Print vDrainSegments(j + 1, 0) & ", " _
& vDrainSegments(j + 1, 1) _
& ", " & vDrainSegments(j + 1, 2)

Next j

' Display each region this drains into.
Debug.Print "and into the following regions: " & sTargets

Sample Programs

SurfacePointsSample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\SurfacePoints\SurfacePointsSample.dvb

This sample program demonstrates the creation of surfaces using point data
loaded from a file and through use of point groups. Surface styles are created
and applied.

Legacy COM API | 273

SurfaceOperations.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\SurfaceOperations\SurfaceOperationsSample.dvb

This sample demonstrates the elevation analysis and watershed analysis
features. The watershed analysis includes a full report of all watershed regions.
Breaklines of all kinds, contours, and borders are applied to the surfaces as
well.

CorridorSample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Corridor\CorridorSample.dvb

A TIN volume surface is created between the corridor datum surface and the
ground surface. Cut and fill information is obtained from this volume surface.

274 | Chapter 1 API Developer's Guide

Sites and Parcels in COM

Object Hierarchy

Legacy COM API | 275

Sites

This section explains the creation and use of sites, which are used as containers
for parcels and alignments (for information about alignments, see Chapter 6:
Alignments (page 284)).

Creating Sites

All sites in a document are held in the AeccDocument.Sites collection, an
object of type AeccSites. The AeccSites.Add method creates a new empty
site with the specified name.

' Create a new site.
Dim oSites As AeccSites
Set oSites = oAeccDocument.Sites
Dim oSite As AeccSite
Set oSite = oSites.Add("Sample Site")

Using Sites

A site represents a distinct group of alignments and parcels. Besides containing
collections of parcels and alignments, the AeccSite object also contains
properties describing how the site objects are numbered and displayed.

' NextAutoCounterParcel sets the starting identification
' number for newly created parcels. The first parcel
' created from parcel segments will be 300, the next 301,
' and so on.
oSite.NextAutoCounterParcel = 300

Parcels

This section covers the creation and use of parcels. Parcel segments, parcel
loops, and parcel styles and label styles are also explained.

276 | Chapter 1 API Developer's Guide

Creating Parcels with Parcel Segments

While a site contains a collection of parcels, this collection has no Add method.
Instead, parcels are automatically generated from the parcel segments added
to the AeccSite.ParcelSegments collection. A parcel segment is a
2-dimensional line, curve, or AutoCAD entity. Once a closed structure can be
formed from the segments in the site, a parcel is automatically formed. Each
additional parcel segment that forms new closed structures creates additional
parcels. This may affect the shape of existing parcels - if an existing parcel is
bisected by a new segment, the existing parcel is reduced in size and a new
parcel is formed.

Dim oSegments as AeccParcelSegments
Set oSegments = oSite.ParcelSegments

' Parcel 1
Call oSegments.AddLine(0, 0, 0, 200)
Call oSegments.AddCurve(0, 200, -0.5, 200, 200)
Call oSegments.AddLine(200, 200, 200, 0)
Call oSegments.AddLine(200, 0, 0, 0)

' Parcel 2
Call oSegments.AddCurve2(200, 200, 330, 240, 400, 200)
Call oSegments.AddLine(400, 200, 400, 0)

' This will complete parcel 2, as well as form parcel 3.
Dim oPolyline As AcadPolyline
Dim dPoints(0 To 8) As Double
dPoints(0) = 400: dPoints(1) = 0: dPoints(2) = 0
dPoints(3) = 325: dPoints(4) = 25: dPoints(5) = 0
dPoints(6) = 200: dPoints(7) = 0: dPoints(8) = 0
Set oPolyline = oAeccDocument.Database.ModelSpace_
.AddPolyline(dPoints)

oPolyline.Closed = True
' Passing True as the second parameter deletes the
' polyline entity once the parcel segment has been created.
Call oSegments.AddFromEntity(oPolyline, True)

Legacy COM API | 277

About Parcel Segments

Each parcel segment is a collection of parcel segment elements, which are
represented by objects derived from the AeccParcelSegmentElement base class.
A segment element is an undivided part of a segment that can be used to
create a parcel. When an element is intersected by another parcel segment,
the element is split into two contiguous elements:

Dim oSegments as AeccParcelSegments
Set oSegments = oSite.ParcelSegments

Dim oSegment1 as AeccParcelSegment

' Segment1 consists of 1 element, a line with endpoints
' at 500,100 to 600,100
Set oSegment1 = oSegments.AddLine(500, 100, 600, 100)
' We can tell this by looking at the number of elements:
Debug.Print oSegment1.Count ' returns 1
' If we cross the segment element with another segment,
' then the elements get split.
Call oSegments.AddLine(550, 150, 550, 50)

Debug.Print oSegment1.Count ' returns 2

The AeccParcelSegment.Item method returns each element as an object of
type AeccParcelSegmentElement. This object has no Type property, so to
determine what kind of element it represents you need to directly check the
object type with the TypeOf operator:

' Loop through all elements of the parcel segment "oSegment"

Dim i as Integer
For i = 0 to oSegment.Count - 1

Dim oElement As AeccParcelSegmentElement
Set oElement = oSegment.Item(i)

Debug.Print "Element " & i & ": " _
& oElement.StartX & "," & oElement.StartY & " to "

_
& oElement.EndX & ", " & oElement.EndY

If (TypeOf oElement Is AeccParcelSegmentLine) Then

278 | Chapter 1 API Developer's Guide

Dim oSegmentLine As AeccParcelSegmentLine
Set oSegmentLine = oElement
Debug.Print " is a line. "

ElseIf (TypeOf oElement Is AeccParcelSegmentCurve) Then
Dim oSegmentCurve As AeccParcelSegmentCurve
Set oSegmentCurve = oElement
Debug.Print " is a curve with a radius of:" _
& oSegmentCurve.Radius

End If
Next i

Determining Parcel Loops

You can determine which parcel segment elements make up a parcel by using
the AeccParcel.ParcelLoops collection. This collection stores objects of type
AeccParcelSegmentElement. Each parcel segment element contains a reference
to the parent segment, so you can also determine which segments are used
to create a parcel.

' Loop through all elements used to make parcel "oParcel"

Dim i as Integer
For i = 0 to oParcel.ParcelLoops.Count - 1

Dim oElement As AeccParcelSegmentElement
Set oElement = oParcel.ParcelLoops.Item(i)

Debug.Print "Element " & i _
& " of segment " & oElement.ParcelSegment.Name & ":

" _
& oElement.StartX & "," & oElement.StartY & " to "

_
& oElement.EndX & ", " & oElement.EndY

If (TypeOf oElement Is AeccParcelSegmentLine) Then
Dim oSegmentLine As AeccParcelSegmentLine
Set oSegmentLine = oElement
Debug.Print " is a line. "

ElseIf (TypeOf oElement Is AeccParcelSegmentCurve) Then
Dim oSegmentCurve As AeccParcelSegmentCurve
Set oSegmentCurve = oElement
Debug.Print " is a curve with a radius of:" _

Legacy COM API | 279

& oSegmentCurve.Radius
End If

Next i

Parcel Style and Parcel Segment Style

The collection of all parcel styles is held in the AeccDocument.ParcelStyles
collection. The parcel style controls how a parcel and the parcel segments are
displayed. Among the features is an option to only fill the area close to a
parcel’s borders. A parcel style can be assigned to a parcel through the
AeccParcel.Style property.

This sample creates a parcel style, sets the style properties, and assigns the
style to the parcel object “oParcel”:

Dim oParcelStyles As AeccParcelStyles
Set oParcelStyles = oDocument.ParcelStyles
Dim oParcelStyle As AeccParcelStyle
Set oParcelStyle = oParcelStyles.Add("Sample Style")
oParcelStyle.ObservePatternFillDistance = True
oParcelStyle.PatternFillDistance = 20
oParcelStyle.SegmentsDisplayStylePlan.color = 20 '
red-orange
oParcelStyle.AreaFillDisplayStylePlan.color = 20
oParcelStyle.AreaFillDisplayStylePlan.Visible = True
oParcelStyle.AreaFillDisplayStylePlan.Lineweight = 20
oParcelStyle.AreaFillHatchDisplayStylePlan.UseAngleOfObject
= True
oParcelStyle.AreaFillHatchDisplayStylePlan.ScaleFactor =
3.8
oParcelStyle.AreaFillHatchDisplayStylePlan.Spacing = 1.5
oParcelStyle.AreaFillHatchDisplayStylePlan.Pattern =
"AR-SAND"
oParcelStyle.AreaFillHatchDisplayStylePlan.HatchType =
aeccHatchPreDefined

' Assign the "Sample Style" style to a single parcel.
oParcel.Style = oParcelStyle.Name

The style of individual parcel segments depends on the style of the parent
parcel, but segments may be shared by different parcels. This conflict is decided
by the AeccParcels.Properties.SegmentDisplayOrder property, which is a

280 | Chapter 1 API Developer's Guide

collection of all parcel styles currently in use. These styles are arranged
according to priority level. When two parcels with different styles share a
segment, the segment is displayed with the higher priority style. Among these
styles is the global site parcel style, set through the
AeccParcels.Properties.SiteParcelStyle property. The site parcel style
defines the outside boundary style of parcels within the site, given a high
enough priority.

This sample displays the current order of parcel styles in the site and then
modifies the order:

' List all styles used by parcels in this site with their
' priority
Dim oSegmentDisplayOrder As AeccSegmentDisplayOrder
Set oSegmentDisplayOrder = _
oSite.Parcels.Properties.SegmentDisplayOrder

Debug.Print "Number styles used:";
oSegmentDisplayOrder.Count
Debug.Print "Priority of each style for affecting segments:"
Dim i as Integer
For i = 0 To oSegmentDisplayOrder.Count - 1

Debug.Print i; " & oSegmentDisplayOrder.Item(i).Name
Next i

' Set the style with the highest priority to the lowest
' priority.
Dim lLowestPosition as Long
lLowestPosition = oSegmentDisplayOrder.Count - 1
oSegmentDisplayOrder.SetPriority 0, lLowestPosition

Parcel Label Style

The style of text labels or graphical markers displayed with parcels and parcel
segments are set by assigning a label style object to the
AeccParcel.AreaLabelStyle property. All such label styles are held in the
AeccDocument.ParcelLabelStyles.AreaLabelStyles property, a collection of
AeccLabelStyle objects.

Legacy COM API | 281

Parcel label styles can use the following property fields in the contents of any
text component:

Valid property fields for AeccLabelStyleTextComponent.Contents

<[Name(CU)]>

<[Description(CP)]>

<[Parcel Area(Usq_ft|P2|RN|AP|Sn|OF)]>

<[Parcel Number(Sn)]>

<[Parcel Perimeter(Uft|P3|RN|AP|Sn|OF)]>

<[Parcel Address(CP)]>

<[Parcel Site Name(CP)]>

<[Parcel Tax ID(Sn)]>

Label styles are described in detail in the chapter 1 section Label Styles (page
211).

Parcel User-Defined Properties

Parcel objects can have user-defined properties associated with them, and the
properties can be organized into user-defined classifications, or are put into
an “Unclassified” classification. You can create new classifications and
user-defined properties via the API, though you can’t access the values of
existing user-defined properties attached to parcels. For more information
about user-defined properties and classifications, see User-Defined Property
Classifications in the .

This sample creates a new user-defined property classification for parcels called
“Example”, and then adds a new user-defined property with upper and lower
bounds and a default value:

Dim oApp As AcadApplication

282 | Chapter 1 API Developer's Guide

Set oApp = ThisDrawing.Application
' NOTE - Always specify the version number.
Const sAppName = "AeccXUiLand.AeccApplication.6.0"
Set g_vCivilApp = oApp.GetInterfaceObject(sAppName)
Set g_oDocument = g_vCivilApp.ActiveDocument
Set g_oAeccDb = g_oDocument.Database
Dim oUDPClass As AeccUserDefinedPropertyClassification
Dim oUDPProp As AeccUserDefinedProperty
'Create a user-defined parcel property classification
Set oUDPClass =
g_oAeccDb.ParcelUserDefinedPropertyClassifications.Add("Example")
' Add a Property to our new classification An integer using
upper
' and lower bound limits of 10 and 20 with a default value
of 15
Set oUDPProp = oUDPClass.UserDefinedProperties.Add("Extra
Data", _
"Some Extra Data", aeccUDPPropertyFieldTypeInteger,

True, False, 10, True, _
False, 20, True, 15, Null)

Accessing Daylight Feature Lines

The AeccSite:FeatureLines property is a collection of grading feature lines
in the drawing. This collection only contains the types of feature lines available
through the Prospector on the AutoCAD Civil 3D user interface. The collection
doesn’t contain daylight or projection feature lines. However, you can still
get information about these types of feature lines programmatically by
prompting the user to select feature line object in a drawing. This code sample
prompts the user to select a feature line, and then prints out the number of
points it contains:

Dim objPart As AeccLandFeatureLine
Dim objEnt As AcadObject
Dim objAcadEnt As AcadEntity
Dim varPick As Variant
ThisDrawing.Utility.GetEntity objEnt, varPick, "Select the
polyline/feature line"
If TypeOf objEnt Is AeccLandFeatureLine Then

Set objPart = objEnt
Debug.Print TypeName(objPart)

Legacy COM API | 283

Dim varArray As Variant
varArray = objPart.GetPoints()
Debug.Print "Number of points = " & UBound(varArray)

ElseIf TypeOf objEnt Is AcadEntity Then
Set objAcadEnt = objEnt
Debug.Print TypeName(objAcadEnt)
If (g_oAeccDoc.Sites.Count = 0) Then

g_oAeccDoc.Sites.Add "TestSite"
End If
Set objPart =

g_oAeccDoc.Sites(0).FeatureLines.AddFromPolyline(objAcadEnt.ObjectID,
"Standard")
End If

Sample Program

ParcelSample.dvb

<installation-directory>\Sample\Civil 3D
API\COM\Vba\Parcel\ParcelSample.dvb

This sample program accesses the active document, creates a site, and then
creates three parcels by adding line segments, curve segments, and entity
segments. A new parcel style is composed and applied to one of the parcels.

Alignments in COM

This chapter covers creating and using Alignments, Stations, and Alignment
styles using the COM API. For information about performing these tasks using
the .NET API, see the chapter Using Alignments in .NET (page 65).

284 | Chapter 1 API Developer's Guide

Object Hierarchy

Legacy COM API | 285

COM API Alignment Object Model

Basic Alignment Operations

Creating an Alignment

Alignments are usually created in existing sites. Each AeccSite object has its
own collection of alignments held in an AeccAlignments object in the
AeccSite.Alignments property. There is also a collection of alignments that
are not associated with a site in the AeccDocument.AlignmentsSiteless
property.

Creating a New Alignment

The AeccAlignments object provides two ways of creating new alignments.
The AeccAlignments.Add method takes an alignment name, a layer to draw
to, an alignment style object, and an alignment label style object as parameters
and returns a new empty alignment. The AeccAlignments.AddFromPolyline
method takes the same parameters as well as an AutoCAD polyline entity and
flags indicating whether curves should be added between the separate line
segments and whether the polyline entity should be erased after the alignment
is created.

This code creates an alignment from a 2D polyline, using existing styles:

' Create an alignment style with default settings.
Dim oAlignmentStyle as AeccAlignmentStyle
Set oAlignmentStyle = oDocument.AlignmentStyles _
.Add("Sample style")

' Create an alignment label style with default settings.
Dim oAlignmentLabelStyleSet As AeccAlignmentLabelStyleSet
Set oAlignmentLabelStyleSet =
oAeccDocument.AlignmentLabelStyleSets _
.Add("Sample label style")

' Get the collection of all siteless alignments.
Dim oAlignments as AeccAlignments
Set oAlignments = oDocument.AlignmentsSiteless

286 | Chapter 1 API Developer's Guide

' Create an empty alignment that draws to layer 0.
Dim oAlignment as AeccAlignment
Set oAlignment = oAlignments.Add("Sample Alignment", "0",
_
oAlignmentStyle.Name, oAlignmentLabelStyleSet.Name)

' Create a simple 2D polyline.
Dim oPoly As AcadLWPolyline
Dim dPoints(0 To 5) As Double
dPoints(0) = 0: dPoints(1) = 600
dPoints(2) = 600: dPoints(3) = 0
dPoints(4) = 1200: dPoints(5) = 600
Set oPoly = oDocument.Database.ModelSpace _
.AddLightWeightPolyline(dPoints)

' Create an alignment from the polyline object. Draw to
' layer 0, erase the polyline when we are done, and
' insert curves between line segments.
Set oAlignment = oAlignments.AddFromPolyline(_
"Sample Alignment from Polyline", _
"0", _
oPoly.ObjectID, _
oAlignmentStyle.Name, _
oAlignmentLabelStyleSet.Name, _
True, _
True)

Creating an Alignment Offset From Another Alignment

Alignments can also be created based on the layout of existing alignments.
The AeccAlignment.Offset method creates a new alignment with a constant
offset and adds it to the same parent site as the original alignment. The new
alignment has the same name (followed by a number in parenthesis) and the
same style as the original, but it does not inherit any station labels, station
equations, or design speeds from the original alignment.

' Add an offset alignment 10.5 units to the left of the
' original.
oAlignment.Offset -10.5

Legacy COM API | 287

Defining an Alignment Path Using Entities

An alignment is made up of a series of entities, which are individual lines,
curves, and spirals that make up the path of an alignment. A collection of
entities is held in the AeccAlignment.Entities collection. This collection has
a wide array of methods for creating new entities.

The following code sample demonstrates some of the entity creation methods:

' Define the points used to create the entities.
Dim point1(0 To 2) As Double
Dim point2(0 To 2) As Double
Dim point3(0 To 2) As Double
point1(0) = 200: point1(1) = 800: point1(2) = 0
point2(0) = 600: point1(1) = 400: point1(2) = 0
point3(0) = 1000: point1(1) = 800: point1(2) = 0

' Create a line segment entity that connects two points.
Dim oAlignmentTangent As AeccAlignmentTangent
Set oAlignmentTangent = oAlignment.Entities _
.AddFixedLine1(point1, point2)

' Print the length of the line segment.
Debug.Print oAlignmentTangent.Length

' Create a curve entity that connects the second endpoint

' of the fixed line to another point. The radius of the
' curve depends on the direction of the fixed line and the
' location of the second endpoint.
Dim oAlignmentArc As AeccAlignmentArc
Set oAlignmentArc = oAlignment.Entities _
.AddFloatingCurve6(oAlignmentTangent.id, point3)

' Print the angle of direction at the second endpoint.
Debug.Print oAlignmentArc.EndDirection

Determining Entities Within an Alignment

Each of the entities in the AeccAlignment.Entities collection is a type derived
from the AeccAlignmentEntity. By checking the AeccAlignmentEntity.Type

288 | Chapter 1 API Developer's Guide

property, you can determine the specific type of each entity and cast the
reference to the correct type.

The following sample loops through all entities in an alignment, determines
the type of entity, and prints one of its properties.

Debug.Print "Number of Entities: ";
oAlignment.Entities.Count

Dim i as Integer
For i = 0 To oAlignment.Entities.Count - 1

Select Case (oAlignment.Entities.Item(i).Type)
Case aeccTangent

Dim oTangent As AeccAlignmentTangent
Set oTangent = oAlignment.Entities.Item(i)
Debug.Print "Tangent length:" & oTangent.Length

Case aeccArc
Dim oArc As AeccAlignmentArc
Set oArc = oAlignment.Entities.Item(i)
Debug.Print "Arc radius:" & oArc.Radius

Case aeccSpiral
Dim oSpiral As AeccAlignmentSpiral
Set oSpiral = oAlignment.Entities.Item(i)
Debug.Print "Spiral A value:" & oSpiral.A

Case aeccSpiralCurveSpiralGroup
Dim oSCSGroup As AeccAlignmentSCSGroup
Set oSCSGroup = oAlignment.Entities.Item(i)
Debug.Print "Radius of curve in SCS group:" _
& oSCSGroup.Arc.Radius

' And so on for AeccAlignmentSTSGroup,
' AeccAlignmentSTGroup, AeccAlignmentTSGroup
' AeccAlignmentSCGroup, and AeccAlignmentCSGroup types.
End Select

Next i

Each entity has an identification number contained in its
AeccAlignmentEntity.Id property. Each entity knows the numbers of the
entities before and after it in the alignment, and you can access specific entities
by identification number through the AeccAlignmentEntities.EntityAtId
method.

Legacy COM API | 289

Stations

Modifying Stations with Station Equations

A station is a point along an alignment a certain distance from the start of
the alignment. By default the station at the start point of an alignment is 0
and increases contiguously through its length. This can be changed by using
station equations, which can renumber stations along an alignment. A station
equation is an object of type AeccStationEquation which contains a location
along the alignment, a new station number basis, and a flag describing whether
station values should increase or decrease from that location on. A collection
of these station equations is contained in the AeccAlignment.StationEquations
property.

The following code changes an alignment so that at a point 80 units from the
beginning, stations will start being numbered from the value 720:

Dim oStationEquation As AeccStationEquation
Set oStationEquation = oAlignment.StationEquations _
.Add(80, 0, 720, aeccIncreasing)

NOTE

Some functions, such as AeccAlignment.InstantaneousRadius, require a “raw”
station value without regard to modifications made by station equations.

Creating Station Sets

Alignment stations are usually labeled at regular intervals. You can compute
the number, location, and geometry of stations taken at regular spacings by
using the AeccAlignment.GetStations method. This function returns a
collection of stations based on the desired interval of major and minor stations
and the type of station requested. Unless the type of station requested is
aeccEquation, station values ignore any station equations.

Dim oStations As AeccAlignmentStations

' If we were to label major stations placed every 100 units
' and minor stations placed every 20, how many labels

290 | Chapter 1 API Developer's Guide

' would this alignment have?
Set oStations = oAlignment.GetStations(aeccAll, 100#, 20#)
Debug.Print "Number of labels: " & oStations.Count

' Print the location of each major station in the set.
Dim i as Integer
For i = 0 To oStations.Count - 1

If (oStations.Item(i).Type = aeccMajor) Then
Dim j As Integer
Dim x As Integer
Dim y As Integer
j = oStations.Item(i).Station
x = oStations.Item(i).Easting
y = oStations.Item(i).Northing
Debug.Print "Station " & j & " is at:" & x & ", "

& y
End If

Next i

Specifying Design Speeds

You can assign design speeds along the length of an alignment to aid in the
future design of a roadway based on the alignment. The collection of speeds
along an alignment are contained in the AeccAlignment.DesignSpeeds
property. Each item in the collection is an object of type AeccDesignSpeed,
which contains a raw station value, a speed to be used from that station on
until the next design speed specified or the end of the alignment, and an
optional string comment.

