
6/1/2017

Getting Started Guide for Programmers Porting Plug-ins from VP1
to VP2 (Part 1) in Autodesk® Maya®

AUTODESK,
INC.

VIEWPORT 2.0 API PORTING GUIDE

PART 1: BASICS

Page 1 of 29

Revision History

4/1/2015 Initial version for Maya 2016

6/1/2017 Updates for Maya 2018:
3.6 Categorization and Consolidation

- Added introduction for consolidation modes and an inspection approach.
4.2 Geometry Evaluator Interfaces

- Updated introduction for the interfaces.

Page 2 of 29

1. Table of Contents
1. Table of Contents .. 1

2. Background .. 4

3. VP1 versus VP2... 4

3.1 Introducing a Renderer .. 4

3.2 Attachment Model .. 5

3.3 Change Monitoring ... 5

3.3.1 VP1 .. 5

3.3.2 VP2: Change Management System ... 6

3.4 Evaluation ... 6

3.4.1 VP2: Evaluators .. 6

3.4.2 VP2: Tasks .. 7

3.4.3 VP1 .. 7

3.5 Render items .. 7

3.5.1 VP2 .. 7

3.5.2 VP1 .. 8

3.6 Categorization and Consolidation .. 8

3.7 Render Pipeline .. 10

3.8 Core Shader / Geometry Update Mechanism ... 12

3.8.1 VP2: Shader Definition ... 13

3.8.2 VP2: Connection between Shaders and Geometry ... 15

3.8.3 VP2: “Shader Overrides” .. 16

3.8.4 VP1 .. 17

3.9 Selection Picking .. 17

4. The VP2 API at a Glance .. 17

4.1 General ... 17

4.2 Geometry Evaluator Interfaces .. 18

4.3 Shader Evaluator Interfaces .. 18

4.4 Renderer Interfaces ... 18

4.5 Manipulator Entry Points .. 18

4.6 Tool Context Entry Points .. 19

4.7 UI Drawing .. 19

4.8 Resource Classes .. 19

Page 3 of 29

4.8.1 MShaderManager ... 19

4.8.2 MFragmentManager ... 19

4.8.3 MTextureManager ... 20

4.8.4 Geometry Classes .. 20

4.8.5 MGeometryExtractor ... 20

4.8.6 MRenderTargetManager .. 20

4.8.7 MStateManager .. 21

4.8.8 Context Information... 21

4.9 Entry Point Summary ... 21

5. Choosing VP2 API Interfaces .. 22

5.1 Porting Categories.. 22

5.2 Level of Integration ... 22

5.3 Porting Choices .. 23

5.3.1 Manipulators and Tool Contexts ... 23

5.3.2 “Single Objects” .. 23

5.3.3 “Per-scene” Objects .. 24

5.3.4 Custom Shading Effect ... 24

5.3.5 Custom Shading Fragment ... 24

5.3.6 Shading Nodes ... 25

5.3.7 Render Graphs ... 26

5.3.8 2D Elements.. 26

5.4 VP2 Selection Considerations ... 26

5.5 Performance Considerations ... 27

5.6 Threaded Evaluation / Evaluation Manager Considerations ... 27

5.7 Device Considerations ... 28

5.7.1 OpenGL Core Profile Contexts ... 28

5.7.2 Device Tips ... 28

Page 4 of 29

2. Background
The main goal of this document is to describe, compare and contrast key differences between

the Viewport 2.0 (VP2) and the Legacy Default Viewport / Viewport 1 (VP1) systems in

Autodesk® Maya®.

Viewport 1 can be viewed as a collection of draw calls controlled per object, while Viewport 2.0

introduces a rendering framework layer upon which various renderers in Maya are built.

VP2 uses a single consistent and extensible backend system, which is cross-platform and draw-

API agnostic. This backend is used in various Autodesk products company wide, including

products such as AutoCAD® and 3ds Max®.

The main issues that VP2 attempts to address are VP1 scalability and fidelity.

This guide is divided into the following sections:

Section 3: This section provides a high level comparison between the rendering frameworks of

the old viewport versus Viewport 2.0.

Section 4: This section outlines the main Viewport 2.0 API interfaces that expose entry points

for geometric object and shader evaluation, as well as rendering pipeline and resource

management.