Dim oDesignSpeed As AeccDesignSpeed
' Starting at station 0 + 00.00
Set oDesignSpeed = oAlignment.DesignSpeeds.Add(0#)
oDesignSpeed.Value = 45
oDesignSpeed.Comment = "Straightaway"

' Starting at station 4 + 30.00
Set oDesignSpeed = oAlignment.DesignSpeeds.Add(430#)
oDesignSpeed.Value = 30
oDesignSpeed.Comment = "Start of curve"

' Starting at station 14 + 27.131 to the end.

Legacy COM API | 291

Set oDesignSpeed = oAlignment.DesignSpeeds.Add(1427.131)
oDesignSpeed.Value = 35
oDesignSpeed.Comment = "End of curve"
' Make Alignment speed-based
oAlignment.DesignSpeedBased = True

Superelevation

Another setting that can be applied to certain stations of an alignment is the
superelevation, used to adjust the angle of roadway section components for
corridors based on the alignment. The inside and outside shoulders and road
surfaces can be adjusted for both the left and right sides of the road. The
collection of all superelevation information for an alignment is stored in the
AeccAlignment.SuperelevationData property. Note that, unlike most AutoCAD
Civil 3D API collections, the Add method does not return a new default entity
but instead passes a reference to the new object through the second parameter.
An individual superelevation data element (type
AeccSuperelevationDataElement) can be accessed through the
AeccAlignment.SuperelevationAtStation method.

This code creates a new superelevation data element at station 11+00.00 and
sets the properties of that element:

Dim oSuperElevationData As AeccSuperElevationData
Dim oSuperElevationElem As AeccSuperElevationDataElem

' Create an element at station 11+00.0. A new default
' superelevation data element is assigned to our
' oSuperElevationElem variable.
Set oSuperElevationData = oAlignment.SuperelevationData
oSuperElevationData.Add 1100, oSuperElevationElem

oSuperElevationElem.SegmentCrossSlope _
(aeccSuperLeftOutShoulderCrossSlope) = 0.05

oSuperElevationElem.SegmentCrossSlope _
(aeccSuperLeftOutLaneCrossSlope) = 0.02

oSuperElevationElem.SegmentCrossSlope _
(aeccSuperLeftInLaneCrossSlope) = 0.01

oSuperElevationElem.SegmentCrossSlope _
(aeccSuperLeftInShoulderCrossSlope) = 0.03

oSuperElevationElem.SegmentCrossSlope _
(aeccSuperRightInShoulderCrossSlope) = 0.03

292 | Chapter 1 API Developer's Guide

oSuperElevationElem.SegmentCrossSlope _
(aeccSuperRightInLaneCrossSlope) = 0.01

oSuperElevationElem.SegmentCrossSlope _
(aeccSuperRightOutLaneCrossSlope) = 0.02

oSuperElevationElem.SegmentCrossSlope _
(aeccSuperRightOutShoulderCrossSlope) = 0.05

oSuperElevationElem.TransPointType = aeccSuperManual
oSuperElevationElem.TransPointDesc = "Manual adjustment"
oSuperElevationElem.RawStation = 1100

Each superelevation data element represents a point in the transition of the
roadway cross section. A single transition from normal to full superelevation
and back is a zone. A collection of data elements representing a single zone
can be retrieved by calling the AeccAlignment.SuperelevationZoneAtStation
method.

This sample retrieves the data elements that are part of the superelevation
zone starting at station 0+00.00, and prints all their descriptions:

Set oSuperElevationData = _
oAlignment.SuperelevationZoneAtStation(0)

For Each oSuperElevationElem In oSuperElevationData
Debug.Print oSuperElevationElem.TransPointDesc

Next

Alignment Style

Creating an Alignment Style

A style governs many aspects of how alignments are drawn, including direction
arrows and curves, spirals, and lines within an alignment. All alignment styles
are contained in the AeccDocument.AlignmentStyles collection. Alignment
styles must be added to this collection before being used by an alignment
object. A style is normally assigned to an alignment when it is first created,
but it can also be assigned to an existing alignment through the
AeccAlignment.Style property.

Dim oAlignmentStyle As AeccAlignmentStyle
Set oAlignmentStyle = oAeccDocument.AlignmentStyles _

Legacy COM API | 293

.Add("Sample alignment style")

' Do not show direction arrows.
oAlignmentStyle.ArrowDisplayStylePlan.Visible = False
oAlignmentStyle.ArrowDisplayStyleModel.Visible = False
' Show curves in violet.
oAlignmentStyle.CurveDisplayStylePlan.color = 200 ' violet
oAlignmentStyle.CurveDisplayStyleModel.color = 200 ' violet
' Show straight sections in blue.
oAlignmentStyle.LineDisplayStylePlan.color = 160 ' blue
oAlignmentStyle.LineDisplayStyleModel.color = 160 ' blue

' Assign the style to an existing alignment.
oAlignment.Style = oAlignmentStyle.Name

Alignment Label Styles

The style of text labels and graphical markers displayed along an alignment
are set by passing an AeccAlignmentLabelSet object when the alignment is
first created with the AeccAlignments.Add and
AeccAlignments.AddFromPolyline methods or by assigning the label set object
to the AeccAlignment.LabelStyle property. The AeccAlignmentLabelSet
object consists of separate sets of styles to be placed at major stations, minor
stations, and where the alignment geometry, design speed, or station equations
change.

Labels at major stations are described in the
AeccAlignmentLabelSet.MajorStationLabelSet property, which is a collection
of AeccLabelMajorStationSetItem objects. Each
AeccLabelMajorStationSetItem object consists of a single AeccLabelStyle
object and a number of properties describing the limits of the labels and the
interval between labels along the alignment.

Labels at minor stations are described in the
AeccAlignmentLabelSet.MinorStationLabelSet property, which is a collection
of AeccLabelMinorStationSetItem objects. Each
AeccLabelMinorStationSetItem object consists of a single AeccLabelStyle
object and a number of properties describing the limits of the labels and the
interval between labels along the alignment. When a new
AeccLabelMinorStationSetItem is created it must reference a parent
AeccLabelMajorStationSetItem object.

294 | Chapter 1 API Developer's Guide

Labels may be placed at the endpoints of each alignment entity. Such labels
are controlled through the AeccAlignmentLabelSet.GeometryPointLabelSet
property, an AeccLabelSet. The label set is a collection of AeccLabelStyle
objects. Labels at each change in alignment design speeds and station equations
(the AeccAlignmentLabelSet.GeometryPointLabelSet and
AeccAlignmentLabelSet.GeometryPointLabelSet properties respectively) are
also AeccLabelSet objects.

All label styles at alignment stations can draw from the following list of
property fields:

Valid property fields for AeccLabelStyleTextComponent.Contents

<[Station Value(Uft|FS|P0|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Raw Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Design Speed(P3|RN|AP|Sn|OF)]>

<[Instantaneous Direction(Udeg|FDMSdSp|MB|P4|RN|DSn|CU|AP|OF)]>

<[Perpendicular Direction(Udeg|FDMSdSp|MB|P4|RN|DSn|CU|AP|OF)]>

<[Alignment Name(CP)]>

<[Alignment Description(CP)]>

<[Alignment Length(Uft|P3|RN|AP|Sn|OF)]>

<[Alignment Start Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Alignment End Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

Legacy COM API | 295

Label styles for minor stations, geometry points, design speeds, and station
equations can also use the following property fields:

Minor stations<[Offset From Major Station(Uft|P3|RN|AP|Sn|OF)]>

Geometry points<[Geometry Point Text(CP)]>

Geometry points<[Geometry Point Entity Before Data(CP)]>

Geometry points<[Geometry Point Entity After Data(CP)]>

Design speeds<[Design Speed Before(P3|RN|AP|Sn|OF)]>

Station equations<[Station Ahead(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

Station equations<[Station Back(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

Station equations<[Increase/Decrease(CP)]>

Label styles are described in detail in the chapter 1 section Label Styles (page
211).

Sample Program

AlignmentSample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Alignment\AlignmentSample.dvb

The sample code from this chapter can be found in context in the
AlignmentSample.dbp project. This project can create alignments based on
AutoCAD polyline entities or through layout commands. It demonstrates
using styles, label styles, station equations, design speeds, and superelevation.

296 | Chapter 1 API Developer's Guide

Profiles in COM

This chapter covers creating and using Profiles using the COM API. For
information about performing these tasks using the .NET API, see the chapter
Profiles in .NET (page 78).

Legacy COM API | 297

Object Hierarchy

298 | Chapter 1 API Developer's Guide

Profile Object Model

Profiles

This section covers the creation and style of profiles. Profiles are the vertical
analogue to alignments. Together, an alignment and a profile represent a 3D
path.

Creating a Profile From a Surface

A profile is an object consisting of elevations along an alignment. Each
alignment contains a collection of profiles in its AeccAlignment.Profiles
property. The AeccProfiles.AddFromSurface creates a new profile and derives
its elevation information from the specified surface along the path of the
alignment.

Dim oProfiles As AeccProfiles
Set oProfiles = oAlignment.Profiles
Dim oProfile As AeccProfile

' Add a new profile for the alignment "oAlignment" based
' on the elevations of the surface "oSurface".
Set oProfile = oProfiles.AddFromSurface(_
"Profile01", _
aeccExistingGround, _
oProfileStyle.Name, _
oSurface.Name, _
oAlignment.StartingStation, _
oAlignment.EndingStation, _
"0")

Creating a Profile Using Entities

The AeccProfiles.Add method creates a new profile with no elevation
information. The vertical shape of a profile can then be specified using entities.
Entities are geometric elements - tangents or symmetric parabolas. The
collection of all entities that make up a profile are contained in the

Legacy COM API | 299

AeccProfile.Entities collection. AeccProfile.Entities also contains all
the methods for creating new entities.

This sample creates a new profile along the alignment “oAlignment” and then
adds three entities to define the profile shape. Two straight entities are added
at each end and a symmetric parabola is added in the center to join them and
represent the sag of a valley.

Dim oProfiles As AeccProfiles
Set oProfiles = oAlignment.Profiles
Dim oProfile As AeccProfile

' NOTE: The second parameter (aeccFinishedGround) indicates
' that the shape of the profile is not drawn from the
existing
' surface. We will define the profile ourselves.
Set oProfile = oProfiles.Add _
("Profile03", _
aeccFinishedGround, _
oProfileStyle.Name)

' Now add the entities that define the profile.
' NOTE: Profile entity points are not x,y,z point, but
' station-elevation locations.
Dim dLoc1(0 To 1) As Double
Dim dLoc2(0 To 1) As Double
Dim oProfileTangent1 As aeccProfileTangent
dLoc1(0) = oAlignment.StartingStation: dLoc1(1) = -40#
dLoc2(0) = 758.2: dLoc2(1) = -70#
Set oProfileTangent1 = oProfile.Entities.AddFixedTangent
_
(dLoc1, dLoc2)

Dim oProfileTangent2 As aeccProfileTangent
dLoc1(0) = 1508.2: dLoc1(1) = -60#
dLoc2(0) = oAlignment.EndingStation: dLoc2(1) = -4#
Set oProfileTangent2 = oProfile.Entities.AddFixedTangent
_
(dLoc1, dLoc2)

Dim dCrestLen As Double
dCrestLen = 900.1
Call oProfile.Entities.AddFreeSymmetricParabolaByLength _

300 | Chapter 1 API Developer's Guide

(oProfileTangent1.Id, _
oProfileTangent2.Id, _
aeccSag, _
dCrestLen, _
True)

Editing Points of Vertical Intersection

The point where two adjacent tangents would cross (whether they actually
cross or not) is called the “point of vertical intersection”, or “PVI.” This location
can be useful for editing the geometry of a profile because this one point
controls the slopes of both tangents and any curve connecting them. The
collection of all PVIs in a profile are contained in the AeccProfile.PVIs
property. This object lets you access, add, and remove PVIs from a profile,
which can change the position and number of entities that make up the
profile. Individual PVIs (type AeccProfilePVI) do not have a name or id, but
are instead identified by a particular station and elevation. The collection
methods AeccProfilePVIs.ItemAt and AeccProfilePVIs.RemoveAt access or
delete the PVI closest to the station and elevation parameters so you do not
need the exact location of the PVI you want to modify.

This sample identifies the PVI closest to a specified point. It then adds a new
PVI to profile created in the Creating a Profile Using Entities (page 299) topic
and adjusts its elevation.

Dim oPVI As AeccProfilePVI

' Find the PVI close to station 1000 elevation -70.
Set oPVI = Nothing
Set oPVI = oProfile.PVIs.ItemAt(1000, -70)
Debug.Print "PVI closest to station 1000 is at station: ";

Debug.Print oPVI.Station

' Add another PVI and slightly adjust its elevation.
Set oPVI = oProfile.PVIs.Add(607.4, -64.3,
aeccProfileTangent)
oPVI.Elevation = oPVI.Elevation - 2#

Legacy COM API | 301

Creating a Profile Style

The profile style, an object of type AeccProfileStyle, defines the visual display
of profiles. The collection of all such styles in a document are stored in the
AeccDocument.LandProfileStyles property. The style contains objects of type
AeccDisplayStyle which govern the display of arrows showing alignment
direction and of the lines, line extensions, curves, parabolic curve extensions,
symmetrical parabolas and asymmetrical parabolas that make up a profile.
The properties of a new profile style are defined by the document’s ambient
settings.

Dim oProfileStyle As AeccProfileStyle
Set oProfileStyle = oDocument.LandProfileStyles
.Add("Profile Style 01")

' For all profiles that use this style, line elements
' will be yellow, curve elements will be shades of green,
' and extensions will be dark grey. No arrows will be shown.
With oProfileStyle

.ArrowDisplayStyleProfile.Visible = False

.LineDisplayStyleProfile.Color = 50 ' yellow

.LineDisplayStyleProfile.Visible = True

.LineExtensionDisplayStyleProfile.Color = 251 ' grey

.LineExtensionDisplayStyleProfile.Visible = True

.CurveDisplayStyleProfile.Color = 80 ' green

.CurveDisplayStyleProfile.Visible = True
.ParabolicCurveExtensionDisplayStyleProfile.Color = 251

' grey
.ParabolicCurveExtensionDisplayStyleProfile.Visible =

True
.SymmetricalParabolaDisplayStyleProfile.Color = 81 '

green
.SymmetricalParabolaDisplayStyleProfile.Visible = True
.AsymmetricalParabolaDisplayStyleProfile.Color = 83 '

green
.AsymmetricalParabolaDisplayStyleProfile.Visible = True

End With
' Properties for 3d display should also be set.

302 | Chapter 1 API Developer's Guide

Profile Views

This section describes the creation and display of profile views. A profile view
is a graph displaying the elevation of a profile along the length of the related
alignment.

Creating a Profile View

A profile view, an object of type AeccProfileView, is a graphical display of
profiles within a graph. A collection of profile views is contained in each
alignment’s AeccAlignment.ProfileViews property.

Dim dOriginPt(0 To 2) As Double
dOriginPt(0) = 6000 ' X location of profile view
dOriginPt(1) = 3500 ' Y location
dOriginPt(2) = 0 ' Z location

' Use the first profile view style in the document.
Dim oProfileViewStyle As AeccProfileViewStyle
Set oProfileViewStyle = oDocument.ProfileViewStyles.Item(0)

Dim oProfileView as AeccProfileView
Set oProfileView = oAlignment.ProfileViews.Add(_
"Profile Style 01", _
"0", _
dOriginPt, _
oProfileViewStyle, _
Nothing) ' "Nothing" means do not include data bands.

Creating Profile View Styles

The profile view style, an object of type AeccProfileViewStyle, governs all
aspects of how the graph axes, text, and titles are drawn. Within
AeccProfileViewStyle are objects dealing with the top, bottom, left, and right
axes; lines at geometric locations within profiles; and with the graph as a
whole. All profile view styles in the document are stored in the
AeccDocument.ProfileViewStyles collection. New styles are created using the
collection’s Add method with the name of the new style.

Legacy COM API | 303

Dim oProfileViewStyle As AeccProfileViewStyle
Set oProfileViewStyle = oDocument.ProfileViewStyles _
.Add("Profile View style 01")

Setting Profile View Styles

The profile view style object consists of separate objects for each of the four
axes, one object for the graph overall, and an AeccDisplayStyle object for
grid lines displayed at horizontal geometry points. The axis styles and graph
style also contain subobjects for specifying the style of tick marks and titles.

Setting the Axis Style

All axis styles are based on the AeccAxisStyle class. The axis style object
controls the display style of the axis itself, tick marks and text placed along
the axis, and a text annotation describing the axis’s purpose. The annotation
text, location, and size is set through the AeccAxisStyle.TitleStyle property,
an object of type AeccAxisTitleStyle. The annotation text can use any of
the following property fields:

Valid property fields for AeccAxisTitleStyle.Text

<[Profile View Minimum Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Profile View Maximum Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Profile View Start Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Profile View End Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

Axis Tick Marks

Within each axis style are properties for specifying the tick marks placed along
the axis. Both major tick marks and minor tick marks are represented by objects
of type AeccTickStyle. AeccTickStyle manages the location, size, and visual
style of tick marks through its Interval, Size and DisplayStylePlan properties.
Note that while most style properties use drawing units, the Interval property

304 | Chapter 1 API Developer's Guide

uses the actual ground units of the surface. The AeccTickStyle object also
sets what text is displayed at each tick, including the following property fields:

AxisValid property fields for AeccTickStyle.Text

horizontal<[Station Value(Uft|FS|P0|RN|AP|Sn|TP|B2|EN|W0|OF)]>

horizontal<[Raw Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

horizontal<[Graph View Abscissa Value(Uft|P4|RN|AP|Sn|OF)]>

vertical<[Profile View Point Elevation(Uft|P1|RN|AP|Sn|OF)]>

vertical<[Graph View Ordinate Value(Uft|P3|RN|AP|Sn|OF)]>

Setting the Graph Style

The graph is managed by an object of type AeccGraphStyle. This object can
be used to change the grid and the title of the graph. The grid is controlled
by the AeccGraphStyle.GridStyle property, an object of type AeccGridStyle.
The grid style sets the amount of empty space above and below the extents
of the section through the AeccGridStyle.GridsAboveMaxElevation and
AeccGridStyle.GridsBelowDatum properties. The grid style also manages the
line styles of major and minor vertical and horizontal gridlines with the
AeccGridStyle properties MajorVerticalDisplayStylePlan,
MajorHorizontalDisplayStylePlan, MinorVerticalDisplayStylePlan, and
MinorHorizontalDisplayStylePlan. The AeccGridLines.VerticalPosition
and AeccGridLines.HorizontalPosition properties tell which axis to use to
position the grid lines.

Graph Title

The title of the graph is controlled by the AeccGraphStyle.TitleStyle
property, an object of type AeccGraphTitleStyle. The title style object can

Legacy COM API | 305

adjust the position, style, and border of the title. The text of the title can
include any of the following property fields:

Valid property fields for AeccGraphTitleStyle.Text

<[Graph View Name(CP)]>

<[Parent Alignment(CP)]>

<[Drawing Scale(P4|RN|AP|OF)]>

<[Graph View Vertical Scale(P4|RN|AP|OF)]>

<[Graph View Vertical Exageration(P4|RN|AP|OF)]>

<[Profile View Start Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Profile View End Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Profile View Minimum Elevation(Uft|P2|RN|AP|Sn|OF)]>

<[Profile View Maximum Elevation(Uft|P3|RN|AP|Sn|OF)]>

Profile View Style Example

This example takes an existing profile view style and modifies its top axis and
title:

' Get the first style in the document's collection of
styles.
Dim oProfileViewStyle as AeccProfileViewStyle
Set oProfileViewStyle = oDocument.ProfileViewStyles.Item(0)

' Adjust the top axis. Put station information here, with
' the title at the far left.

With oProfileViewStyle.TopAxis
.DisplaySyle2d.Visible = True

306 | Chapter 1 API Developer's Guide

' Modify the text to display meters in decimal
' format.
.MajorTickStyle.Text = "<[Station Value(Um|FD|P1)]> m"
.MajorTickStyle.Interval = 164.041995
Dim dPoint(0 To 2) As Double
dPoint(0) = 0.13
dPoint(1) = 0#
.TitleStyle.Offset = dPoint
.TitleStyle.Text = "Meters"
.TitleStyle.Position = aeccStart

End With

' Adjust the title to show the alignment name.
oProfileViewStyle.GraphStyle.TitleStyle.Text = _
"Profile View of:<[Parent Alignment(CP)]>"

Sample Programs

ProfileSample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Profile\ProfileSample.dvb

This sample creates a surface from a file and an alignment using entities. It
creates a profile based on the existing surface along the alignment. It then
creates a second profile using entities and points of vertical intersection. A
profile view is made displaying both profiles. The style and label style of the
profile view are set with custom styles. Data bands are added to the profile
view.

CorridorSample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Corridor\CorridorSample.dvb

The CreateCorridor method of the Corridor module shows the creation of a
profile using entities.

Legacy COM API | 307

Sections in COM

Object Hierarchy

308 | Chapter 1 API Developer's Guide

Sample Lines

This section covers the creation and use of sample lines. Sample lines are line
segments placed at regular intervals across an alignment. They can be used to
define the location and orientation of surface cross sections that can be studied
through section views.

Creating a Sample Line

Sample lines are line segments placed along an alignment, usually
perpendicular to the alignment path and at regular intervals. Sample lines
represent the location and orientation of surface cross sections that can be
studied through section views.

Sample lines are created in groups. All sample line groups for an alignment
are held in the AeccAlignment.SampleLineGroups collection. The Add method
for this collection creates a new empty group, and takes as parameters the
name of the group, the layer the group will be drawn to, a style object for how
groups of graphs are organized, a style object for the sample lines, and a label
style object.

' Get all the styles we will need for our sample line
object.
' We will use whatever default styles the document contains.
Dim oGroupPlotStyle As AeccGroupPlotStyle
Set oGroupPlotStyle = oDocument.GroupPlotStyles.Item(0)

Dim oSampleLineStyle As AeccSampleLineStyle
Set oSampleLineStyle = oDocument.SampleLineStyles.Item(0)

Dim oSampleLineLabelStyle As AeccLabelStyle
Set oSampleLineLabelStyle = oDocument _
.SampleLineLabelStyles.Item(0)

Dim oSampleLineGroups As AeccSampleLineGroups
Set oSampleLineGroups = oAlignment.SampleLineGroups

' Create a sample line group using the above styles and
drawn
' to layer "0".
Dim sLayerName as String

Legacy COM API | 309

sLayerName = "0"
Dim oSampleLineGroup As AeccSampleLineGroup
Set oSampleLineGroup = oSampleLineGroups.Add(_
"Example Sample Line Group", _
sLayerName, _
oGroupPlotStyle, _
oSampleLineStyle, _
oSampleLineLabelStyle)

Defining Sample Lines

Setup

The first step in creating sample lines along an alignment is to specify the
surface or surfaces being sampled. This is accomplished by adding surfaces to
the AeccSampleLineGroup.SampledSurfaces collection. The
AeccSampledSurfaces.AddAllSurfaces method adds one AeccSampledSurface
object to the collection for each surface in the document. The
AeccSampledSurfaces.Add method takes a specific surface object and an
AeccSectionStyle object and returns a reference to the added
AeccSampledSurface object. It is important to then set the boolean
AeccSampledSurface.Sample property to True.

NOTE

If no SampledSurface object added to the AeccSampledSurfaces collection
has the Sample property set to True, then no sections will be generated for
that sample line.

This sample demonstrates how to add a single surface to a sample line group
and how to add all surfaces in the drawing to a sample line group:

' Get the section style we need for our sampled surface
' object. We use the default style of the document.
Dim oSectionStyle As AeccSectionStyle
Set oSectionStyle = oDocument.SectionStyles.Item(0)

' Get the surface object we will be sampling from.
' Assume there is a surface with the name "EG".
Dim oSurface as AeccSurface
Set oSurface = oDocument.Surfaces.Item("EG")

310 | Chapter 1 API Developer's Guide

' This section demonstrates adding a single surface to
' the sample line group. An AeccSampleSurface object is
' returned, which needs some properties set.
Dim oSampledSurface As AeccSampledSurface
Set oSampledSurface = oSampleLineGroup.SampledSurfaces _
.Add(oSurface, oSectionStyle)

oSampledSurface.UpdateMode = aeccSectionStateDynamic
' We need to set the Sample property of the
' SampledSurface object. Otherwise the sampled surface
' will not be used in creating sections.
oSampledSurface.Sample = True

' This section demonstrates adding all surfaces in the
' document to the sample line group.
oSampleLineGroup.SampledSurfaces.AddAllSurfaces
oSectionStyle
' We need to set the Sample property of each
' SampledSurface object. Otherwise the sampled surfaces
' will not be used in creating sections.
Dim i As Integer
For i = 0 To oSampleLineGroup.SampledSurfaces.Count - 1

oSampleLineGroup.SampledSurfaces.Item(i).Sample = True
Next i

At this point you can define sample lines. Sample lines are held in the
AeccSampleLineGroup.SampleLines collection. There are three methods to
add sample lines to the collection: AeccSampleLines.AddByPolyline,
AeccSampleLines.AddByStation, and AeccSampleLines.AddByStationRange.

The AeccSampledSurfaces collection can contain objects other than surfaces
to be sampled in section views, such as pipe networks or corridors. These
objects can be added from the AutoCAD Civil 3D user interface. (Currently
you can only add surfaces to the AeccSampledSurfaces collection via the API.)

Accessing these non-surface objects with the AeccSampledSurface.Surface
property throws an exception, so you need to use the
AeccSampledSurface.AcadEntity property, as in this example, where the
second item in the collection is a pipe network:

Dim SampledSurfaces As AeccSampledSurfaces
SampledSurfaces =
aeccdb.Sites.Item(0).Alignments.Item(1).SampleLineGroups.Item(0).SampledSurfaces

Legacy COM API | 311

Dim s1 As AeccSurface
Dim e1 As AcadEntity
Dim s2 As AeccPipeNetwork
s1 = SampledSurfaces.Item(0).Surface
e1 = SampledSurfaces.Item(1).AcadEntity ' Surface would
throw exception
MessageBox.Show(e1.ObjectName)
s2 = e1
MessageBox.Show(s2.Name)

Adding a Sample Line from a Polyline

AddByPolyline lets you specify the location of a sample line based on an
AutoCAD lightweight polyline entity. This gives you great flexibility in
designing the sample line. It can consist of many line segments at any
orientation, and it does not have to be perpendicular to the alignment or even
cross the alignment at all. The AddByPolyline method also lets you delete the
polyline entity once the sample line has been created. AddByPolyline returns
the AeccSampleLine object created.

Dim oPoly As AcadLWPolyline
Dim dPoints(0 To 3) As Double
' Assume these coordinates are in one of the surfaces
' in the oSampleLineGroup.SampledSurfaces collection.
dPoints(0) = 4750: dPoints(1) = 4050
dPoints(2) = 4770: dPoints(3) = 3950
Set oPoly = ThisDrawing.ModelSpace _
.AddLightWeightPolyline(dPoints)

' Now that we have a polyline, we can create a sample line
' with those coordinates. Delete the polyline when done.
Call oSampleLineGroup.SampleLines.AddByPolyline _
("Sample Line 01", oPoly, True)

Add a Sample Line at a Station

AddByStation creates a single sample line perpendicular to a particular
alignment station. The AddByStation method takes as parameters the name
of the sample line, the station the line crosses, and the length of the line to
the left and right sides of the alignment. AddByStation returns the
AeccSampleLine object created.

312 | Chapter 1 API Developer's Guide

Dim dSwathWidthLeft As Double
Dim dSwathWidthRight As Double
Dim dStation As Double
dSwathWidthRight = 45.5
dSwathWidthLeft = 35.5
dStation = 1100.5

Call oSampleLineGroup.SampleLines.AddByStation(_
"Sample Line 02", _
dStation, _
dSwathWidthLeft, _
dSwathWidthRight)

Add a Range of Sample Lines

AddByStationRange creates a series of sample lines along the alignment. The
characteristics of the sample lines are defined by an object of type
AeccStationRange. When first created, the AeccStationRange object properties
are set to default values, so be sure to set every property to the values you
require.

NOTE

The AeccStationRange.SampleLineStyle property must be set to a valid object
or the AddByStationRange method will fail.

The AeccStationRange object is then passed to the AddByStationRange method
along with a flag describing how to deal with duplicates. The sample lines are
then generated and added to the AeccSampleLineGroup.SampleLines collection.
This method has no return value.

This sample adds a series of sample lines along a section of an alignment:

' Specify where the sample lines will be drawn.
Dim oStationRange As New AeccStationRange
oStationRange.UseSampleIncrements = True
oStationRange.SampleAtHighLowPoints = False
oStationRange.SampleAtHorizontalGeometryPoints = False
oStationRange.SampleAtSuperelevationCriticalStations =
False
oStationRange.SampleAtRangeEnd = True
oStationRange.SampleAtRangeStart = True
oStationRange.StartRangeAtAlignmentStart = False

Legacy COM API | 313

oStationRange.EndRangeAtAlignmentEnd = False
' Only sample for 1000 units along part of the
' alignment.
oStationRange.StartRange = 10#
oStationRange.EndRange = 1010#
' sample every 200 units along straight lines
oStationRange.IncrementTangent = 200#
' sample every 50 units along curved lines
oStationRange.IncrementCurve = 50#
' sample every 50 units along spiral lines
oStationRange.IncrementSpiral = 50#
' 50 units to either side of the station
oStationRange.SwathWidthLeft = 50#
oStationRange.SwathWidthRight = 50#
oStationRange.SampleLineDefaultDirection = _
aeccDirectionFromBaseAlignment

Set oStationRange.SampleLineStyle = oSampleLineStyle

oSampleLineGroup.SampleLines.AddByStationRange _
"Sample Line 03", _
aeccSampleLineDuplicateActionOverwrite, _
oStationRange

Creating Sample Line Styles

In creating sample lines, you need to work with three different style objects
that control how sample lines are displayed.

Group Plot Styles

The AeccGroupPlotStyle style controls how groups of section view graphs are
drawn. The style changes the row and column orientation and spacing between
multiple graphs. The collection of all AeccGroupPlotStyle styles is contained
in the AeccDocument.GroupPlotStyles property.

Dim oGroupPlotStyle As AeccGroupPlotStyle
Set oGroupPlotStyle = oDocument.GroupPlotStyles _
.Add("Example group plot style")

314 | Chapter 1 API Developer's Guide

Sample Line Styles

The AeccSampleLineStyle style controls how sample lines are drawn on a
surface. The collection of all AeccSampleLineStyle styles is contained in the
AeccDocument.SampleLineStyles property.

Dim oSampleLineStyle As AeccSampleLineStyle
Set oSampleLineStyle = oDocument.SampleLineStyles _
.Add("Example sample line style")

' This style just changes the display of the sample line.
oSampleLineStyle.LineDisplayStyleSection.color = 140 '
slate

Section Styles

The AeccSectionStyle style controls how surface cross sections are displayed
in the section view graphs. The collection of all AeccSectionStyle styles is
contained in the AeccDocument.SectionStyles property.

Dim oSectionStyle As AeccSectionStyle
Set oSectionStyle = oDocument.SectionStyles _
.Add("Example cross section style")

' This style just changes the display of cross section
' lines.
oSectionStyle.SegmentDisplayStyleSection.color = 110 '
green/blue

Creating Sample Line Label Styles

The style of sample line text labels, lines, and marks are controlled by an
AeccLabelStyle object. The style can be set through the
AeccSampleLine.LabelStyle property or by passing an AeccLabelStyle object
when using the AeccSampleLineGroups.Add method. All labels styles for sample
lines are stored in the AeccDocument.SampleLineLabelStyles collection. See
the Root Objects chapter for more detailed information about the
AeccLabelStyle class.

Legacy COM API | 315

Text labels for sample lines can use any of the following property fields:

Valid property fields for AeccLabelStyleTextComponent.Contents

<[Sample Line Name(CP)]>

<[Sample Line Number(Sn)]>

<[Left Swath Width(Uft|P3|RN|AP|Sn|OF)]>

<[Right Swath Width(Uft|P3|RN|AP|Sn|OF)]>

<[Distance from Previous Sample Line(Uft|P3|RN|AP|Sn|OF)]>

<[Sample Line Parent Alignment Name(CP)]>

<[Sample Line Group(CP)]>

<[Sample Line Station Value(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Sample Line Raw Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

Label styles are described in detail in the Chapter 1 section Label Styles (page
211).

Sections

This section covers the creation and use of sections. A section is a cross section
of one or more surfaces along a sample line. A series of sections can be used
to analyze the changes in a surface along a path.

Creating Sections

A section is a cross section of one or more surfaces taken along a sample line.
You can either create sections one at a time using the
AeccSampleLineGroup.CreateSectionsAtSampleLine method, or all at once
using the AeccSampleLineGroup.CreateSectionsAtSampleLines method. These

316 | Chapter 1 API Developer's Guide

methods will cause an error if the sample line group does not reference any
surfaces, or if the surface is not located under the sample lines specified.

' Create a section at the first sample line in the sample
' line group.
' oSampleLineGroup is of type AeccSampleLineGroup

Dim oSampleLine as AeccSampleLine
Set oSampleLine = oSampleLineGroup.SampleLines(0)
oSampleLineGroup.CreateSectionsAtSampleLine oSampleLine

' Create a section for each sample line in the sample
' line group.
oSampleLineGroup.CreateSectionsAtSampleLines

Using Sections

Each sample line contains a collection of sections that were based on that
sample line. Each section is represented by object of type AeccSection and
contains methods for retrieving statistics of the surface along the section.
While sections initially have styles based on the AeccSectionStyle style passed
to the AeccSampledSurfaces.Add method, you can also set the style for each
section individually through the AeccSection.Style property.

Dim oSampleLines as AeccSampleLines
Set oSampleLines = oSampleLineGroup.SampleLines

' For each sample line, go through all the sections that
' were created based on it.
Dim i As Integer
Dim j As Integer
For i = 0 To oSampleLines.Count - 1

Dim oSections As AeccSections
Set oSections = oSampleLines.Item(i).Sections

' For each section, print its highest elevation and set
' some of its properties.
Dim oSection as AeccSection
For Each oSection in oSections

Debug.Print "Max Elevation of "; oSection.Name;
Debug.Print " is: "; oSection.ElevationMax

Legacy COM API | 317

oSection.DataType = aeccSectionDataTIN
oSection.StaticDynamic = aeccSectionStateDynamic

Next
Next i

Section Views

This section describes the creation and display of section views. A section view
is a graph of a single section. Usually a series of section views are displayed to
demonstrate a range of cross sections.

Creating Section Views

A section view is a graph of the sections for a single sample. Each sample line
contains a collection of section views in its AeccSampleLine.SectionViews
property. To create a new section view, use the AeccSectionViews.Add method,
which takes as parameters the name of the new section view, the layer to draw
to, the location, the style of the view, and an optional data band set. Each
section view is automatically constructed to display the sections at that sample
line in the center of an appropriately sized graph. As each sample line may
have different lengths and represent different surface altitudes, each section
view may be different in size or in what units are displayed along each graph
axis.

This sample creates a row of section views from all sample lines in a given
alignment:

Dim i As Integer
Dim j As Integer

' Use the first section view style in the document.
Dim oSectionViewStyle As AeccSectionViewStyle
Set oSectionViewStyle = oDocument.SectionViewStyles.Item(0)

' Specify the starting location of the row of section
' views.
Dim dX As Double
Dim dY As Double
dX = 6000
dy = 3500

318 | Chapter 1 API Developer's Guide

' We have an alignment with sample lines. Loop through
' all the sample line groups in the alignment.
For i = 0 To oAlignment.SampleLineGroups.Count - 1

Dim oSampleLineGroup As AeccSampleLineGroup
Set oSampleLineGroup =

oAlignment.SampleLineGroups.Item(i)
Dim oSampleLines As AeccSampleLines
Set oSampleLines = oSampleLineGroup.SampleLines

' Now loop through all the sample lines in the current
' sample line group. For each sample line, we add a
' section view at a unique location with a style and
' a data band that we defined earlier.
Dim dOffsetRight As Double
dOffsetRight = 0
For j = 0 To oSampleLines.Count - 1

Dim oSectionView As AeccSectionView
dOffsetRight = j * 300
Dim dOriginPt(0 To 2) As Double
' To the right of the surface and the previous
' section views.
dOriginPt(0) = dX + 200 + dOffsetRight
dOriginPt(1) = dY
Set

oSectionView=oSampleLines.Item(j).SectionViews.Add(_
"Section View" & CStr(j), _
"0", _
dOriginPt, _
oSectionViewStyle, _
Nothing) ' "Nothing" means do not display a data

band
Next j

Next i

Creating Section View Styles

The section view style, an object of type AeccSectionViewStyle, governs all
aspects of how the graph axes, text, and titles are drawn. Within
AeccSectionViewStyle are objects dealing with the top, bottom, left, center
vertical, and right axes and with the graph as a whole. All section view styles
in the document are stored in the AeccDocument.SectionViewStyles collection.

Legacy COM API | 319

New styles are created using the collection’s Add method with the name of
the new style.

Dim oSectionViewStyle As AeccSectionViewStyle
Set oSectionViewStyle = oDocument.SectionViewStyles _
.Add("Section View style")

Setting Section View Styles

The section view style object consists of separate objects for each of the four
axes, one object for the graph overall, and an AeccDisplayStyle object for
sample lines within the views. The axis styles and graph style also contain
subobjects for specifying the style of tick marks and titles.

Setting the Axis Style

All axis styles are based on the AeccAxisStyle class. The axis style object
controls the display style of the axis itself, tick marks and text placed along
the axis, and a text annotation describing the purpose of the axis. The
annotation text, location, and size is set through the
AeccAxisStyle.TitleStyle property, an object of type AeccAxisTitleStyle.
The annotation text can use any of the following property fields:

AxesValid property fields for AeccAxisTitleStyle.Text

top, bottom<[Section View Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

top, bottom<[Section View Width(Uft|P2|RN|AP|Sn|OF)]>

top, bottom<[Left Width(Uft|P2|RN|AP|Sn|OF)]>

top, bottom<[Right Width(Uft|P2|RN|AP|Sn|OF)]>

left, right, center<[Elevation Range(Uft|P2|RN|AP|Sn|OF)]>

left, right, center<[Minimum Elevation(Uft|P2|RN|AP|Sn|OF)]>

320 | Chapter 1 API Developer's Guide

AxesValid property fields for AeccAxisTitleStyle.Text

left, right, center<[Maximum Elevation(Uft|P2|RN|AP|Sn|OF)]>

Axis Tick Marks

Within each axis style are properties for specifying the tick marks placed along
the axis. Both major tick marks and minor tick marks are represented by objects
of type AeccTickStyle. AeccTickStyle manages the location, size, and visual
style of tick marks through its Interval, Size and DisplayStylePlan properties.

NOTE

While most style properties use drawing units, the Interval property uses
surface units.

The AeccTickStyle object also sets what text is displayed at each tick, including
any of the following property fields:

Valid property fields for AeccTickStyle.Text

<[Section View Point Offset Side(CP)]>

<[Section View Point Offset(Uft|P3|RN|Sn|OF|AP)]>

<[Graph View Abscissa Value(Uft|P3|RN|AP|Sn|OF)]>

Setting Graph Styles

The graph is managed by an object of type AeccGraphStyle. This object can
be used to change the grid and the title of the graph. The grid is controlled
by the AeccGraphStyle.GridStyle property, an object of type AeccGridStyle.
The grid style sets the amount of empty space above and below the extents
of the section through the AeccGridStyle.GridsAboveMaxElevation and
AeccGridStyle.GridsBelowDatum properties. The grid style also manages the
line styles of major and minor vertical and horizontal gridlines with the
AeccGridStyle properties MajorVerticalDisplayStylePlan,
MajorHorizontalDisplayStylePlan, MinorVerticalDisplayStylePlan, and
MinorHorizontalDisplayStylePlan. The AeccGridLines.HorizontalPosition

Legacy COM API | 321

and AeccGridLines.VerticalPosition properties tell which tick marks to use
to position the grid lines for the axis.

Graph Title

The title of the graph is controlled by the AeccGraphStyle.TitleStyle
property, an object of type AeccGraphTitleStyle. The title style object can
adjust the position, style, and border of the title. The text of the title can
include any of the following property fields:

Valid property fields for AeccGraphTitleStyle.Text

<[Section View Description(CP)]>

<[Section View Name(CP)]>

<[Parent Alignment(CP)]>

<[Section View Station(Uft|FS|P3|RN|Sn|OF|AP|B2|TP|EN|W0|DZY)]>

<[Section View Datum Value(Uft|P3|RN|AP|Sn|OF)]>

<[Section View Width(Uft|P3|RN|AP|Sn|OF)]>

<[Left Width(Uft|P3|RN|AP|Sn|OF)]>

<[Right Width(Uft|P3|RN|AP|Sn|OF)]>

<[Drawing Scale(P3|RN|AP|OF)]>

<[Graph View Vertical Scale(P3|RN|AP|OF)]>

<[Graph View Vertical Exageration(P3|RN|AP|OF)]>

<[Sample Line Name(CP)]>

<[Sample Line Group(CP)]>

322 | Chapter 1 API Developer's Guide

Valid property fields for AeccGraphTitleStyle.Text

<[Sample Line Number(Sn)]>

Section View Style Example

This example takes an existing section view style and modifies its top axis and
title.

' We assume a section view style with the name
' "Section View style" already exists.
Dim oSectionViewStyle As AeccSectionViewStyle
Set oSectionViewStyle = oDocument.SectionViewStyles _
.Item("Section View style")

'''''''''''''''''''''''''''''''''''''
' Adjust the top axis.
With oSectionViewStyle.TopAxis.MajorTickStyle

.AnnotationDisplayStylePlan.color = 23 ' light brown

.Height = 0.004 ' text height

.AnnotationDisplayStylePlan.Visible = True ' show text

.Interval = 15 ' Major ticks 15 ground units apart
' Each major tick is marked with distance from the
' centerline in meters.
.Text = "<[Section View Point

Offset(Um|P1|RN|Sn|AP|OF)]>m"
.DisplayStylePlan.Visible = True ' show ticks

End With
With oSectionViewStyle.TopAxis.TitleStyle

.DisplayStylePlan.color = 23 ' light brown

.Height = 0.008 ' text height

.Text = "Meters"
' Position the title slightly higher.
dOffset(0) = 0#
dOffset(1) = 0.02
.Offset = dOffset
.DisplayStylePlan.Visible = True ' show title

End With

'''''''''''''''''''''''''''''''''''''

Legacy COM API | 323

' Adjust the graph and graph title.
With oSectionViewStyle.GraphStyle

.VerticalExaggeration = 4.1
' The lowest grid with any part of the section
' line in it will have one empty grid between
' it and the bottom axis.
.GridStyle.GridsBelowDatum = 1
' Increase the empty space above the section
' line to make room for any section line labels.
.GridStyle.GridsAboveMaxElevation = 2

' Show major lines, but not minor lines.
.GridStyle.MajorHorizontalDisplayStylePlan.Visible =

True
.GridStyle.MajorVerticalDisplayStylePlan.Visible = True
.GridStyle.MinorHorizontalDisplayStylePlan.Visible =

False
.GridStyle.MinorVerticalDisplayStylePlan.Visible =

False

' Move the title above the top axis.
dOffset(0) = 0#
dOffset(1) = 0.045
.TitleStyle.Offset = dOffset
' Set the title to display the station number of each
' section.
Dim sTmp as String
sTmp = "EG at Station <[Section View Station(Uft|FS)]>"
.TitleStyle.Text = sTmp

End With

Sample Program

SectionSample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Section\SectionSample.dvb

This sample program creates a surface from a file and an alignment from a
polyline. Sample lines (using group sample lines, individual sample lines, and
sample lines based on polyline entities) are created across the alignment.
Sections are created from each sample line, and section views of each surface

324 | Chapter 1 API Developer's Guide

cross section are drawn. Styles and label styles for sample lines and section
views are created, as are data bands for the section view graphs.

Legacy COM API | 325

Data Bands in COM

Object Hierarchy

Object Model for Data Bands

326 | Chapter 1 API Developer's Guide

Defining a Data Band Style

This section explains the creation and definition of data band style objects.
These objects are used with profile view and section view graphs and represent
a single band of graphical and text information.

Data Band Concepts

Data bands are a way to display more information with profile views and
section views, including differences between sections, profile geometry, and
superelevation along an alignment. Data bands consist of one or more strips
at the top or bottom of each graph with tick marks, graphics, and labels
describing particular features of the subject of the graph.

Legacy COM API | 327

The bottom of a profile view with four data bands

328 | Chapter 1 API Developer's Guide

A band is described by an object derived from the AeccBandStyle type:
AeccBandSegmentDataStyle, AeccBandProfileDataStyle,
AeccBandHorizontalGeometryStyle, AeccBandVerticalGeometryStyle, or
AeccBandSuperElevationStyle. All such styles in the document are stored in
collections depending on the band type:

Collection of Band Style ObjectsBand Style Type

AeccDocument.SectionViewBandStyles. Sec-
tionDataBandStyles

AeccBandSegmentDataStyle

AeccDocument.ProfileViewBandStyles. Pro-
fileDataBandStyles

AeccBandProfileDataStyle

AeccDocument.ProfileViewBandStyles. Horizont-
alGeometryBandStyles

AeccBandHorizontalGeometryStyle

AeccDocument.ProfileViewBandStyles. Vertical-
GeometryBandStyles

AeccBandVerticalGeometryStyle

AeccDocument.ProfileViewBandStyles. SuperEl-
evationBandStyles

AeccBandSuperElevationStyle

Each collection has an Add method for creating new band styles.

The location of information displayed in the band depends on which band
style objects are visible. Each data location (for example, at profile stations or
at horizontal geometry points) consists of multiple style elements (text labels,
tick marks, lines, or blocks). Different band styles have different locations
where information can be displayed, and will display information with
different graphical effects.

Each information location is managed by a set of three style objects that
control:
■ The visual style of the text label (properties ending with

“LabelDisplayStylePlan“, objects of type AeccDisplayStyle).

■ The contents and nature of the text , tick marks, lines, and blocks
(properties ending with “LabelStyle“, objects of type AeccBandLabelStyle).

■ The visual style of the tick mark (properties ending with
“TickDisplayStylePlan“, objects of type AeccDisplayStyle).

Legacy COM API | 329

The display styles have priority over the label style when setting the color or
linetype.

NOTE

If either the display style or the label style element is not set to be visible, then
the data element is not visible.

A title can be displayed on the left side of each band. The style of the text and
box around the text are controlled by the
AeccBandStyle.TitleBoxTextDisplayStylePlan and
AeccBandStyle.TitleBoxDisplayStylePlan properties, both object of type
AeccDisplayStyle. The text of the title and its location are controlled through
the AeccBandStyle.TitleStyle property, an object of type
AeccBandTitleStyle. The AeccBandTitleStyle.Text property contains the
actual string to be displayed, which may include property fields from the
following list:

Valid property fields for AeccBandTitleStyle.Text

<[Parent Alignment(CP)]>

<[Section1 Name(CP)]>

<[Section1 Type(CP)]>

<[Section1 Left Length(Uft|P3|RN|AP|Sn|OF)]>

<[Section1 Right Length(Uft|P3|RN|AP|Sn|OF)]>

<[Section2 Name(CP)]>

<[Section2 Type(CP)]>

<[Section2 Left Length(Uft|P3|RN|AP|Sn|OF)]>

<[Section2 Right Length(Uft|P3|RN|AP|Sn|OF)]>

<[Sample Line Name(CP)]>

330 | Chapter 1 API Developer's Guide

Valid property fields for AeccBandTitleStyle.Text

<[Sample Line Group(CP)]>

<[Sample Line Number(Sn)]>

<[Profile1 Name(CP)]>

<[Profile2 Name(CP)]>

The following code sets the title for a section view data band showing two
sections:

oBandSectionDataStyle.TitleStyle.Text = _
"<[Section1 Name(CP)]> and <[Section1 Name(CP)]>"

Profile Data Band Style

Data bands for general information about profiles are defined by the
AeccBandProfileDataStyle type. Information in this data band can be
displayed at the major and minor grid marks of the base graph, at points where
the alignment station equation changes, and at points where the vertical or
horizontal geometry change.

Each label can use any of the following property fields:

Valid property fields for use with AeccBandLabelStyle text components

<[Station Value(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Raw Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Profile1 Elevation(Uft|P2|RN|AP|Sn|OF)]>

<[Profile2 Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Profile1 Elevation Minus Profile2 Elevation(Uft|P3|RN|AP|Sn|OF)]>

Legacy COM API | 331

Valid property fields for use with AeccBandLabelStyle text components

<[Profile2 Elevation Minus Profile1 Elevation(Uft|P3|RN|AP|Sn|OF)]>

This sample demonstrates the creation of a data band style displaying section
elevation data at two different locations:

Dim oBandProfileDataStyle As AeccBandProfileDataStyle
Set oBandProfileDataStyle = oDocument.ProfileViewBandStyles
_
.ProfileDataBandStyles.Add("Profile Band")

With oBandProfileDataStyle
' Add ticks and labels to each horizontal
' geography location.
.HGPLabelDisplayStylePlan.Visible = True
.HGPTickDisplayStylePlan.Color = 10 ' red
.HGPTickDisplayStylePlan.Visible = True
.HGPLabelStyle.TextComponents.Item(0).Contents = _
"<[Station Value(Uft|FS|P0|RN|AP|Sn|TP|B2|EN|W0|OF)]>"

.HGPLabelStyle.TextComponents.Item(0).Color = 11 ' red
.HGPLabelStyle.TextComponents.Item(0).Visibility = True

' Modify how the title is displayed.
.TitleBoxDisplayStylePlan.Color = 10 ' red
.TitleBoxDisplayStylePlan.Linetype = "DOT"
.TitleBoxDisplayStylePlan.Visible = True
.TitleBoxTextDisplayStylePlan.Color = 80 ' green
.TitleBoxTextDisplayStylePlan.Visible = True
.TitleStyle.Text = "Profile Info"
.TitleStyle.TextHeight = 1.0
.TitleStyle.TextBoxWidth = 2.0

' Hide the rest of the information locations.
.VGPLabelStyle.TextComponents.Item(0).Visibility =

False
.MajorIncrementLabelStyle.TextComponents.Item(0). _
Visibility = False

.MajorStationLabelDisplayStylePlan.Visible = False

.MajorTickDisplayStylePlan.Visible = False

.MinorIncrementLabelStyle.TextComponents.Item(0). _

332 | Chapter 1 API Developer's Guide

Visibility = False
.MinorStationLabelDisplayStylePlan.Visible = False
.MinorTickDisplayStylePlan.Visible = False
.VGPLabelDisplayStylePlan.Visible = False
.VGPTickDisplayStylePlan.Visible = False
.StationEquationLabelStyle.TextComponents.Item(0). _
Visibility = False

.StationEquationLabelDisplayStylePlan.Visible = True

.StationEquationTickDisplayStylePlan.Visible = True
End With

This style produces a data band that looks like this:

Horizontal Geometry Data Band Style

The AeccBandHorizontalGeometryStyle type is used to display features of the
horizontal geometry of alignments in profile views. Tangents and curves in
the alignment are displayed as stylized line segments and curve segments, and
a label can be displayed over each segment.

Legacy COM API | 333

Each label style can use any of the following property fields:

Valid property fields for use with AeccBandLabelStyle text components

<[Length(Uft|P2|RN|Sn|OF|AP)]>

<[Tangent Direction(Udeg|FDMSdSp|MB|P6|RN|DSn|CU|AP|OF)]>

<[Start Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Start Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Start Northing(Uft|P4|RN|AP|Sn|OF)]>

<[End Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[End Easting(Uft|P4|RN|AP|Sn|OF)]>

<[End Northing(Uft|P4|RN|AP|Sn|OF)]>

This sample demonstrates the creation of a data band style displaying
information about alignment geometry with a title:

Dim oBandProfileDataStyle As AeccBandProfileDataStyle
Set oBandProfileDataStyle = oDocument.ProfileViewBandStyles
_
.ProfileDataBandStyles.Add("Horizontal Band")

With oBandHorizontalGeometryStyle
' Add displays and labels for alignment tangents.
.TangentGeometryDisplayStylePlan.Visible = True
.TangentGeometryDisplayStylePlan.Color = 160 ' blue
.TangentLabelDisplayStylePlan.Visible = True
.TangentLabelStyle.TextComponents.Item(0).Contents =

_
"Length = <[Length(Uft|P2|RN|Sn|OF|AP)]>"

.TangentLabelStyle.TextComponents.Item(0).Color = 120

.TangentLabelStyle.TextComponents.Item(0). _
Visibility = True

334 | Chapter 1 API Developer's Guide

' Add displays and labels for alignment curves.
.CurveGeometryDisplayStylePlan.Visible = True
.CurveGeometryDisplayStylePlan.Color = 160 ' blue
.CurveLabelDisplayStylePlan.Visible = True
.CurveLabelStyle.TextComponents.Item(0).Contents = _
"Length = <[Length(Uft|P2|RN|Sn|OF|AP)]>"

.CurveLabelStyle.TextComponents.Item(0).Color = 120

.CurveLabelStyle.TextComponents.Item(0). _
Visibility = True

' Add tick marks at each horizontal geometry point,
' the location where different segments of the
' alignment meet.
.TickDisplayStylePlan.Color = 10 ' red
.TickDisplayStylePlan.Visible = True

' Modify how the title is displayed.
.TitleBoxDisplayStylePlan.Color = 10 ' red
.TitleBoxDisplayStylePlan.Linetype = "DOT"
.TitleBoxDisplayStylePlan.Visible = True
.TitleBoxTextDisplayStylePlan.Color = 80 ' green
.TitleBoxTextDisplayStylePlan.Visible = True
.TitleStyle.Text = "Alignment Geometry"
.TitleStyle.TextHeight = 0.0125
.TitleStyle.TextBoxWidth = 0.21
' Hide the rest of the information locations and
' graphical displays.
.SpiralGeometryDisplayStylePlan.Visible = False
.SpiralLabelDisplayStylePlan.Visible = False

End With

This style produces a data band that looks like this:

Legacy COM API | 335

Vertical Geometry Data Band Style

The AeccBandProfileDataStyle type is used to display features of the vertical
geometry of alignments in profile views. The style of graphical markers
displayed at each curve and tangent segment can be modified, as well as the
labels placed at crest, sag, uphill, and downhill segments of the profile.

Downhill and uphill labels can use any of the following property fields:

Valid property fields for use with AeccBandLabelStyle text components

<[Tangent Horizontal Length(Uft|P2|RN|Sn|OF|AP)]>

<[Tangent Slope Length(Uft|P2|RN|AP|Sn|OF)]>

<[Tangent Grade(FP|P2|RN|AP|Sn|OF)]>

<[Tangent Start Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Tangent Start Elevation(Uft|P2|RN|AP|Sn|OF)]>

<[Tangent End Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Tangent End Elevation(Uft|P2|RN|AP|Sn|OF)]>

<[Tangent Elevation Change(Uft|P2|RN|AP|Sn|OF)]>

336 | Chapter 1 API Developer's Guide

Valid property fields for use with AeccBandLabelStyle text components

<[PVI Before Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[PVI Before Elevation(Uft|P2|RN|AP|Sn|OF)]>

<[PVI After Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[PVI After Elevation(Uft|P2|RN|AP|Sn|OF)]>

This sample demonstrates the creation of a data band style displaying the
direction of slope for all segments of a profile with a title:

Dim oBandVerticalGeometryStyle As
AeccBandVerticalGeometryStyle
Set oBandVerticalGeometryStyle =
oDocument.ProfileViewBandStyles _
.VerticalGeometryBandStyles.Add("Vertical Band")

With oBandVerticalGeometryStyle
' Add graphical marks that show the uphill or downhill
' directions and the lengths of the vertical segments
' of the profile. On uphill sections the label of the
' length of the segment will be in white, on downhill
' it will be pale yellow. The graphical element that
' shows direction will be pink.
.DownhillTangentLabelStyle.TextComponents.Item(0).
Contents = "<[Tangent Horizontal Length(Uft|P2)]>"

.DownhillTangentLabelStyle.TextComponents.Item(0). _
Color = 51 ' pale yellow

.DownhillTangentLabelStyle.TextComponents.Item(0). _
Visibility = True

.UphillTangentLabelStyle.TextComponents.Item(0).
Contents = "<[Tangent Horizontal Length(Uft|P2)]>"

.UphillTangentLabelStyle.TextComponents.Item(0). _
Color = 255 ' white

.UphillTangentLabelStyle.TextComponents.Item(0). _
Visibility = True

.TangentGeometryDisplayStylePlan.Color = 220 ' pink

.TangentGeometryDisplayStylePlan.Visible = True

Legacy COM API | 337

.TangentLabelDisplayStylePlan.Visible = True

.TangentGeometryDisplayStylePlan.Visible = True

' Modify how the title is displayed.
.TitleBoxDisplayStylePlan.Color = 10 ' red
.TitleBoxDisplayStylePlan.Linetype = "DOT"
.TitleBoxDisplayStylePlan.Visible = True
.TitleBoxTextDisplayStylePlan.Color = 80 ' green
.TitleBoxTextDisplayStylePlan.Visible = True
.TitleStyle.Text = "Profile Geometry"
.TitleStyle.TextHeight = 0.0125
.TitleStyle.TextBoxWidth = 0.21

' Hide the rest of the information locations and
' graphical displays.
.CurveGeometryDisplayStylePlan.Visible = False
.CurveLabelDisplayStylePlan.Visible = False
.TickDisplayStylePlan.Visible = False

End With

This style produces a data band that looks like this:

Superelevation Data Band Style

An AeccBandProfileDataStyle data band displays information related to the
alignment superelevation. It can display slopes of superelevation elements as

338 | Chapter 1 API Developer's Guide

lines, the distance above or below the centerline representing the amount of
slope. The superelevation elements that can be represented this way are:
■ Left inside pavement

■ Left inside shoulder

■ Left outside pavement

■ Left outside shoulder

■ Right inside pavement

■ Right inside shoulder

■ Right outside pavement

■ Right outside shoulder

You can also display a reference line through the center of the data band to
help users interpret the element lines.

The data band can also display tick marks and text labels at points of change
in the superelevation of the alignment. The following can be marked on the
data band:
■ Full superelevation

■ Level crown

■ Normal crown

■ Reverse crown

■ Shoulder break over

■ Transition segment

The label styles for text labels can use any of the following property fields:

Valid property fields for use with AeccBandLabelStyle text components

<[Station Value(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Superelevation critical point text(CP)]>

<[Cross slope - Left outside pavement(FP|P2|RN|AP|Sn|OF)]>

<[Cross slope - Left inside pavement(FP|P2|RN|AP|Sn|OF)]>

<[Cross slope - Right outside pavement(FP|P2|RN|AP|Sn|OF)]>

Legacy COM API | 339

Valid property fields for use with AeccBandLabelStyle text components

<[Cross slope - Right inside pavement(FP|P2|RN|AP|Sn|OF)]>

<[Cross slope - Left outside shoulder(FP|P2|RN|AP|Sn|OF)]>

<[Cross slope - Left inside shoulder(FP|P2|RN|AP|Sn|OF)]>

<[Cross slope - Right outside shoulder(FP|P2|RN|AP|Sn|OF)]>

<[Cross slope - Right inside shoulder(FP|P2|RN|AP|Sn|OF)]>

This sample demonstrates the creation of a data band style displaying the
slopes of the outside shoulders - the right shoulder in yellow and the left in
blue. A gray reference line is also added.

Dim oBandSuperElevationStyle As AeccBandSuperElevationStyle
Set oBandSuperElevationStyle =
oDocument.ProfileViewBandStyles _
.SuperElevationBandStyles.Add("Superelevation Band")

With oBandSuperElevationStyle
' Add graphical display of the slope of the left and

right
' outside shoulders. If the line is above the

centerline,
' then the slope is positive.
.LeftOutsideShoulderLineDisplayStylePlan.Visible = True
.LeftOutsideShoulderLineDisplayStylePlan.color = 151
' Color 151 = pale blue
.RightOutsideShoulderLineDisplayStylePlan.Visible = True
.RightOutsideShoulderLineDisplayStylePlan.color = 51
' Color 51 = pale yellow

' Add a reference line through the center of the data
band.

.ReferenceLineDisplayStylePlan.Visible = True

.ReferenceLineDisplayStylePlan.color = 252 ' gray

340 | Chapter 1 API Developer's Guide

' Modify how the title is displayed.
.TitleBoxDisplayStylePlan.color = 10 ' red
.TitleBoxDisplayStylePlan.Linetype = "DOT"
.TitleBoxDisplayStylePlan.Visible = True
.TitleBoxTextDisplayStylePlan.color = 80 ' green
.TitleBoxTextDisplayStylePlan.Visible = True
.TitleStyle.Text = "Profile Geometry"
.TitleStyle.TextHeight = 0.0125
.TitleStyle.TextBoxWidth = 0.21

' Hide the rest of the information locations and
' graphical displays.
.FullSuperLabelDisplayStylePlan.Visible = False
.FullSuperTickDisplayStylePlan.Visible = False
.LeftInsidePavementLineDisplayStylePlan.Visible = False
.LeftInsideShoulderLineDisplayStylePlan.Visible = False
.LeftOutsidePavementLineDisplayStylePlan.Visible = False
.LevelCrownLabelDisplayStylePlan.Visible = False
.LevelCrownTickDisplayStylePlan.Visible = False
.NormalCrownLabelDisplayStylePlan.Visible = False
.NormalCrownTickDisplayStylePlan.Visible = False
.ReverseCrownLabelDisplayStylePlan.Visible = False
.ReverseCrownTickDisplayStylePlan.Visible = False
.RightInsidePavementLineDisplayStylePlan.Visible = False
.RightInsideShoulderLineDisplayStylePlan.Visible = False
.RightOutsidePavementLineDisplayStylePlan.Visible =

False
.ShoulderBreakOverLabelDisplayStylePlan.Visible = False
.ShoulderBreakOverTickDisplayStylePlan.Visible = False
.TransitionSegmentLabelDisplayStylePlan.Visible = False

End With

This style produces a data band that looks like this:

Legacy COM API | 341

Section Data Band Style

Data bands for section views are described by an object of type
AeccBandSectionDataStyle. Information in this data band can be displayed
at major and minor tick marks, at the centerline, at each section grade break,
and at each sample line vertex. The centerline is the location where the sample
line crosses the alignment. If the sample line does not cross the alignment,
the centerpoint is where the sample line would cross the alignment if the
sample line were extended. Unless the AeccSampleLines.AddByPolyline
method was used to create a multi-segment sample line, placing information
at each sample line vertex simply places tick marks and labels at the section
endpoints.

Each label style can use any of the following property fields:

Valid property fields for use with AeccBandLabelStyle text components

<[Distance from Centerline(Uft|P2|RN|Sn|OF|AP)]>

<[Distance from Centerline Side(CP)]>

<[Offset from Centerline(Uft|P3|RN|AP|Sn|OF)]>

<[Offset from Centerline Side(CP)]>

342 | Chapter 1 API Developer's Guide

Valid property fields for use with AeccBandLabelStyle text components

<[Section1 Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Section2 Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Section1 Elevation Minus Section2 Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Section2 Elevation Minus Section1 Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Section Segment Grade In(FP|P2|RN|AP|Sn|OF)]>

<[Section Segment Grade Out(FP|P2|RN|AP|Sn|OF)]>

<[Section Segment Grade Change(FP|P2|RN|AP|Sn|OF)]>

This sample demonstrates the creation of a data band style displaying section
elevation data at two different locations:

Dim oBandSectionDataStyle As AeccBandSectionDataStyle
Set oBandSectionDataStyle = oDocument.SectionViewBandStyles.
_
SectionDataBandStyles.Add("Segment Band")

' Display at every major grid line a tick mark and a label
' that shows the section elevation at that point.
With oBandSectionDataStyle

.MajorOffsetLabelDisplayStylePlan.Color = 255 ' white

.MajorOffsetLabelDisplayStylePlan.Visible = True

.MajorOffsetTickDisplayStylePlan.Color = 255 ' white

.MajorOffsetTickDisplayStylePlan.Visible = True
End With
With oBandSectionDataStyle.MajorIncrementLabelStyle. _
TextComponents.Item(0)
.Contents = "<[Section1 Elevation(Um|P3|RN|AP|Sn|OF)]>m"
.Color = 255 ' white
.Visibility = True
' Shift the label to the high side of the band.
.YOffset = 0.015

Legacy COM API | 343

End With

' Display a red tick mark and a red label showing section

' elevation at each vertex endpoint in the sample line.
' Make the tick mark large, and only at the top of the
' band.
With oBandSectionDataStyle

.SampleLineVertexLabelDisplayStylePlan.Color = 20 '
red

.SampleLineVertexLabelDisplayStylePlan.Visible = True
.SampleLineVertexTickDisplayStylePlan.Color = 20 ' red
.SampleLineVertexTickDisplayStylePlan.Visible = True

End With
With oBandSectionDataStyle.SampleLineVerticesLabelStyle.
_
TextComponents.Item(0)
.Contents = "<[Section1 Elevation(Um|P3|RN|AP|Sn|OF)]>m"
.Color = 20 ' red
.Visibility = True
.YOffset = 0.08

End With
With oBandSectionDataStyle.SampleLineVerticesLabelStyle.
_
TickStyle
.IncrementSmallTicksAtTop = True
.IncrementSmallTicksAtMiddle = False
.IncrementSmallTicksAtBottom = False
.SmallTicksAtTopSize = 0.015

End With

' Hide all other data locations in the data band.
With oBandSectionDataStyle

.CenterLineLabelDisplayStylePlan.Visible = False

.CenterLineTickDisplayStylePlan.Visible = False

.GradeBreakLabelDisplayStylePlan.Visible = False

.GradeBreakTickDisplayStylePlan.Visible = False

.MinorOffsetLabelDisplayStylePlan.Visible = False

.MinorOffsetTickDisplayStylePlan = False
End With

This style produces a data band that looks like this:

344 | Chapter 1 API Developer's Guide

Creating a Data Band Set

This section explains data band sets, which are groups of individual data bands
displayed around a profile view or section view graph.

Creating Data Band Sets for Profile Views

Individual band styles can be grouped together into a set, which can then be
assigned to a graph. Profile band sets are AeccProfileViewBandStyleSet objects
stored in the AeccDocument.ProfileViewBandStyleSet collection.

The following example demonstrates creating a profile band style set and
adding a band style to it:

Dim oProfileViewBandStyleSet As AeccProfileViewBandStyleSet
Set oProfileViewBandStyleSet = _
oDocument.ProfileViewBandStyleSets.Add("Profile Band

set")

' Add a band style we have already created to the
' band set.
Call oProfileViewBandStyleSet.Add(oBandProfileDataStyle)

' Now we have a band set consisting of one band.

Legacy COM API | 345

Data band sets are used when profile views are first created. The following
sample code is taken from the topic Creating a Profile View (page 303), but this
time a data band set is passed in the last parameter.

Set oProfileView = oAlignment.ProfileViews.Add(_
"Profile Style 01", _
"0", _
dOriginPt, _
oProfileViewStyle, _
oProfileViewBandStyleSet)

Creating Data Band Sets for Section Views

Individual band styles can be grouped together into a set, which can then be
assigned to a graph. Band sets for section graphs are objects of type
AeccSectionViewBandStyleSet, and all such sets are stored in the
AeccDocument.SectionViewBandStyleSet collection.

The following example demonstrates creating a section band style set and
adding a band style to it:

Dim oSectionViewBandStyleSet As AeccSectionViewBandStyleSet
Set oSectionViewBandStyleSet = _
oDocument.SectionViewBandStyleSets.Add("Section Band

Set")

' Add a band style we have already created to the
' band set.
Call oSectionViewBandStyleSet.Add(oBandSectionDataStyle)

' Now we have a band set consisting of one band.

Data band sets are used when section views are first created. The following
sample code is taken from the Creating Section Views (page 318) section of the
Sections (page 308) chapter, but this time a data band set is passed in the last
parameter:

Set oSectionView=oSampleLines.Item(j).SectionViews.Add(_
"Section View" & CStr(j), _
"0", _
dOriginPt, _

346 | Chapter 1 API Developer's Guide

oSectionViewStyle, _
oSectionViewBandStyleSet)

Using Data Bands

This section explains how data band sets are added to profile view and section
view graphs.

Adding Data Bands to a Profile View

Every profile view contains a collection of bands in its
AeccProfileView.BandSet property, an object of type AeccProfileViewBandSet.
When a profile view is first created, all band styles from the
AeccProfileViewBandStyleSet parameter are added to this collection.
Individual band styles can be added to a section view through the
AeccProfileViewBandSet collection using its Add or Insert methods. Both of
these methods take an AeccProfileDataBandStyle style, a parent alignment,
and two AeccProfile objects, allowing comparison between profiles.

TIP

If you only want to display information from a single profile in the band, pass
the same profile object to both parameters.

The order of bands in the band set is also the order in which the bands are
displayed. AeccProfileViewBandSet.Add places the new band at the bottom
of the list while AeccProfileViewBandSet.Insert places the new band at the
specified index.

TIP

You can swap the location of two bands with the
AeccProfileViewBandSet.Swap method.

This sample adds a data band to a profile view that describes the single profile
“oProfile” based on the alignment “oAlignment”:

Dim oProfileViewBandSetItem As AeccProfileViewBandSetItem
Set oProfileViewBandSetItem = oProfileView.BandSet.Add(_
oBandStyle, _
oAlignment, _

Legacy COM API | 347

oProfile, _
oProfile)

' Now oProfileView has another data band.

Adding Data Bands to a Section View

Every section view contains a collection of bands in its
AeccSectionView.BandSet property, an object of type AeccSectionViewBandSet.
When a section view is first created, all band styles from the
AeccSectionViewBandStyleSet parameter are added to this collection.
Individual band styles can be added to a section view through the
AeccSectionViewBandSet collection using its Add or Insert methods. Both of
these methods take an AeccSectionDataBandStyle style and two AeccSection
objects, allowing comparison between sections.

TIP

If you only want to display a single section in the band, pass the same section
object to both parameters.

The order of bands in the band set is also the order in which the bands are
displayed. AeccSectionViewBandSet.Add places the new band at the bottom
of the list while AeccSectionViewBandSet.Insert places the new band at the
specified index.

TIP

You can swap the location of two bands with the
AeccSectionViewBandSet.Swap method.

This sample adds a data band to a section view that describes the single section
“oSection”:

Dim oSectionViewBandSetItem As AeccSectionViewBandSetItem
Set oSectionViewBandSetItem = oSectionView.BandSet.Add(_
oBandSectionDataStyle, _
oSection, _
oSection)

' Now oSectionView has another data band.

348 | Chapter 1 API Developer's Guide

Sample Programs

Profiles.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Profile\ProfileSample.dvb

See the ProfileViewStyle module for an example of the creation of a data
band style, the definition of a data band style set, and the use of that data
band set with a profile view.

Sections.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Section\SectionSample.dvb

See the SectionViewStyle module for an example of the creation of a data
band style, the definition of a data band style set, and the use of that data
band set with a section view.

Pipe Networks in COM

This chapter covers working with pipe networks with the COM API. For
information about using pipe networks with the .NET API, see Pipe Networks
in .NET (page 92).

Legacy COM API | 349

Object Hierarchy

350 | Chapter 1 API Developer's Guide

Pipe Network Object Model

Base Objects

This section explains how to get the base objects required for using the pipe
network API classes.

Accessing Pipe Network-Specific Base Objects

Applications that access pipe networks require special versions of the base
objects representing the application and document. The AeccPipeApplication
object is identical to the AeccApplication it is inherited from except that its
AeccPipeApplication.ActiveDocument property returns an object of type
AeccPipeDocument instead of AeccDocument. The AeccPipeDocument object
contains collections of pipe network-related items, such as pipe networks,
pipe styles, and interference checks. It also contains all of the methods and
properties of AeccDocument.

When using pipe network root objects, be sure to reference the “Autodesk
Civil Engineering Pipe 6.0 Object Library” (AeccXPipe.tlb) and “Autodesk Civil
Engineering UI Pipe 6.0 Object Library” (AeccXUIPipe.tlb) libraries.

This sample demonstrates how to retrieve the pipe network root objects:

Dim oApp As AcadApplication
Set oApp = ThisDrawing.Application
Dim sAppName As String
sAppName = "AeccXUiPipe.AeccPipeApplication"
Dim oPipeApplication As AeccPipeApplication
Set oPipeApplication = oApp.GetInterfaceObject(sAppName)

' Get a reference to the currently active document.
Dim oPipeDocument As AeccPipeDocument
Set oPipeDocument = oPipeApplication.ActiveDocument

Pipe-Specific Ambient Settings

Ambient settings allow you to get and set the units and default property
settings of pipe network objects as well as access the catalog of all pipe and

Legacy COM API | 351

structure parts held in the document. Ambient settings for a pipe document
are held in the AeccPipeDocument.Settings property, an object of type
AeccPipeSettingsRoot. AeccPipeSettingsRoot inherits all the properties of
the AeccSettingsRoot class.

Among the properties of AeccPipeSettingsRoot are InterferenceSettings,
PipeSettings, and StructureSettings. Each of these properties consist of an
AeccSettingsAmbient object, which describes the default units of measurement
for interference, pipe, and structure objects. The
AeccPipeSettingsRoot.PipeNetworkSettings property contains the name of
the default styles for pipe and structure objects as well as the default label
placement, units, and naming conventions for pipe networks as a whole.

' Get the default set of pipe rules used in this document.
With oSettings.PipeNetworkSettings.RulesSettings

Debug.Print "Using pipe rules:"; .PipeDefaultRules.Value
End With

' Set the default units used for pipes in this document.
With oSettings.PipeSettings.AmbientSettings

.AngleSettings.Unit = aeccAngleUnitRadian

.CoordinateSettings.Unit = aeccCoordinateUnitFoot

.DistanceSettings.Unit = aeccCoordinateUnitFoot
End With

The AeccPipeSettingsRoot object also has a
PipeNetworkCommandsSettingsproperty, which contains properties that affect
pipe network-related commands. Each sub-property contains an
AmbientSettings property which describes the default units of measurement
for interference, pipe, and structure objects, plus other properties specific to
the command.

Listing and Adding Dynamic Part Properties

Each type of pipe and structure has many unique attributes (such as size,
geometry, design, and composition) that cannot be stored in the standard
pipe and structure properties. To give each part appropriate attributes, pipe
and structure objects have sets of dynamic properties. A single property is
represented by an AeccPartDataField object. Data fields are held in collections
of type AeccPartDataRecord. You can reach these collections through the
PartDataRecord property of AeccPartSizeFilter, AeccPipe, and AeccStructure
objects. Each data field contains an internal variable name, a text description

352 | Chapter 1 API Developer's Guide

of the value, a global context used to identify the field, data type, and the
data value itself.

This sample enumerates all the data fields contained in a pipe object “oPipe”
and displays information from each field.

Dim oPartDataField As AeccPartDataField

Debug.Print "All data fields for this pipe:"
Debug.Print "======"
For Each oPartDataField In oPipe.PartDataRecord

Debug.Print "Context name: ";
oPartDataField.ContextString

Debug.Print "Description: "; oPartDataField.Description
Debug.Print "Internal name:"; oPartDataField.Name
Debug.Print "Value: "; oPartDataField.Tag
Debug.Print "Type of value:"; oPartDataField.Type
Debug.Print "------"

Next

To create your own dynamic properties, you first create a custom parameter
describing the type and name of the property. You do this by using the pipe
network catalog definitions object AeccPipeNetworkCatDef, which you access
through the ambient property AeccPipeSettingsRoot.PipeNetworkCatDef.
The AeccPipeNetworkCatDef object creates new parameters using the
AeccPipeNetworkCatDef.DeclareNewParameter method. DeclareNewParameter
takes some strings describing the parameter data type:
■ a global context (the identification string used to access the parameter

type)

■ a context description

■ a parameter name (the internally used name of the parameter)

■ a parameter description (the public name of the parameter used by the
user interface, such as in the Part Properties tab of the Pipe and
Structure Properties dialog boxes).

Once a parameter has been created, it can be made into a property available
for use in parts through the AeccPipeNetworkCatDef.DeclarePartProperty
method.

NOTE

The parameter name cannot contain spaces or punctuation characters.

Legacy COM API | 353

This sample demonstrates declaring a parameter and making a property based
on that parameter available to any pipe objects:

Dim oSettings As AeccPipeSettingsRoot
Dim oPipeNetworkCatDef As AeccPipeNetworkCatDef

Set oSettings = oPipeDocument.Settings
Set oPipeNetworkCatDef = oSettings.PipeNetworkCatDef
oPipeNetworkCatDef.DeclareNewParameter _
"Global Context 01", _
"Context Description", _
"TParam", _
"Test Parameter", _
aeccDoubleGeneral, _
aeccDouble, _
"", _
True, _
False

oPipeNetworkCatDef.DeclarePartProperty
"Global Context 01", aeccDomPipe, 10

You can now choose from among those properties available to the part’s
domain and create a data field.

' Make a data field based on the "Global Context 01"
' property and add it to a pipe object "oPipe". Set
' the value of the data field to "6.5".
Dim oPartDataField As AeccPartDataField
Set oPartDataField = oPipe.PartDataRecord.Append
("Global Context 01", 0)

oPartDataField.Tag = 6.5

Retrieving the Parts List

AeccPipeSettingsRoot also contains the PartLists property, a read-only
collection of all the lists of part types available in the document. Each list is
an object of type AeccPartList, a read-only collection of part families. A part
family represents a broad category of parts, and is identified by a GUID
(Globally Unique Identification) value. A part family can only contain parts
from one domain - either pipes or structures but not both. Part families contain

354 | Chapter 1 API Developer's Guide

a read-only collection of part filters (AeccPartSizeFilter), which are the
particular sizes of parts. A part filter is defined by its
AeccPartSizeFilter.PartDataRecord property, a collection of fields describing
various aspects of the part.

This sample prints the complete listing of all parts in a document.

Dim oSettings As AeccPipeSettingsRoot
Set oSettings = oPipeDocument.Settings
' Get a reference to all the parts lists in the drawing.
Dim oPartLists As AeccPartLists
Set oPartLists = oSettings.PartLists
Debug.Print "Number of part lists: "; oPartLists.Count

Dim oPartList As AeccPartList
For Each oPartList In oPartLists

Dim oPartFamily As AeccPartFamily
Dim oSizeFilters As AeccPartSizeFilters
Dim oSizeFilter As AeccPartSizeFilter
Dim sPipeGuid As String
Dim sStructureGuid As String
Dim oPipeFilter As AeccPartSizeFilter
Dim oStructureFilter As AeccPartSizeFilter

Debug.Print: Debug.Print
Debug.Print "PART LIST - "; oPartList.Name
Debug.Print "---"

' From the part list, looking at only those part families
' that are pipes, print all the individual parts.
Debug.Print " Pipes"
Debug.Print " ====="
For Each oPartFamily In oPartList

' Look for only pipe families.
If (oPartFamily.Domain = aeccDomPipe) Then

sPipeGuid = oPartFamily.guid
Debug.Print " Family: "; oPartFamily.Name
' Go through each part in this family.
For Each oPipeFilter In oPartFamily.SizeFilters

Debug.Print " Part: "; oPipeFilter.Name
Next

End If
Next

Legacy COM API | 355

' From the part list, looking at only those part families
' that are structures, print all the individual parts.
Debug.Print
Debug.Print " Structures"
Debug.Print " =========="
For Each oPartFamily In oPartList

' Look for only structure families.
If (oPartFamily.Domain = aeccDomStructure) Then

sStructureGuid = oPartFamily.guid
Debug.Print " Family: "; oPartFamily.Name
' Go through each part in this family.
For Each oPipeFilter In oPartFamily.SizeFilters

Debug.Print " Part: "; oPipeFilter.Name
Next

End If
Next

Next

Creating a Pipe Network

A pipe network is a set of interconnected or related parts. The collection of
all pipe networks is held in the AeccPipeDocument.PipeNetworks property. A
pipe network, an object of type AeccPipeNetwork, contains the collection of
pipes and the collection of structures which make up the network.
AeccPipeNetwork also contains the method
AeccPipeNetwork.FindShortestNetworkPath for determining the path between
two network parts.

The AeccPipeNetwork.ReferenceAlignment is used by pipe and structure label
properties. For example, you can create a label that shows the station and
offset from the alignment. The AeccPipeNetwork.ReferenceSurface is used
primarily for Pipe Rules. For example, you can have a rule that places the
structure rim at a specified elevation from the surface. Labels may also refer
to the ReferenceSurface property.

' Get the collection of all networks.
Dim oPipeNetworks as AeccPipeNetworks
Set oPipeNetworks = oPipeDocument.PipeNetworks

356 | Chapter 1 API Developer's Guide

' Create a new pipe network
Set oPipeNetwork = oPipeNetworks.Add("Network Name")

Pipes

This section explains the creation and use of pipes. Pipes represent the conduits
within a pipe network.

Creating Pipes

Pipe objects represent the conduits of the pipe network. Pipes are created using
the pipe network’s AeccPipeNetwork.Pipes collection. This collection has
methods for creating either straight or curved pipes. Both methods require
you to specify a particular part family (using the GUID of a family) and a
particular part size filter object as well as the starting and ending points of
the pipe. The order of the start and end points may have meaning in describing
flow direction.

This sample creates a straight pipe between two hard-coded points using the
first pipe family and pipe size filter it can find in the part list:

Dim oPipe as AeccPipe
Dim oSettings As AeccPipeSettingsRoot
Dim oPartLists As AeccPartLists
Dim oPartList As AeccPartList
Dim sPipeGuid As String
Dim oPipeFilter As AeccPartSizeFilter

' Go through the list of part types and select the first
' pipe found.
Set oSettings = oPipeDocument.Settings
' Get all the parts list in the drawing.
Set oPartLists = oSettings.PartLists
' Get the first part list found.
Set oPartList = oPartLists.Item(0)
For Each oPartFamily In oPartList

' Look for a pipe family.
If (oPartFamily.Domain = aeccDomPipe) Then

sPipeGuid = oPartFamily.guid
' Get the first size filter list from the family.

Legacy COM API | 357

Set oPipeFilter = oPartFamily.SizeFilters.Item(0)
Exit For
End If

Next

Dim dStartPoint(0 To 2) As Double
Dim dEndPoint(0 To 2) As Double
dStartPoint(0) = 100: dStartPoint(1) = 100
dEndPoint(0) = 200: dEndPoint(1) = 100

' Assuming a valid AeccNetwork object "oNetwork".
Set oPipe = oNetwork.Pipes.Add(sPipeGuid, oPipeFilter,
dStartPoint, dEndPoint)

Using Pipes

To make a new pipe a meaningful part of a pipe network, it must be connected
to structures or other pipes using the AeccPipe.ConnectToStructure or
AeccPipe.ConnectToPipe methods, or structures must be connected to it using
the AeccStructure.ConnectToPipe method. Connecting pipes together directly
creates a new virtual AeccStructure object to serve as the joint. If a pipe end
is connected to a structure, it must be disconnected before attempting to
connect it to a different structure. After a pipe has been connected to a
network, you can determine the structures at either end by using the
StartStructure and EndStructure properties or by using the Connections
property, which is a read-only collection of network parts. There are methods
and properties for setting and determining the flow direction, getting all types
of physical measurements, and for accessing collections of user-defined
properties for custom descriptions of the pipe.

' Given a pipe and a structure, join the second endpoint
' of the pipe to the structure.
oPipe.ConnectToStructure aeccPipeEnd, oStructure

' Set the flow direction for the pipe.
oPipe.FlowDirectionMethod =
aeccPipeFlowDirectionMethodBySlope

' Add a custom property to the pipe and assign a value.
Call oPipe.ParamsLong.Add("Custom", 9.2)
Debug.Print "Custom prop:"; oPipe.ParamsLong.Value("Custom")

358 | Chapter 1 API Developer's Guide

Creating Pipe Styles

A pipe style controls the visual appearance of pipes in a document. All pipe
style objects in a document are stored in the AeccPipeDocument.PipeStyles
collection. Pipe styles have four display methods and three hatch methods
for controlling general appearance attributes and three properties for
controlling display attributes that are specific to pipes. The methods
DisplayStyleModel|Profile|Section|Plan, and
HatchStylePlan|Profile|Section all take a parameter describing the feature
being modified, and return a reference to the AeccDisplayStyle or
AeccHatchDisplayStyle object controlling common display attributes, such
as line styles and color. The properties PlanOption and ProfileOption set the
size of the inner wall, outer wall, and end lines according to either the physical
properties of the pipe, a custom sizes using drawing units, or a certain
percentage of its previous drawing size. The HatchOption property sets the
area of the pipe covered by any hatching used. A pipe object is given a style
by assigning the AeccPipe.Style property to a AeccPipeStyle object.

This sample creates a new pipe style object, sets some of its properties, and
assigns it to a pipe object:

' Create a new pipe style object.
Dim oPipeStyle As AeccPipeStyle
Set oPipeStyle = oPipeDocument.PipeStyles.Add("Pipe Style
01")
With oPipeStyle.PlanOption

' Set the display size of the pipes in plan view, using
' absolute drawing units for the inside, outside, and
' ends of each pipe.
.InnerDiameter = 2.1
.OuterDiameter = 2.4
.EndLineSize = 2.1

' Indicate that we will use our own measurements for
' the inside and outside of the pipe, and not base
' the drawing on the actual physical measurements of
' the pipe.
.WallSizeType = aeccUserDefinedWallSize

' Indicate what kind of custom sizing to use.
.WallSizeOptions = aeccPipeUseAbsoluteUnits

End With

Legacy COM API | 359

' Modify the colors of pipes using this style when shown
in
' plan view.
oPipeStyle.DisplayStylePlan(aeccDispCompPipeOutsideWalls)
_
.Color = 40 ' orange

oPipeStyle.DisplayStylePlan(aeccDispCompPlanInsideWalls)
_
.Color = 255 ' white

oPipeStyle.DisplayStylePlan(aeccDispCompPipeEndLine) _
.color = 255 ' white

' Set a pipe to use this style.
Set oPipe.Style = oPipeStyle

Creating Pipe Label Styles

The collection of all pipe label styles in a document is found in the
AeccPipeDatabase.PipeNetworkLabelStyles.PipeLabelStyles property,
which is a standard AeccLabelStyles object. For more information, see Label
Styles (page 211).

NOTE

The label style of a particular pipe cannot be set using the API.

Pipe label styles can use the following property fields in the contents of any
text component.

Valid property fields for AeccLabelStyleTextComponent.Contents in pipes

<[Cross Sectional Shape(CP)]>

<[Wall Thickness(Uin|P3|RN|AP|Sn|OF)]>

<[Material(CP)]>

<[Minimum Curve Radius(Uft|P3|RN|AP|Sn|OF)]>

<[Manning Coefficient(P3|RN|AP|Sn|OF)]>

360 | Chapter 1 API Developer's Guide

Valid property fields for AeccLabelStyleTextComponent.Contents in pipes

<[Hazen Williams Coefficient(P3|RN|AP|Sn|OF)]>

<[Darcy Weisbach Factor(P3|RN|AP|Sn|OF)]>

<[Inner Pipe Diameter(Uin|P3|RN|AP|Sn|OF)]>

<[Inner Pipe Width(Uin|P3|RN|AP|Sn|OF)]>

<[Inner Pipe Height(Uin|P3|RN|AP|Sn|OF)]>

<[Name(CP)]>

<[Description(CP)]>

<[Network Name(CP)]>

<[Reference Alignment Name(CP)]>

<[Pipe Start Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Start Offset(Uft|P3|RN|AP|Sn|OF)]>

<[Start Offset Side(CP)]>

<[Pipe End Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[End Offset Side(Uft|P3|RN|AP|Sn|OF)]>

<[End Offset(CP)]>

<[Reference Surface Name(CP)]>

<[Pipe Slope(FP|P2|RN|AP|Sn|OF)]>

Legacy COM API | 361

Valid property fields for AeccLabelStyleTextComponent.Contents in pipes

<[Pipe Start Structure(CP)]>

<[Pipe Start Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Pipe Start Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Start Invert Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Start Centerline Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Start Crown Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Pipe End Structure(CP)]>

<[Pipe End Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Pipe End Easting(Uft|P4|RN|AP|Sn|OF)]>

<[End Invert Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[End Centerline Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[End Crown Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[2D Length - Center to Center(Uft|P3|RN|AP|Sn|OF)]>

<[3D Length - Center to Center(Uft|P3|RN|AP|Sn|OF)]>

<[2D Length - To Inside Edges(Uft|P3|RN|AP|Sn|OF)]>

<[3D Length - To Inside Edges(Uft|P3|RN|AP|Sn|OF)]>

<[Pipe Bearing(Udeg|FDMSdSp|MB|P6|RN|DSn|CU|AP|OF)]>

362 | Chapter 1 API Developer's Guide

Valid property fields for AeccLabelStyleTextComponent.Contents in pipes

<[Pipe Start Direction in plan(Udeg|FDMSdSp|MB|P6|RN|DSn|CU|AP|OF)]>

<[Pipe End Direction in plan(Udeg|FDMSdSp|MB|P6|RN|DSn|CU|AP|OF)]>

<[Pipe Radius(Uft|P3|RN|AP|Sn|OF)]>

<[Pipe Chord Length(Uft|P3|RN|AP|Sn|OF)]>

<[Radius Point Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Radius Point Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Minimum Cover(Uft|P3|RN|AP|Sn|OF)]>

<[Maximum Cover(Uft|P3|RN|AP|Sn|OF)]>

<[Pipe Outer Diameter or Width(Uin|P3|RN|AP|Sn|OF)]>

<[Pipe Inner Diameter or Width(Uin|P3|RN|AP|Sn|OF)]>

<[Drop Across Span(Uft|P3|RN|AP|Sn|OF)]>

<[Total Slope Across Span(FP|P2|RN|AP|Sn|OF)]>

<[Number of Pipes in Span(Sn)]>

Structures

This section describes the creation and use of structures. Structures are the
connectors within a pipe network.

Legacy COM API | 363

Creating Structures

Structures represent physical objects such as manholes, catch basins, and
headwalls. Logically, structures are used as connections between pipes at pipe
endpoints. In cases where two pipes connect directly, an AeccStructure object
not representing any physical object is still created to serve as the joint. Any
number of pipes can connect with a structure. Structures are represented by
objects of type AeccStructure, which are created by using the Add method of
the Surfaces collection of AeccPipeNetwork.

This sample uses the first structure family and size filter it can find in the part
list and creates a new structure based on that part type.

Dim oStructure as AeccStructure
Dim oSettings As AeccPipeSettingsRoot
Dim oPartLists As AeccPartLists
Dim oPartList As AeccPartList
Dim sStructureGuid As String
Dim oStructureFilter As AeccPartSizeFilter

' Go through the list of part types and select the first
' structure found.
Set oSettings = oPipeDocument.Settings
' Get all the parts list in the drawing.
Set oPartLists = oSettings.PartLists
' Get the first part list found.
Set oPartList = oPartLists.Item(0)
For Each oPartFamily In oPartList

' Look for a structure family that is not named
' "Null Structure".
If (oPartFamily.Domain = aeccDomStructure) And _
(oPartFamily.Name = "Null Structure") Then
sStructureGuid = oPartFamily.guid
' Get the first size filter list from the family.
Set oStructureFilter = oPartFamily.SizeFilters.Item(0)
Exit For

End If
Next

Dim dPoint(0 To 2) As Double
dPoint(0) = 100: dPoint(1) = 100

364 | Chapter 1 API Developer's Guide

' Assuming a valid AeccNetwork object "oNetwork".
Set oStructure = oNetwork.Structures.Add(_
sStructureGuid, _
oStructureFilter, _
dPoint, _
5.2333) ' 305 degrees in radians

Using Structures

To make the new structure a meaningful part of a pipe network, it must be
connected to pipes in the network using the AeccStructure.ConnectToPipe
method or pipes must be connected to it using the
AeccPipe.ConnectToStructure method. After a structure has been connected
to a network, you can determine the pipes connected to it by using the
Connections property, which is a read-only collection of network parts. There
are also methods and properties for setting and determining all types of
physical measurements for the structure and for accessing collections of
user-defined properties for custom descriptions of the structure.

' Given a pipe and a structure, join the second endpoint
' of the pipe to the structure.
oStructure.ConnectToPipe oPipeNew, aeccPipeEnd

' Determine flow directions from all pipes connected
' to a structure.
Dim i As Integer
For i = 0 To oStructure.ConnectedPipesCount - 1

If (oStructure.IsConnectedPipeFlowingIn(i) = True) Then
Debug.Print "Pipe "; i; " flows into structure"

Else
Debug.Print "Pipe "; i; " does not flow into

structure"
End If

Next i

Creating Structure Styles

A structure style controls the visual appearance of structures in a document.
All structure style objects are stored in the AeccPipeDocument.StructureStyles
collection. Structure styles have four methods for controlling general

Legacy COM API | 365

appearance attributes and three properties for controlling display attributes
that are specific to structures. The methods
DisplayStylePlan|Profile|Section|Model and
HatchStylePlan|Profile|Section all take a parameter describing the feature
being modified and return a reference to the AeccDisplayStyle or
AeccHatchDisplayStyle object controlling common display attributes such
as line styles and color. The properties PlanOption, ProfileOption, and
ModelOption set the display size of the structure and whether the structure is
shown as a model of the physical object or only symbolically. A structure
object is given a style by assigning the AeccStructure.Style property to a
AeccStructureStyle object.

This sample creates a new structure style object, sets some of its properties,
and assigns it to a structure object:

' Create a new structure style object.
Dim oStructureStyle As AeccStructureStyle
Set oStructureStyle =
oPipeDocument.StructureStyles.Add("Structure Style 01")

oStructureStyle.DisplayStylePlan(aeccDispCompStructure).color
= 30
oStructureStyle.PlanOption.MaskConnectedObjects = True

' Set a structure to use this style.
Set oStructure.Style = oStructureStyle

Creating Structure Label Styles

The collection of all structure label styles in a document is found in the
AeccPipeDatabase.PipeNetworkLabelStyles.StructureLabelStyles property,
which is a standard AeccLabelStyles object. For more information, see Label
Styles (page 211).

NOTE

The label style of a particular structure cannot be set using the API.

366 | Chapter 1 API Developer's Guide

Structure label styles can use the following property fields in the contents of
any text component:

Valid property fields for AeccLabelStyleTextComponent.Contents in struc-
tures

<[Name(CP)]>

<[Description(CP)]>

<[Network Name(CP)]>

<[Structure Rotation Angle(Udeg|FD|P4|RN|AP|OF)]>

<[Reference Alignment Name(CP)]>

<[Structure Station(Uft|FS|P2|RN|AP|Sn|TP|B2|EN|W0|OF)]>

<[Structure Offset(Uft|P3|RN|AP|Sn|OF)]>

<[Structure Offset Side(CP)]>

<[Reference Surface Name(CP)]>

<[Connected Pipes(Sn)]>

<[Structure Northing(Uft|P4|RN|AP|Sn|OF)]>

<[Structure Easting(Uft|P4|RN|AP|Sn|OF)]>

<[Automatic Surface Adjustment]>

<[Insertion Rim Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Sump Elevation(Uft|P3|RN|AP|Sn|OF)]>

<[Surface Adjustment Value(Uft|P3|RN|AP|Sn|OF)]>

Legacy COM API | 367

Valid property fields for AeccLabelStyleTextComponent.Contents in struc-
tures

<[Control Sump By:(CP)]>

<[Sump Depth(P3|RN|AP|Sn|OF)]>

<[Surface Elevation At Insertion Point(Uft|P3|RN|AP|Sn|OF)]>

<[Structure Shape(CP)]>

<[Vertical Pipe Clearance(Uin|P3|RN|AP|Sn|OF)]>

<[Rim to Sump Height(Uft|P3|RN|AP|Sn|OF)]>

<[Wall Thickness(Uin|P3|RN|AP|Sn|OF)]>

<[Floor Thickness(Uin|P3|RN|AP|Sn|OF)]>

<[Material(CP)]>

<[Frame(CP)]>

<[Grate(CP)]>

<[Cover(CP)]>

<[Frame Height(Uin|P3|RN|AP|Sn|OF)]>

<[Frame Diameter(Uin|P3|RN|AP|Sn|OF)]>

<[Frame Length(Uin|P3|RN|AP|Sn|OF)]>

<[Frame Width(Uin|P3|RN|AP|Sn|OF)]>

<[Barrel Height(Uft|P3|RN|AP|Sn|OF)]>

368 | Chapter 1 API Developer's Guide

Valid property fields for AeccLabelStyleTextComponent.Contents in struc-
tures

<[Barrel Pipe Clearance(Uin|P3|RN|AP|Sn|OF)]>

<[Cone Height(Uin|P3|RN|AP|Sn|OF)]>

<[Slab Thickness(Uin|P3|RN|AP|Sn|OF)]>

<[Inner Structure Diameter(Uin|P3|RN|AP|Sn|OF)]>

<[Inner Structure Length(Uin|P3|RN|AP|Sn|OF)]>

<[Inner Structure Width(Uin|P3|RN|AP|Sn|OF)]>

<[Headwall Base Width(Uin|P3|RN|AP|Sn|OF)]>

<[Headwall Base Thickness(Uin|P3|RN|AP|Sn|OF)]>

Interference Checks

This section explains how to generate and examine an interference check. An
interference check is used to determine when pipe network parts are either
intersecting or are too close together.

Legacy COM API | 369

Object Hierarchy

Pipe Network Interference Object Model

370 | Chapter 1 API Developer's Guide

Performing an Interference Check

An interference check is used to detect intersections between the pipe parts
of two different pipe networks or of pipes of a single network with themselves.
The collection of all interference checks, an object of type
AeccInterferenceChecks, is contained in the document’s
AeccPipeDocument.InterferenceChecks property. A new interference check
is made using the AeccInterferenceChecks.Create method, which requires
an AeccInterferenceCheckCreationData parameter. The creation data object
holds all the information needed to perform the check, including the type of
check to perform, the distance between parts required for an interference, and
the pipe networks being checked. A new creation data object can only be made
using the AeccInterferenceChecks.GetDefaultCreationData method. A valid
check requires at least the Name, LayerName, SourceNetwork and TargetNetwork
properties of the creation data object to be set.

The following sample performs an interference check between two networks:

' Get the collection of all interference checks.
Dim oInterferenceChecks As AeccInterferenceChecks
Set oInterferenceChecks = oPipeDocument.InterferenceChecks

' Set up the creation data structure for making an
' interference check.
Dim oCreationData As AeccInterferenceCheckCreationData
Set oCreationData =
oInterferenceChecks.GetDefaultCreationData

' If pipes are closer than 3.5 units apart, count it as an
' intersection.
oCreationData.Criteria.ApplyProximity = True
oCreationData.Criteria.CriteriaDistance = 3.5
oCreationData.Criteria.UseDistanceOrScaleFactor =
aeccDistance

' List the networks being tested. We will compare a network
' with itself, so we list it twice.
Set oCreationData.SourceNetwork = oPipeNetwork1
Set oCreationData.TargetNetwork = oPipeNetwork2

' Assign the check a unique name and a layer to use.
oCreationData.Name = "Test 01"

Legacy COM API | 371

oCreationData.LayerName = oPipeDocument.Layers.Item(0).Name

' Create a new check of the pipe network.
Dim oInterferenceCheck As AeccInterferenceCheck
Set oInterferenceCheck = _
oInterferenceChecks.Create(oCreationData)

Listing the Interferences

An interference check, the AeccInterferenceCheck object returned by the
AeccInterferenceChecks.Create method, contains a collection of
AeccInterference objects each representing a single interference found during
the check. Each interference holds the point location of the interference center
in the Location property, a three element array of doubles representing X, Y,
and Z coordinates. The bounds of the entire interference area are returned by
the GetExtents method. The extents are a two-item array of points, together
representing the greatest and least corners of a cube containing the intersection
area. The SourceNetworkPart and TargetNetworkPart properties hold the
network parts that intersect.

Dim oInterference As AeccInterference
For Each oInterference In oInterferenceCheck

' Display the 2D x,y location of the interference.
Dim vLocation As Variant
Dim sLocation As String
Dim vExtent As Variant
vLocation = oInterference.Location
sLocation = vLocation(0) & ", " & vLocation(1)
MsgBox "There is an interference at:" & sLocation

' Display the greatest and least corners of the 3D
' rectangle containing the interference.
vExtent = oInterference.GetExtents()
Debug.Print "The interference takes place between:"
sLocation = vExtent(0)(0) & ", "
sLocation = sLocation & vExtent(0)(1) & ", "
sLocation = sLocation & vExtent(0)(2)
Debug.Print " "; sLocation; " and:"
sLocation = vExtent(1)(0) & ", "
sLocation = sLocation & vExtent(1)(1) & ", "
sLocation = sLocation & vExtent(1)(2)

372 | Chapter 1 API Developer's Guide

Debug.Print " "; sLocation
Next

If (oInterferenceCheck.Count = 0) Then
MsgBox "There are no interferences in the network."

End If

Interference Check Styles

Either a symbol or a model of the actual intersection region can be drawn at
each interference location. The display of these intersections is controlled by
an AeccInterferenceStyle object. The collection of all interference style
objects in the document are stored in the
AeccPipeDocument.InterferenceStyles collection. Set the style of an
interference object by assigning an AeccInterferenceStyle object to the
AeccInterference.Style property:

Set oInterference.Style = oInterferenceStyle

There are three different styles of interference displays you can chose from.
First, you can display a 3D model of the intersection region. This is done by
setting the ModelOptions style property to aeccTrueSolidInterference. The
ModelSolidDisplayStyle2D property, an object of type AeccDisplayStyle,
controls the visible appearance of the model such as color and line types.
Make sure the ModelSolidDisplayStyle2D.Visible property is set to True.

Another possibility is to draw a 3D sphere at the location of intersection. This
is done by setting the ModelOptions style property to aeccSphereInterference.
If the InterferenceSizeType property is set to aeccSolidExtents, then the
sphere is automatically sized to just circumscribe the region of intersection
(that is, it is the smallest sphere that still fits the model of the intersection
region). You can set the size of the sphere by setting the InterferenceSizeType
property to aeccUserDefined, setting the ModelSizeOptions property to use
either absolute units or drawing units, and setting the corresponding
AbsoluteModelSize or DrawingScaleModelSize property to the desired value.
Again, the ModelSolidDisplayStyle2D property controls the visual features
such as color and line type. Make sure the ModelSolidDisplayStyle2D.Visible
property is set to True.

The third option is to place a symbol at the location of intersection. Set the
PlanSymbolDisplayStyle2D.Visible style property to True to make symbols

Legacy COM API | 373

visible. The style property MarkerStyle, an object of type AeccMarkerStyle,
controls all aspects of how the symbol is drawn.

This sample creates a new interference style object that displays an X symbol
with a superimposed circle at points of intersection:

' Create a new interference style object.
Dim oInterferenceStyle As AeccInterferenceStyle
Set oInterferenceStyle = oPipeDocument.InterferenceStyles
_
.Add("Interference style 01")

' Draw a symbol of a violet X with circle with a specified
' drawing size at the points of intersection.
oInterferenceStyle.PlanSymbolDisplayStyle2D.Visible = True
With oInterferenceStyle.MarkerStyle

.MarkerType = aeccUseCustomMarker

.CustomMarkerStyle = aeccCustomMarkerX

.CustomMarkerSuperimposeStyle = _
aeccCustomMarkerSuperimposeCircle

.MarkerDisplayStylePlan.color = 200 ' violet

.MarkerDisplayStylePlan.Visible = True

.MarkerSizeType = aeccAbsoluteUnits

.MarkerSize = 5.5
End With
' Hide any model display at intersection points.
oInterferenceStyle.ModelSolidDisplayStyle2D.Visible = False

Sample Program

PipeSample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Pipe\PipeSample.dvb

The sample code from this chapter can be found in context in the
PipeSample.dvb project. This sample creates a simple pipe network, creates
and applies a new style, and performs an interference check.

374 | Chapter 1 API Developer's Guide

Corridors in COM

This chapter covers creating and managing corridor objects using the COM
API. For information about performing these tasks using the .NET API, see
Corridors in .NET (page 108).

Root Objects

This section explains how to get the base objects required for using the roadway
API classes.

Legacy COM API | 375

Object Hierarchy

Object Model for Root Corridor Objects

376 | Chapter 1 API Developer's Guide

Accessing Corridor-Specific Base Objects

Applications that access corridors require special versions of the base objects
representing the application and document. The AeccRoadwayApplication
object is identical to the AeccApplication it is inherited from except that its
AeccRoadwayApplication.ActiveDocument property returns an object of type
AeccRoadwayDocument instead of AeccDocument. The AeccRoadwayDocument
object contains collections of road related items, such as corridors,
subassemblies, and style objects in addition to all of the methods and properties
of AeccDocument.

When using corridor root objects, be sure to reference the “Autodesk Civil
Engineering Corridor 6.0 Object Library” (AeccXRoadway.tlb) and “Autodesk
Civil Engineering UI Corridor 6.0 Object Library” (AeccXUIRoadway.tlb)
libraries.

This sample demonstrates how to retrieve the corridor root objects:

Dim oApp As AcadApplication
Set oApp = ThisDrawing.Application
Dim sAppName As String
sAppName = "AeccXUiRoadway.AeccRoadwayApplication"
Dim oRoadwayApplication As AeccRoadwayApplication
Set oRoadwayApplication = oApp.GetInterfaceObject(sAppName)

' Get a reference to the currently active document.
Dim oRoadwayDocument As AeccRoadwayDocument
Set oRoadwayDocument = oRoadwayApplication.ActiveDocument

Ambient Settings

Ambient settings allow you to get and set the unit and default property settings
of roadway objects. Ambient settings for a corridor document are held in the
AeccRoadwayDocument.Settings property, an object of type
AeccRoadwaySettingsRoot. AeccRoadwaySettingsRoot inheirits all the
properties of the AeccSettingsRoot class from which it is derived.

The roadway-specific properies of AeccRoadwaySettingsRoot let you adjust
the settings for corridors, assemblies, subassemblies, and quantity takeoffs:

Legacy COM API | 377

Corridor Ambient Settings

The corridor ambient settings object allows you to set the default name
templates and default styles for corridor-related objects. The name templates
allow you to set how new corridors, corridor surfaces, profiles from feature
lines, or alignments from feature lines are named. Each template can use
elements from the following property fields:

Valid property fields for AeccSettingsCorridor.NameTemplate

<[Corridor First Assembly(CP)]>

<[Corridor First Baseline(CP)]>

<[Corridor First Profile(CP)]>

<[Next Counter(CP)]>

... for AeccSettingsCorridor.CorridorSurfaceNameTemplate

<[Corridor Name(CP)]>

<[Next Corridor Surface Counter(CP)]>

...for AeccSettingsCorridor.ProfileFromFeatureLineNameTemplate

<[Next Counter(CP)]>

... for AeccSettingsCorridor.AlignmentFromFeatureLineNameTemplate

<[Corridor Baseline Name(CP)]>

<[Corridor Feature Code(CP)]>

<[Corridor Name(CP)]>

<[Next Counter(CP)]>

378 | Chapter 1 API Developer's Guide

... for AeccSettingsCorridor.AlignmentFromFeatureLineNameTemplate

<[Profile Type]>

This sample sets the corridor name template:

' Get the ambient settings root object.
Dim oRoadwaySettings As AeccRoadwaySettingsRoot
Set oRoadwaySettings = oRoadwayDocument.Settings

' Set the template so that new corridors are named
"Corridor"
' followed by a unique number followed by the name of the
' corridor's first assembly in parenthesis.
oRoadwaySettings.CorridorSettings.NameTemplate = _
"Corridor <[Next Counter(CP)]>(<[Corridor First

Assembly(CP)]>)"

Default styles are set through the AeccSettingsCorridor.StyleSettings
property. The styles for corridor alignments, alignment labels, code sets,
surfaces, feature lines, profiles, profile labels, and slope pattern are accessed
through a series of string properties.

This sample sets the style of alignments in a corridor to the first alignment
style in the document’s collection of styles:

' Get a reference to the corridor settings object.
Dim oSettingsCorridor As AeccSettingsCorridor
Set oSettingsCorridor =
oRoadwayDocument.Settings.CorridorSettings

' Get the name of the first alignment style in the
collection.
Dim sName As String
sName = oRoadwayDocument.AlignmentStyles.Item(0).Name

' Assign the name to alignment style property.
oSettingsCorridor.StyleSettings.AlignmentStyle.Value =
sName

Legacy COM API | 379

Assembly Ambient Settings

The assembly ambient settings object allows you to set the default name
templates and default styles for assemblies. The name templates allow you to
set how new assemblies, offset assemblies, and assembly groups are named.
Each template can use elements from the following property fields:

Valid property fields for AeccSettingsAssembly.NameTemplate

<[Next Counter(CP)]>

... for AeccSettingsAssembly.OffsetNameTemplate

<[Corridor Name(CP)]>

...for AeccSettingsAssembly.GroupNameTemplate

<[Next Counter(CP)]>

Default styles are set through the AeccSettingsCorridor.StyleSettings
property. The styles for assemblies and code sets are accessed through string
properties.

Subassembly Ambient Settings

The subassembly ambient settings object allows you to set the default name
templates and default styles for subassembly objects. The name templates
allow you to set how subassemblies created from entities and subassemblies
create from macros are named. Each template can use elements from the
following property fields:

... for AeccSettingsSubassembly.CreateFromEntitiesNameTemplate

<[Macro Short Name(CP)]>

<[Next Counter(CP)]>

<[Subassembly Local Name(CP)]>

380 | Chapter 1 API Developer's Guide

... for AeccSettingsSubassembly.CreateFromEntitiesNameTemplate

<[Subassembly Side]>

... for AeccSettingsSubassembly.CreateFromMacroNameTemplate

<[Macro Short Name(CP)]>

<[Next Counter(CP)]>

<[Subassembly Local Name(CP)]>

<[Subassembly Side]>

The name of the default code style set is accessed through the
AeccSettingsSubassembly.CodeSetStyle string property.

Each of these settings properties also contain a standard AmbientSettings
property of type AeccSettingsAmbient for setting the default units of
measurement.

Corridors

Corridor Concepts

A corridor represents a path, such as a road, trail, railroad, or airport runway.
The geometry of a corridor is defined by a horizontal alignment and a profile.
Together, these form the baseline - the centerline of the 3D path of the
corridor. Along the length of the baselines are a series of assemblies which
define the cross-sectional shape of the alignment. Common points in each
assembly are connected to form feature lines. Together the assemblies and
feature lines form the 3D shape of a corridor. A corridor also has one or more
surfaces which can be compared against an existing ground surface to
determine the amount of cut or fill required.

Legacy COM API | 381

Listing Corridors

The collection of all corridors in a document are held in the
AeccRoadwayDocument.Corridors property.

The following sample displays the name and the largest possible triangle side
of every corridor in a document:

Dim oCorridors As AeccCorridors
Set oCorridors = oRoadwayDocument.Corridors

Dim oCorridor As AeccCorridor
For Each oCorridor In oCorridors

Debug.Print "Corridor: " & oCorridor.Name
Debug.Print oCorridor.MaximumTriangleSideLength

Next

Creating Corridors

The corridors collection includes a AeccCorridors.Add method for creating
new corridors. This method creates the corridor based on an existing alignment,
profile, and assembly.

NOTE

The station distance between assemblies cannot be set through the API, and
needs to be set through the property page dialog box before the
AeccCorridors.Add method is called.

' Assuming oAlignment, oProfile, and oAssembly represent
' valid AeccAlignment, AeccProfile, and AeccAssembly
objects.
Dim oCorridors As AeccCorridors
Set oCorridors = oRoadwayDocument.Corridors
Dim oCorridor As AeccCorridor
Set oCorridor = oCorridors.Add(_
"Corridor01", _
oAlignment.Name, _
oProfile.Name, _
oAssembly.Name)

382 | Chapter 1 API Developer's Guide

Baselines

A baseline represents the centerline of the path of a corridor. It is based on an
alignment (the horizontal component of the path) and a profile (the vertical
component of the path). A corridor can contain more than one baseline if the
corridor is modeling a complicated shape, such as an intersection. A baseline
is made up of one or more baseline regions. Each region has its own assembly
(its own cross section), so a corridor can have different shapes at different
locations along its length.

Object Hierarchy

Baselines Object Model

Legacy COM API | 383

Listing Baselines in a Corridor

The collection of all baselines in a corridor are contained in the
AeccCorridor.Baselines property.

The following sample display information about the underlying alignment
and profile for every baseline in a corridor:

Dim oBaseline As AeccBaseline
For Each oBaseline In oCorridor.Baselines

Debug.Print "Baseline information -"
Debug.Print "Alignment : " & oBaseline.Alignment.Name
Debug.Print "Profile : " & oBaseline.Profile.Name
Debug.Print "Start station: " & oBaseline.StartStation
Debug.Print "End station : " & oBaseline.EndStation
Debug.Print

Next

Adding a Baseline to a Corridor

A baseline can be added to an existing corridor through the
AeccCorridor.AddBaseline method. The baseline is defined by an existing
alignment, profile, and assembly and consists of a single region.

NOTE

The station distance between assemblies cannot be set through the API, and
needs to be set through the property page dialog box before this method is
called.

The following sample adds a baseline using an existing alignment, profile,
and assembly:

Set oBaseline = oCorridor.AddBaseline _
(oAlignment.Name, oProfile.Name, oAssembly.Name)

384 | Chapter 1 API Developer's Guide

Listing Baseline Regions

The collection of all the regions of a baseline are contained in the
AeccBaseline.BaselineRegions property.

The AutoCAD Civil 3D API does not include methods for creating new baseline
regions or manipulating existing regions.

The following sample displays the start and end station for every baseline
region in a baseline:

Dim oBaselineRegion As AeccBaselineRegion
For Each oBaselineRegion In oBaseline.BaselineRegions

Debug.Print "Baseline information -"
Debug.Print "Start station: " &

oBaselineRegion.StartStation
Debug.Print "End station: " & oBaselineRegion.EndStation
Debug.Print

Next

Accessing and Modifying Baseline Stations

Assembly cross sections are placed at regular intervals along a baseline. The
list of all stations where assemblies are located along a baseline can be retrieved
using the AeccBaseline.GetSortedStations method while all stations along
a baseline region can be retrieved using the
AeccBaselineRegion.GetSortedStations method.

Dim v As Variant
v = oBaselineRegion.GetSortedStations()
Dim i As Integer
Debug.Print "Assembly stations:"
For i = 0 To UBound(v)

Debug.Print v(i)
Next i

New stations can be added to baselines and baseline regions using the
AddStation method. Existing stations can be deleted using the DeleteStation
method. DeleteStation includes an optional tolerance parameter, letting
you specify a station within a range. You can list all of the stations added to
a baseline region with the AeccBaselineRegion.GetAdditionalStation

Legacy COM API | 385

method. AeccBaselineRegion.ClearAdditionalStations removes all added
stations within a baseline region and leaves only the original stations created
at regular intervals.

' Add an assembly to the baseline at station 12+34.5
oBaseline.AddStation 1234.5, "Station description"

' Remove the station located within 0.1 units around 5+67.5
oBaseline.DeleteStation 567.5, 0.1

Listing Offset Baselines

Within a baseline region, it is possible to have secondary baselines that are
offset from the main baseline. The collection of these offset baselines are
contained in the AeccBaselineRegion.OffsetBaselines property. The
collection contains two kinds of baselines derived from the IAeccBaseBaseline
interface. One is the hardcoded offset baseline (an instances of the
AeccHardcodedOffsetBaseline class) which is a constant distance from the
main baseline for the entire length of the offset baseline. The other is offset
baseline (an instance of the AeccOffsetBaseline class), which is a variable
distance from the main baseline.

NOTE

The AutoCAD Civil 3D API does not include methods for creating new offset
baselines or hardcoded offset baselines.

This code examines each offset baseline within a baseline region:

Dim oBaseBaseline As IAeccBaseBaseline
For Each oBaseBaseline In oBaselineRegion.OffsetBaselines

Dim dMainStart As Double ' station on main baseline
Dim dMainEnd As Double ' station on main baseline
Dim vOE As Variant

Select Case oBaseline.Type
Case aeccCorridorOffsetBaseline

Dim oOffsetBaseline As AeccOffsetBaseline
Set oOffsetBaseline = oBaseBaseline

' Report that an offset baseline exists.

386 | Chapter 1 API Developer's Guide

dMainStart =
oOffsetBaseline.StartStationOnMainBaseline

dMainEnd = oOffsetBaseline.EndStationOnMainBaseline
Debug.Print "Offset baseline, station " & dMainStart

& _
" to " & dMainEnd

' Report the offset of the baseline at its start and
end.

vOE = oOffsetBaseline. _
GetOffsetElevationFromMainBaselineStation(dMainStart)

Debug.Print " is offset by: " & _
vOE(0) & " horizontal and: " & vOE(1) & _
" vertical at start"

vOE = oOffsetBaseline. _
GetOffsetElevationFromMainBaselineStation(dMainEnd)

Debug.Print " is offset by: " & vOE(0) & _
" horizontal and: " & vOE(1) & " vertical at end"

Case aeccCorridorHardcodedOffsetBaseline
Dim oHardcodedOffsetBaseline As

AeccHardcodedOffsetBaseline
Set oHardcodedOffsetBaseline = oBaseBaseline

' Report that a hardcoded offset baseline exists.
dMainStart = oHardcodedOffsetBaseline.StartStation
dMainEnd = oHardcodedOffsetBaseline.EndStation
Debug.Print "Hardcoded offset baseline, station " _

& dMainStart & " to " & dMainEnd
vOE = oHardcodedOffsetBaseline. _

OffsetElevationFromMainBaseline
Debug.Print " is offset by: " & vOE(0) & _

" horizontal and: " & vOE(1) & " vertical"
End Select

Next

Assemblies and Subassemblies

An assembly is a pattern for the cross section of a corridor at a particular
station. An assembly consists of a connected set of subassemblies, each of
which are linked to a centerpoint or to other subassemblies. A subassembly
consists of a series of shapes, links, and points. When an assembly is used to

Legacy COM API | 387

define the cross-section of a corridor, a series of applied assemblies (an object
of type AeccAppliedAssembly) is added to the corridor. Each applied assembly
consists of a collection of applied subassemblies, which in turn consist of
shapes, links, and points that have been positioned relative to a specific station
along the corridor baseline (AeccCalcualtedShapes, AeccCalculatedLinks,
and AeccCalculatedPoints respectively). An applied assembly also has direct
access to all the calculated shapes, links, and points of its constituent applied
subassemblies.

NOTE

The AutoCAD Civil 3D API does not include methods for creating or modifying
assemblies.

388 | Chapter 1 API Developer's Guide

Object Hierarchy

Legacy COM API | 389

Assemblies and Subassemblies Object Model

Listing Applied Assemblies in a Baseline Region

The collection of all applied assemblies used in a baseline region are contained
in the AeccBaselineRegion.AppliedAssemblies property.

The following sample displays information about the construction of an
assembly for every assembly in a baseline region:

Dim oAppliedAssembly As AeccAppliedAssembly
For Each oAppliedAssembly In
oBaselineRegion.AppliedAssemblies

Debug.Print "Applied Assembly"
Dim lCount As Long
lCount = oAppliedAssembly.GetShapes().Count
Debug.Print " Num Shapes: " & lCount
Debug.Print
lCount = oAppliedAssembly.GetLinks().Count
Debug.Print " Num Links: " & lCount
lCount = oAppliedAssembly.GetPoints().Count
Debug.Print " Num Points: " & lCount

Next

An AeccAppliedAssembly object does not contain its baseline station position.
Instead, each calculated point contains a method for determining its position
with a baseline station, offset, and elevation called
AeccCalculatedPoint.GetStationOffsetElevationToBaseline. Each calculated
shape contains a collection of all links that form the shape, and each calculated
link contains a collection of all points that define the link. Finally, each shape,
link, and point contain an array of all corridor codes that apply to that element.

This sample retrieves all calculated point in an applied assembly and prints
their locations:

Dim oPoint As AeccCalculatedPoint
For Each oPoint In oAppliedAssembly.GetPoints()

Dim vPos As Variant
vPos = oPoint.GetStationOffsetElevationToBaseline()
Debug.Print "Position: Station = " & vPos(0) & _
" Offset = " & vPos(1) & " Elevation = " & vPos(2)

Next

390 | Chapter 1 API Developer's Guide

Getting Applied Subassembly Information

An applied subassembly consists of a series of calculated shapes, links, and
points, represented by objects of type AeccCalculatedShape,
AeccCalculatedLink, and AeccCalculatedPoint respectivly.

Dim S, O, E As Double
With oAppliedSubassembly

S = .OriginStationOffsetElevationToBaseline(0)
O = .OriginStationOffsetElevationToBaseline(1)
E = .OriginStationOffsetElevationToBaseline(2)

End With
Debug.Print "Station to baseline : " & S
Debug.Print "Offset to baseline : " & O
Debug.Print "Elevation to baseline : " & E

Applied subassemblies also contain a reference to the archetype subassembly
(of type AeccSubassembly) in the subassembly database.

' Get information about the subassembly template.
Dim oSubassembly As AeccSubassembly
Set oSubassembly = oAppliedSubassembly.SubassemblyDbEntity
Debug.Print "Subassembly name: " & oSubassembly.Name

Feature Lines

Feature lines are formed by connecting related points in each assembly along
the length of a corridor baseline. These lines represent some aspect of the
roadway, such as a sidewalk edge or one side of a corridor surface. Points
become related by sharing a common code, a string property usually describing
the corridor feature.

Each baseline has two sets of feature lines, one for lines that are positioned
along the main baseline and one for lines that are positioned along any of
the offset baselines.

NOTE

You can create feature lines from polylines using the IAeccLandFeatureLine::
AddFromPolyline() method.

Legacy COM API | 391

Object Hierarchy

Feature Line Object Model

392 | Chapter 1 API Developer's Guide

Listing Feature Lines Along a Baseline

The set of all feature lines along a main baseline are held in the
AeccBaseline.MainBaselineFeatureLines property, an object of type
AeccBaselineFeatureLines. This object contains information about all the
feature lines, such as a list of all codes used. Its
AeccBaselineFeatureLines.FeatureLinesCol property is a collection of
collections of feature lines. Each feature line (an object of type
AeccFeatureLine) contains the code string used to create the feature line and
a collection of all feature line points.

This sample lists all the feature line collections and feature lines along the
main baseline. It also lists the code and every point location for each feature
line.

Dim oBaselineFeatureLines As AeccBaselineFeatureLines
Set oBaselineFeatureLines =
oBaseline.MainBaselineFeatureLines

Dim oFeatureLinesCol As AeccFeatureLinesCol
Set oFeatureLinesCol = oBaselineFeatureLines.FeatureLinesCol
Debug.Print "# line collections:" & oFeatureLinesCol.Count

Dim oFeatureLines As AeccFeatureLines
For Each oFeatureLines In oFeatureLinesCol

Debug.Print "Feature Line collection"
Debug.Print "# lines in collection: " &

oFeatureLines.Count
Dim oFeatureLine As AeccFeatureLine
For Each oFeatureLine In oFeatureLines

Debug.Print
Debug.Print "Feature Line code: " &

oFeatureLine.CodeName

' Print out all point locations of the
' feature line.
Dim oFeatureLinePoint As AeccFeatureLinePoint
For Each oFeatureLinePoint In

oFeatureLine.FeatureLinePoints
Dim X As Double
Dim Y As Double
Dim Z As Double

Legacy COM API | 393

X = oFeatureLinePoint.XYZ(0)
Y = oFeatureLinePoint.XYZ(1)
Z = oFeatureLinePoint.XYZ(2)
Debug.Print "Point: " & X & ", " & Y & ", " & Z

Next ' Points in a feature line
Next ' Feature lines

Next ' Collections of feature lines

Listing Feature Lines Along Offset Baselines

As there can be many offset baselines in a single main baseline, the list of all
feature lines along all offset baselines contains an extra layer. The
AeccBaseline.OffsetBaselineFeatureLinesCol property contains a collection
of AeccBaselineFeatureLines objects. These AeccBaselineFeatureLines
objects not only contain the feature lines just as for the main baseline, but
also contain properties identifying which offset baseline each group of feature
lines belong to.

This sample shows how to modify the previous sample for feature lines along
offset baselines:

Dim oBFeatureLinesCol As AeccBaselineFeatureLinesCol
Set oBFeatureLinesCol =
oBaseline.OffsetBaselineFeatureLinesCol

Dim oBaselineFeatureLines As AeccBaselineFeatureLines
' Loop through the groups of collections, one group for
each
' offset baseline.
For Each oBaselineFeatureLines In oBFeatureLinesCol

Dim oFeatureLinesCol As AeccFeatureLinesCol
Set oFeatureLinesCol =

oBaselineFeatureLines.FeatureLinesCol
Debug.Print "# line collections:" &

oFeatureLinesCol.Count

' [...]
' This section is the same as the previous topic.

Next ' Groups of collections of feature lines

394 | Chapter 1 API Developer's Guide

Each offset baseline and hardcoded offset baseline also has direct access to the
feature lines related to itself. The AeccBaselineFeatureLines collection is
accessed through the RelatedOffsetBaselineFeatureLines property in both
types of offset baselines.

Corridor Surfaces

Corridor surfaces can represent the base upon which the corridor is constructed,
the top of the finished roadway, or other aspects of the corridor. Such surfaces
are represented by the AeccSurface class and by the unrelated
AeccCorridorSurface class. AeccCorridorSurface objects contain
corridor-specific information about the surfaces, such as which feature line,
point, and link codes were used to create it.

Listing Corridor Surfaces

The collection of all corridor surfaces for each corridor is held in the the
AeccCorridor.CorridorSurfaces property. Each corridor surface contains the
boundary of the surface and a list of all point, link, and feature line codes used
in the construction of the surface. Corridor surfaces also contain read-only
references to the surface style and section style used in drawing the surface.

NOTE

The AutoCAD Civil 3D API does not include methods for creating new corridor
surfaces or modifying existing corridor surfaces.

This sample lists all the corridor surfaces within a corridor and specifies which
point codes were used:

Dim oCorridorSurface As AeccCorridorSurface
For Each oCorridorSurface In oCorridor.CorridorSurfaces

Debug.Print "Surface name: "; oCorridorSurface.Name

' Get the point codes that were used to construct
' this surface.
Dim sCodes() As String
Dim sCodeList As String
Dim i as Integer
sCodes = oCorridorSurface.PointCodes

Legacy COM API | 395

For i = 0 To UBound(sCodes)
sCodeList = sCodeList & " " & sCodes(i)

Next i
Debug.Print "Point codes: " & sCodeList

Next

Listing Surface Boundaries

Two different objects are used to define the limits of a corridor surface:
boundaries and masks. A boundary is a polygon representing the outer edge
of a surface or the inside edge of a hole in a surface. A mask is a polygon
representing the part of the surface that can be displayed. The collection of
all the boundaries of a surface are stored in the
AeccCorridorSurface.Boundaries property and the collection of all masks
are stored in the AeccCorridorSurface.Masks property.

Boundaries (of type AeccCorridorSurfaceBoundary) and masks (of type
AeccCorridorSurfaceMask) are both derived from the same base interface
(IAeccCorridorSurfaceBaseMask) and both have the similar methods and
properties. The array of points making up the border polygon is retrieved by
calling the GetPolygonPoints method. If the border was originally defined by
selecting segments of feature lines, the collection of all such feature line
components are contained in the FeatureLineComponents property.

NOTE

The AutoCAD Civil 3D API does not include methods for creating or modifying
corridor boundaries or masks.

This sample loops through all the boundaries of a corridor surface and displays
information about each:

Dim oCSBoundary As AeccCorridorSurfaceBoundary

For Each oCSBoundary In oCorridorSurface.Boundaries
' Get the type of boundary.
Dim sBoundaryTitle As String
If (oCSBoundary.Type = aeccCorridorSurfaceInsideBoundary)

Then
sBoundaryTitle = " Inner Boundary: "

Else
sBoundaryTitle = " Outer Boundary: "

396 | Chapter 1 API Developer's Guide

End If
Debug.Print sBoundaryTitle & oCSBoundary.Name

' Get the points of the boundary polygon.
Dim vPoints As Variant
vPoints = oCSBoundary.GetPolygonPoints()
Debug.Print " " & UBound(vPoints) & " points"
' Print the location of the first point. Usually

corridors
' have a large number of boundary points, so we will

not
' bother printing all of them.
X = vPoints(1)(0)
Y = vPoints(1)(1)
Z = vPoints(1)(2)
Debug.Print "Point 1: "; X; ", "; Y; ", "; Z

' Display information about each feature
' line component in this surface boundary.
Debug.Print
Debug.Print "Feature line components"
Debug.Print " Count: ";
Debug.Print oCSBoundary.FeatureLineComponents.Count

Dim oFeatureLineComponent As AeccFeatureLineComponent
For Each oFLineComponent In

oCSBoundary.FeatureLineComponents
Debug.Print "Code:" &

oFLineComponent.FeatureLine.CodeName
Debug.Print "Start station:" &

oFLineComponent.StartStation
Debug.Print "End station:" &

oFLineComponent.EndStation
Debug.Print: Debug.Print

Next ' Feature line components
Next ' Corridor surface boundaries

Computing Cut and Fill

One important use of corridor surfaces is to compare them against an existing
ground surface to determine the amounts of cut and fill required to shape the
terrain to match the proposed corridor. While AeccCorridorSurface objects

Legacy COM API | 397

cannot be used with AeccSurface objects directly to compute such statistics,
each AeccCorridorSurface object also has a companion AeccSurface object
of the same name.

This sample code demonstrates the creation of a volume surface from the
difference between the existing ground and the datum surface of a corridor
to determine cut, fill, and volume statistics:

' Get the collection of all surfaces in the drawing.
Dim oSurfaces As AeccSurfaces
Set oSurfaces = oRoadwayDocument.Surfaces

' Assign the setup information for the volume
' surface to be created.
Dim oTinVolumeCreationData As New AeccTinVolumeCreationData
oTinVolumeCreationData.Name = VOLUME_SURFACE_NAME
Dim sLayerName as String
sLayerName = oRoadwayDocument.Layers.Item(0).Name
oTinVolumeCreationData.BaseLayer = sLayerName
oTinVolumeCreationData.Layer = sLayerName
Set oTinVolumeCreationData.BaseSurface =
oSurfaces.Item("EG")
' Get the surface with the same name as the corridor
surface.
Set oTinVolumeCreationData.ComparisonSurface =
oSurfaces.Item(oCorridorSurface.Name)
oTinVolumeCreationData.Style =
oSurfaces.Item("EG").StyleName
oTinVolumeCreationData.Description = "Volume surface of
corridor"

' Create a volume surface that represents the
' difference between the two surfaces.
Dim oTinVolumeSurface As AeccTinVolumeSurface
Set oTinVolumeSurface =
oSurfaces.AddTinVolumeSurface(oTinVolumeCreationData)

' Get information about the volume surface and
' display it in a messagebox.
Dim dNetVol As Double
Dim dCutVol As Double
Dim dFillVol As Double
dNetVol = oTinVolumeSurface.Statistics.NetVolume

398 | Chapter 1 API Developer's Guide

dCutVol = oTinVolumeSurface.Statistics.CutVolume
dFillVol = oTinVolumeSurface.Statistics.FillVolume
MsgBox "Net Volume = " & dNetVol & " cu.m" & _
vbNewLine & "Cut = " & dCutVol & " cu.m" & _
vbNewLine & "Fill = " & dFillVol & " cu.m", _
vbOKOnly, _
"Differences between """ & _
oTinVolumeCreationData.BaseSurface.Name & _
""" and """ & _
oTinVolumeCreationData.ComparisonSurface.Name & _
""""

Styles

These style objects control the visual appearance of applied assemblies.

Assembly Style

The collection of all assembly style objects are found in the
AeccRoadwayDocument.AssemblyStyles property. The assembly style object
contains properties for adjusting the marker types for the assembly attachment
points, each of the standard AeccMarkerType property. While you can create
new styles and edit existing styles, you cannot assign a style to an existing
assembly using the AutoCAD Civil 3D API.

' Create a new assembly style and change it so that the
' place where the assembly attaches to the main baseline
' is marked with a red X.
Dim oAssemblyStyle As AeccAssemblyStyle
Set oAssemblyStyle =
oRoadwayDocument.AssemblyStyles.Add("Style1")
With oAssemblyStyle.MarkerStyleAtMainBaseline

.CustomMarkerStyle = aeccCustomMarkerX

.MarkerDisplayStylePlan.Color = 10 ' red

.MarkerDisplayStylePlan.Visible = True
End With

Legacy COM API | 399

Link Style

The collection of all link style objects are found in the
AeccRoadwayDocument.LinkStyles property. This style object contains
properties for adjusting the visual display of assembly and subassembly links.

NOTE

Link style objects are not used directly with link objects, but are instead used
with roadway style sets.

' Create a new link style and color it green.
Dim oLinkStyle As AeccRoadwayLinkStyle
Set oLinkStyle = oRoadwayDocument.LinkStyles.Add("Style2")
With oLinkStyle

.LinkDisplayStylePlan.color = 80

.LinkDisplayStylePlan.Visible = True
End With

Shape Style

The collection of all shape style objects are found in the
AeccRoadwayDocument.ShapeStyles property. This style object contains
properties for adjusting the visual display of assembly and subassembly shapes,
including the outline and the inside area.

NOTE

Shape style objects are not used directly with shape objects, but are instead
used with roadway style sets.

' Create a new shape style and change it so that it has
' an orange border and a yellow hatch fill.
Dim oShapeStyle As AeccRoadwayShapeStyle
Set oShapeStyle = oRoadwayDocument.ShapeStyles.Add("Style3")
With oShapeStyle

.AreaFillDisplayStylePlan.color = 50 ' yellow

.AreaFillDisplayStylePlan.Visible = True

.AreaFillHatchDisplayStylePlan.HatchType =
aeccHatchPreDefined

400 | Chapter 1 API Developer's Guide

.AreaFillHatchDisplayStylePlan.Pattern = "LINE"

.BorderDisplayStylePlan.color = 30 ' orange

.BorderDisplayStylePlan.Visible = True
End With

Roadway Style Sets

The visual display of applied assemblies is defined by roadway style sets, which
are a set of shape styles and link styles assigned to shapes and links that use
specified code strings. The collection of all style sets are found in the
AeccRoadwayDocument.StyleSets property. A style set is itself a collection of
AeccRoadwayStyleSetItem objects. Each style set item has a
AeccRoadwayStyleSetItem.CodeStyle property that can reference either an
existing shape style object or link shape object. New style set items are added
to a style set though the AeccRoadwayStyleSet.Add method which takes
parameters describing the kind of style object, the code string, and the style
object itself. The particular style set in use is selected through the
AeccRoadwayStyleSet.InitAsCurrent method.

' Create a new style set using our previously created
styles.
Dim oStyleSet As AeccRoadwayStyleSet
Set oStyleSet = oRoadwayDocument.StyleSets.Add("Style Set
01")
Call oStyleSet.Add(_

aeccLinkType, _
"TOP", _
g_oRoadwayDocument.LinkStyles.Item("Style2"))

Call oStyleSet.Add(_
aeccShapeType, _
"BASE", _
oRoadwayDocument.ShapeStyles.Item("Style3"))

' Assign our new style set as the style set in current use.
oStyleSet.InitAsCurrent

Legacy COM API | 401

Sample Program

CorridorSample.dvb

<installation-directory>\Sample\Civil 3D
API\Vba\Corridor\CorridorSample.dvb

The CreateCorridorExample subroutine demonstrates the creation of a simple
corridor using the AeccCorridors.Add method. Before calling this subroutine,
be sure the current document contains at least one assembly. A suitable
drawing is the file Corridor-2b.dwg located in the
<installation-directory>\Help\AutoCAD Civil 3D Tutorials\Drawings directory.

The GetCorridorInformationExample subroutine extracts information of all
existing corridors, baselines, feature lines, surfaces, assemblies, and
subassemblies within the current document and displays the data in an
instance of Word. A suitable drawing is the file Corridor-4b.dwg located in the
<installation-directory>\Help\Civil Tutorials\Drawings directory.

NOTE

Microsoft Word must be running before starting this program.

Object Hierarchy

AutoCAD Civil 3D

These images contain the hierarchy of all major objects. This is useful for
determining which class instances are required to create an object of a
particular type, or which objects can be accessed from an existing instance.

402 | Chapter 1 API Developer's Guide

Legend

MeaningGraphic

An object with a classname of “AeccOb-
ject”.

An object with a classname of “AeccCollec-
tion”. This object is a list of other objects
which can be enumerated. It also usually
has a Count property and Add, Item, and
Remove methods.

You can obtain object B from a property or
method of object A.

Legacy COM API | 403

MeaningGraphic

From object X you can obtain a collection
Y, which is a subset of a larger collection.

Creating Client Applications

Overview

You can create stand-alone applications that use AutoCAD Civil 3D libraries
to perform tasks. Sample programs written in C++, C#, and Visual Basic.NET
are included in the Samples directory.

Samples

All of the following are located in the
<installation-directory>\Sample\Civil 3D API\COM directory.

C++ Using COM

.\VC++\COM C++\ProjectStats.vcproj

Directly launches AutoCAD Civil 3D and creates a dialog box that displays
some information about the current drawing or adds sample lines into the
alignments of any selected sites.

404 | Chapter 1 API Developer's Guide

Managed C++

.\VC++\Managed C++\C3DManagedExample.vcproj

Using COM interops, launches AutoCAD Civil 3D and creates a dialog box
that displays some information about the current drawing or adds sample
lines into the alignments of any selected sites.

C++ Using CustomDraw

.\VC++\CustomDraw\Sample\C3DCustomDraw.vcproj

Demonstrates accessing the CustomDraw API. This project overrides how
triangles in TIN surfaces are drawn so that they’re numbered. It requires the
Autodesk ObjectARX libraries.

C++ Using Custom Events

.\VC++\CustomEvent\Sample\C3DCustomEvent.vcproj

Demonstrates using custom events. This project recieves notification just
before and just after a corridor is rebuilt. It requires the Autodesk ObjectARX
libraries.

C++ Using Custom UI

.\VC++\CustomEvent\Sample\C3DCustomUI.vcproj

Demonstrates UI customization. This project adds a button to the Properties
Property sheet that opens a custom dialog for TIN surfaces. It requires the
Autodesk ObjectARX libraries.

C++ Client Sample

.\VC++\VcClient\VcClientSamp.vcproj

Creates a dialog box that lets you launch AutoCAD Civil 3D and determine
simple information about the current drawing.

C#

.\CSharp\CSharpClient\CSharpClientSample.csproj

Creates a dialog box that lets you launch AutoCAD Civil 3D and determine
simple information about the current drawing.

Legacy COM API | 405

Visual Basic .NET

.\VB_NET\VbDotNetClient\VBDotNetClientSample.vbproj

Creates a dialog box that lets you launch AutoCAD Civil 3D and determine
simple information about the current drawing.

406 | Chapter 1 API Developer's Guide

Index

A

AddWallBreaklines() 53
AeccAlignment 65, 286
AeccApplication 205
AeccCorridor 112, 382
AeccDatabase 207
AeccDocument 92, 205, 351, 377
AeccParcelSegment 277, 278, 279
AeccPipeApplication 92, 351
AeccPipeDocument 92, 351
AeccPoint 235
AeccProfile 79, 299
AeccProfileView 85, 303
AeccRoadwayApplication 377
AeccRoadwayDocument 377
AeccSampleLine 309
AeccSection 317
AeccSectionView 318
AeccSite 65, 276, 277, 286
AeccSurface 248
AeccSurveyApplication 217
AeccSurveyDocument 217
AeccSurveyNetworkEntity 227
alignments creating 65, 286
alignments creating from polyline 286
alignments design speeds 71, 291
alignments entities 67, 288
alignments offset alignments 65, 286
alignments profiles 79, 299
alignments sample lines 309
alignments siteless 286
alignments station equations 70, 290
alignments station sets 70, 290
alignments stations 70, 290
alignments styles 74, 293
alignments superelevation 72, 292
ambient settings 24, 208
ambient settings corridors 109, 377
application object 22, 205
assemblies 117, 387

assemblies applied assemblies 118, 119,
390, 391

assemblies styles 125, 399

B

baselines 113, 383
baselines applied assemblies 118, 390
baselines baseline regions 114, 385
baselines baseline stations 115, 385
baselines creating 114, 384
baselines feature lines 119, 120, 391,

393
baselines feature lines offset

baselines 121, 394
baselines listing 114, 384
baselines offset baselines 116, 386
breakline, wall 53
breaklines 259
Breaklines 50
breaklines non-destructive 261
breaklines proximity 260
breaklines standard 260
breaklines wall 261

C

CivilApplication 22
collections 22, 206
contours 263
contours extracting 264
control points 222
corridor surfaces cut and fill 397
corridors adding stations 115, 385
corridors ambient settings 109, 377
corridors assemblies styles 125, 399
corridors base objects 377
corridors baselines 113, 114, 383, 384
corridors concepts 112, 381
corridors corridor surfaces 122, 395, 397

407 | Index

corridors corridor surfaces
boundaries 123, 396

corridors corridor surfaces masks 123,
396

corridors creating 113, 382
corridors links 119, 391
corridors links styles 126, 400
corridors listing 112, 382
corridors points 119, 391
corridors roadway style sets 127, 401
corridors shapes 119, 391
corridors shapes styles 126, 400
custom subassemblies

package file 189

D

data bands concepts 327
data bands profile views adding to a

view 347
data bands profile views creating 345
data bands profile views horizontal

geometry styles 333
data bands profile views profile

styles 331
data bands profile views styles 342
data bands profile views superelevation

styles 338
data bands profile views vertical geometry

styles 336
data bands section views adding to a

view 348
data bands section views creating 346
database object 207
directions 223
document object 205

E

entities alignment 67, 68, 288
entities profiles 80, 299
entities PVIs 82, 301
Event Viewer 207
events adding 207
exportTo method 30, 215
extended properties 221

F

feature lines 119, 120, 391, 393
feature lines offset baselines 121, 394

I

interference check 371, 372
interference check styles 106, 373
IsRightOffset 53

L

label styles 27, 211
label styles creating 27, 212
label styles defining 27, 213
label styles property fields 29, 214

N

non-control points 225

P

package file
custom subassemblies 189

package files creating 190
parcel segments 277, 278
parcel segments parcel loops 279
parcel segments styles 280
parcels creating 277
parcels parcel loops 279
parcels parcel segments 277, 278
parcels styles 280
pipe documents 92, 351
pipe documents ambient settings 92,

351
pipe documents interference check 371,

372
pipe documents interference check

styles 106, 373
pipe network creating 96, 356
PipeNetworkCommandsSettings 351
pipes creating 98, 357
pipes dynamic part properties 93, 352

408 | Index

pipes parts list 94, 354
pipes styles 100, 359
pipes using 100, 358
point groups creating 243
point groups QueryBuilder 244
point groups TIN surfaces 245
point groups using 245
points description keys 242
points export to file 236
points import from file 236
points point groups 243
points points collection 235
points style 239
profile views creating 85, 303
profile views data bands 331
profile views styles 86, 303
profile views styles axis style 87, 304
profile views styles axis tick marks 87,

304
profile views styles graph style 88, 305
profile views styles graph title 88, 305
profiles creating from surface 79, 299
profiles creating using entities 80, 299
profiles PVIs 82, 301
profiles styles 83, 302
PVI (points of vertical intersection) 82,

301

S

sample lines 309
sample lines adding sample lines at a

station 310
sample lines adding sample lines by

range 310
sample lines adding sample lines from a

polyline 310
sample lines adding sample lines

setup 310
sample lines creating 309
sample lines creating sections 316
sample lines sample line groups 309,

310, 316
sample lines styles 314
section views creating 318
section views styles 319

section views styles axis style 320
section views styles axis tick marks 320
section views styles graph style 321
section views styles graph title 321
sections creating 316
sections section views 318
sections using 317
setups 224
sharing custom subassemblies 189
sites creating 276
station equations 70, 290
stations 70, 290
stations station sets 70, 290
structures creating 103, 364
structures dynamic part properties 93,

352
structures parts list 94, 354
structures styles 104, 365
structures using 103, 365
styles exporting 30, 215
subassemblies 117, 387
subassemblies attachment 146
subassemblies CorridorState 157
subassemblies example 160
subassemblies Help files 152
subassemblies installing 188
subassemblies naming 146
subassemblies parameters 147, 148
subassemblies superelevation 149
subassemblies support files 157
subassemblies template program 156
subassemblies tool catalog 174
subassemblies tool catalog cover

page 185
subassemblies tool catalog creating 175
subassemblies tool catalog data

types 183
subassemblies tool catalog example 175
subassemblies tool catalog registry

file 186
superelevation 72, 149, 292
superelevation data bands 338
surface analysis elevation analysis 266
surface analysis watershed analysis 267
SurfaceDefinitionBreaklines 50
surfaces boundaries 123, 252, 396

Index | 409

surfaces collection 248
surfaces corridor surfaces 122, 395
surfaces creating from .tin file 249
surfaces creating from DEM file 250, 256
surfaces creating from LandXML file 249
surfaces creating using

AddGridSurface 250
surfaces creating using

AddTinSurface 249
surfaces creating volume surfaces 251
surfaces cut and fill 397
surfaces elevation analysis 266
surfaces extracting contours 264
surfaces masks 123, 396
surfaces snapshots 256
surfaces styles 265
surfaces TIN surfaces breaklines 259
surfaces TIN surfaces contours 263
surfaces TIN surfaces point files 258
surfaces TIN surfaces point groups 258
surfaces watershed analysis 267
survey ambient settings 218
survey equipment database 219
survey figures adding arcs 229
survey figures adding lines 228
survey figures adding to drawing 230
survey figures creating 228
survey figures effect on sites and

parcels 230

survey figures effect on surfaces 230
survey figures prefix database 232
survey figures styles 230
survey network adding to drawing 227
survey network control points 222
survey network creating 222
survey network directions 223
survey network non-control points 225
survey network setups 224
survey network traverses 226
survey project creating 220
survey project settings 221
survey root objects 217
survey user settings 218

T

ThisObject 205

V

VBA commands 203

W

WallBreaklineCreation 53
WallBreaklineCreationEx 53

410 | Index

	Contents
	API Developer's Guide
	About the Developer's Guide
	Intended Audience
	AutoCAD Civil 3D APIs
	Organization
	New Features in the .NET API
	Legal Notices

	Getting Started
	Setting up a .NET Project for AutoCAD Civil 3D
	Running Commands from the Toolbox
	Running Commands from the Toolbox

	Migrating COM code to .NET
	Base Objects
	Transactions and ObjectIds
	Styles
	Settings
	Properties
	Limitations and Using Interop

	Root Objects and Common Concepts
	Root Objects
	Accessing Application and Document Objects
	Using Collections Within the Document Object
	Accessing and Using the Database Object

	Settings
	Accessing Drawing, Feature, and Command Settings

	Label Styles
	Creating a Label Style Object
	Defining a Label Style
	Using Property Fields in Label Style Text
	Sharing Styles Between Drawings

	Sample Programs

	Surfaces
	Accessing Surfaces
	Surface Properties
	Creating Surfaces
	Creating a TIN Surface from a TIN file
	Creating a TIN Surface using TinSurface.Create()
	Creating a Grid Surface from a DEM File
	Creating a GridSurface with GridSurface.Create()
	Creating a Volume Surface

	Working with Surfaces
	Adding a Boundary
	Adding Data from DEM Files
	Improving Performance by Using Snapshots

	Working with TIN Surfaces
	Adding Point Data to a TIN Surface
	Adding Points Using Point Groups
	Smoothing a TIN Surface
	Adding A Breakline to a TIN Surface
	Adding a Wall Breakline
	Importing Breaklines from a File
	Adding Contours to a TIN Surface
	Extracting Contours

	Surface Styles
	Creating and Changing a Style
	Assigning a Style to a Surface

	Surface Analysis
	Creating an Elevation Analysis
	Accessing a Watershed Analysis
	Calculating Bounded Volumes

	Alignments
	Basic Alignment Operations
	Creating an Alignment
	Defining an Alignment Path Using Entities
	Determining Entities Within an Alignment

	Stations
	Modifying Stations with Station Equations
	Creating Station Sets
	Specifying Design Speeds
	Finding the Location of a Station
	Superelevation

	Alignment Style
	Creating an Alignment Style
	Alignment Label Styles

	Sample Programs

	Profiles
	Profiles
	Creating a Profile From a Surface
	Creating a Profile Using Entities
	Editing Points of Vertical Intersection
	Creating a Profile Style

	Profile Views
	Creating a Profile View
	Creating Profile View Styles
	Setting Profile View Styles
	Setting the Axis Style
	Setting the Graph Style
	Working With Hatch Areas
	Profile View Style Example

	Sample Programs

	Pipe Networks
	Base Objects
	Accessing Pipe Network-Specific Base Objects
	Pipe-Specific Ambient Settings
	Listing and Adding Dynamic Part Properties
	Retrieving the Parts List
	Creating a Pipe Network

	Pipes
	Creating Pipes
	Using Pipes
	Creating Pipe Styles
	Creating Pipe Label Styles

	Structures
	Creating Structures
	Using Structures
	Creating Structure Styles
	Creating Structure Label Styles

	Interference Checks
	Performing an Interference Check
	Listing the Interferences
	Interference Check Styles

	Sample Program

	Corridors
	Root Objects
	Accessing Corridor-Specific Base Objects
	Ambient Settings

	Corridors
	Corridor Concepts
	Listing Corridors
	Creating Corridors

	Baselines
	Listing Baselines in a Corridor
	Adding a Baseline to a Corridor
	Listing Baseline Regions
	Accessing and Modifying Baseline Stations
	Listing Offset Baselines

	Assemblies and Subassemblies
	Listing Applied Assemblies in a Baseline Region
	Getting Applied Subassembly Information

	Feature Lines
	Listing Feature Lines Along a Baseline
	Listing Feature Lines Along Offset Baselines

	Corridor Surfaces
	Listing Corridor Surfaces
	Listing Surface Boundaries
	Computing Cut and Fill

	Styles
	Assembly Style
	Link Style
	Shape Style
	Roadway Style Sets

	Points
	Using the Points Collection
	Using Points
	Bulk Editing Points
	Point User-Defined Properties

	Point Groups
	Using Point Groups
	Adding Points to Point Groups with Queries

	Point Style
	Creating Point Styles
	Creating Point Label Styles
	Using Point Description Keys

	Creating Custom Subassemblies Using .NET
	Overview
	Subassembly Changes
	Designing Custom Subassemblies
	Naming Custom Subassemblies
	Attachment and Insertion Methodology
	User-defined vs. Hard-coded Parameters
	Input Parameter Types
	Superelevation Behavior and Subassemblies
	Creating Subassembly Help Files

	Structure of Subassembly Programs
	The Subassembly Template (SATemplate.vb)
	The Corridor State Object
	Support Files (CodesSpecific.vb, Utilities.vb)

	Sample VB.NET Subassembly
	The Subassembly Tool Catalog
	Overview
	Creating a Tool Catalog ATC File
	Sample Tool Catalog ATC Files
	Tool Catalog Data Type Information

	Creating a Tool Catalog Cover Page
	Creating a Tool Catalog Registry File

	Installing Custom Subassemblies
	Exporting Custom Subassemblies Using a Package File
	Exporting Custom Subassemblies Using a Package File

	Converting VBA Subassemblies to .NET
	Procedure
	Create the Visual Basic.NET Subassembly Module
	Copy Subassembly Code
	Port the VBA Code to Visual Basic .NET Code
	Final Adjustments
	Installing the New Subassembly
	Replacing the VBA Subassembly

	Legacy COM API
	Using VBA in AutoCAD Civil 3D
	Root Objects and Common Concepts in COM
	Root Objects
	Object Hierarchy
	Accessing Application and Document Objects
	Using Collections Within the Document Object
	Accessing and Using the Database Object

	Ambient Settings
	Object Hierarchy
	Changing General and Specific Settings

	Label Styles
	Object Hierarchy
	Creating a Label Style Object
	Defining a Label Style
	Using Property Fields in Label Style Text
	Sharing Syles Between Drawings

	Survey in COM
	Object Hierarchy
	Root Objects
	Obtaining Survey-Specific Root Objects
	Changing Survey-Specific Ambient Settings
	Changing Survey User Settings
	Using the Equipment Database
	Creating a Survey Project
	Adjusting Survey Project Settings
	Accessing Extended Properties

	Survey Network
	Creating a Survey Network
	Adding Control Points to a Network
	Adding Directions to a Network
	Adding Setups to a Network
	Adding Non-control Points to a Network
	Creating Paths for Traverse Analysis
	Adding Survey Data to the Drawing
	Getting Survey Network Drawing Objects

	Figures
	Creating a Figure Object
	Adding Lines to a Figure
	Adding Arcs to a Figure
	Adding Figures to the Drawing
	Figures and AutoCAD Civil 3D
	Creating a Figure Style
	Using the Figure Prefix Database

	Sample Program

	Points in COM
	Object Hierarchy
	Points
	Using the Points Collection
	Accessing Points in a File
	Using Points
	Point User-Defined Properties

	Style
	Creating Point Styles
	Creating Point Label Styles
	Using Point Description Keys

	Point Groups
	Creating Point Groups
	Adding Points to a Point Group Using QueryBuilder
	Using Point Groups

	Sample Program

	Surfaces in COM
	Object Hierarchy
	Using the Surfaces Collection
	Creating a Surface
	Creating a Surface From a LandXML File
	Creating a TIN Surface
	Creating a Grid Surface
	Creating a Volume Surface

	Working with Surfaces
	Adding a Boundary
	Adding Data from DEM Files
	Improving Performance By Using Snapshots
	Finding Intersections

	Working with TIN Surfaces
	Adding Point Data to a TIN Surface
	Adding Points Using Point Files
	Adding Points Using Point Groups

	Adding a Breakline to a TIN Surface
	Adding a Standard Breakline
	Adding a Proximity Breakline
	Adding a Non-destructive Breakline
	Adding a Wall Breakline
	Importing Breaklines from a File

	Adding Contours to a TIN Surface
	Extracting Contours from a TIN Surface

	Surface Style
	Creating a Style
	Changing a Surface Style
	Assigning a Style to a Surface

	Performing Surface Analysis
	Creating an Elevation Analysis
	Creating a Watershed Analysis

	Sample Programs

	Sites and Parcels in COM
	Object Hierarchy
	Sites
	Creating Sites
	Using Sites

	Parcels
	Creating Parcels with Parcel Segments
	About Parcel Segments
	Determining Parcel Loops
	Parcel Style and Parcel Segment Style
	Parcel Label Style
	Parcel User-Defined Properties
	Accessing Daylight Feature Lines

	Sample Program

	Alignments in COM
	Object Hierarchy
	Basic Alignment Operations
	Creating an Alignment
	Defining an Alignment Path Using Entities
	Determining Entities Within an Alignment

	Stations
	Modifying Stations with Station Equations
	Creating Station Sets
	Specifying Design Speeds
	Superelevation

	Alignment Style
	Creating an Alignment Style
	Alignment Label Styles

	Sample Program

	Profiles in COM
	Object Hierarchy
	Profiles
	Creating a Profile From a Surface
	Creating a Profile Using Entities
	Editing Points of Vertical Intersection
	Creating a Profile Style

	Profile Views
	Creating a Profile View
	Creating Profile View Styles
	Setting Profile View Styles
	Setting the Axis Style
	Setting the Graph Style
	Profile View Style Example

	Sample Programs

	Sections in COM
	Object Hierarchy
	Sample Lines
	Creating a Sample Line
	Defining Sample Lines
	Creating Sample Line Styles
	Creating Sample Line Label Styles

	Sections
	Creating Sections
	Using Sections

	Section Views
	Creating Section Views
	Creating Section View Styles
	Setting Section View Styles
	Setting the Axis Style
	Setting Graph Styles
	Section View Style Example

	Sample Program

	Data Bands in COM
	Object Hierarchy
	Defining a Data Band Style
	Data Band Concepts
	Profile Data Band Style
	Horizontal Geometry Data Band Style
	Vertical Geometry Data Band Style
	Superelevation Data Band Style
	Section Data Band Style

	Creating a Data Band Set
	Creating Data Band Sets for Profile Views
	Creating Data Band Sets for Section Views

	Using Data Bands
	Adding Data Bands to a Profile View
	Adding Data Bands to a Section View

	Sample Programs

	Pipe Networks in COM
	Object Hierarchy
	Base Objects
	Accessing Pipe Network-Specific Base Objects
	Pipe-Specific Ambient Settings
	Listing and Adding Dynamic Part Properties
	Retrieving the Parts List
	Creating a Pipe Network

	Pipes
	Creating Pipes
	Using Pipes
	Creating Pipe Styles
	Creating Pipe Label Styles

	Structures
	Creating Structures
	Using Structures
	Creating Structure Styles
	Creating Structure Label Styles

	Interference Checks
	Object Hierarchy
	Performing an Interference Check
	Listing the Interferences
	Interference Check Styles

	Sample Program

	Corridors in COM
	Root Objects
	Object Hierarchy
	Accessing Corridor-Specific Base Objects
	Ambient Settings

	Corridors
	Corridor Concepts
	Listing Corridors
	Creating Corridors

	Baselines
	Object Hierarchy
	Listing Baselines in a Corridor
	Adding a Baseline to a Corridor
	Listing Baseline Regions
	Accessing and Modifying Baseline Stations
	Listing Offset Baselines

	Assemblies and Subassemblies
	Object Hierarchy
	Listing Applied Assemblies in a Baseline Region
	Getting Applied Subassembly Information

	Feature Lines
	Object Hierarchy
	Listing Feature Lines Along a Baseline
	Listing Feature Lines Along Offset Baselines

	Corridor Surfaces
	Listing Corridor Surfaces
	Listing Surface Boundaries
	Computing Cut and Fill

	Styles
	Assembly Style
	Link Style
	Shape Style
	Roadway Style Sets

	Sample Program

	Object Hierarchy
	AutoCAD Civil 3D

	Creating Client Applications
	Overview
	Samples

	Index