Section 5: This section provides recommendations on how to port various categories of

Viewport 1 items to the Viewport 2.0 API.

Part 2: Refer to Viewport 2.0 API Porting Guide, Part 2: Porting Details for this document. This

document provides more detailed descriptions and code examples for porting plug-ins to the

Viewport 2.0 API.

For brevity, the Legacy Default Viewport / Viewport 1 will be denoted as VP1 and Viewport 2.0

denoted as VP2 throughout this document.

Underlining will be used to indicate definitions, and italics for points of interest. Boldface will be

used to indicate important API classes.

For more information on all the API interfaces mentioned in this document, see the Maya

Developer Help at http://help.autodesk.com/view/MAYAUL/2017/ENU.

3. VP1 versus VP2

3.1 Introducing a Renderer

VP2 is not a viewport. Instead, it is a full rendering framework that comprises GPU resources

plus a rendering pipeline. There is a persistent rendering database with an internal “render

node” hierarchy.

In contrast, VP1 is a series of CPU resources plus a draw request queue.

http://help.autodesk.com/view/MAYAUL/2017/ENU

Page 5 of 29

3.2 Attachment Model

VP1 implicitly creates heavy-weight UI nodes (shapes) in a 1:1 correspondence with leaf level

DAG nodes. The association is immutable and the UI nodes are always responsible for handling

all the drawing, selection and evaluation for all path instances. There is no correlation between

UI nodes and shading nodes and no formal shader concept.

VP2 avoids introducing new DAG / DG nodes by using explicit “attachments” to light-weight

constructs called sync objects. These constructs represent a render node that is attached to

(associated with) a DAG item or a DG shader node.

Sync objects are not self-evaluating and self-rendering as VP1 UI shapes are.

Sync objects are part of the internal rendering “database” for VP2 and are not exposed to the

user, although the attachment mechanism is exposed.

Rendering

“Database”

Maya

Transform

Geometry

Sync Object

(Render

Node)

Maya DG

Node

Maya

Dag

Object

Maya DG

Node

Maya DG

Node

Shader Sync

Object

(Render

Node)

1 : 1

1 : 1

Maya

Transform

Maya

UI Shape
1 : 1

1 : 1

Transform

Sync Object

(Render

Node)

Figure 1 : This diagram illustrates a sample Maya DAG hierarchy and a sample shader graph and the different
attachment models used by VP1 versus VP2. In VP1, a UI shape node (grey box) is always automatically defined for
each leaf DAG node. The association is immutable. In VP2, the sync object (blue box) is dynamically set. This
example demonstrates both a transform level as well as a leaf level DAG association. Each shading node in the
graph has a corresponding sync object.

3.3 Change Monitoring

3.3.1 VP1

VP1 is based on various nodes broadcasting or “pushing” dirty messages through the DG via

dirty propagation.

Page 6 of 29

A refresh, or other plug evaluation, causes the scene DAG hierarchy and shading graphs to be

re-traversed to perform an update. Data on nodes are “pulled” at this time. This traversal always

occurs even if there is no change to the scene, as all node data is always assumed to be “dirty”

and thus requires evaluation.

There is no concept of a separate evaluation system. All processing is handled by the node or

its associated UI shape.

3.3.2 VP2: Change Management System

In order to allow nodes to indicate that a change has occurred, a change management system

exists.

• This allows Maya nodes to “push” change messages (not dirty messages).

• These change messages are queued for a later independent interpretation.

• Only when this interpretation occurs is new data “pulled” from nodes (See next section.)

Note that change monitoring does not necessarily force a refresh or invoke evaluation.

3.4 Evaluation

3.4.1 VP2: Evaluators

Each sync object is associated with a class that performs Maya node evaluation (an evaluator).

The association is defined by using the same classification string on a DAG/DG node as for an

evaluator.

“drawdb” is the root classification string. Specialization can be defined by using further

classification separators; for example “drawdb/geometry” for geometric shapes, and

“drawdb/shader” for shaders.

By default, all internally supported VP2 nodes have a “drawdb” classification and a 1:1

association with a registered evaluator. Thus, mesh shapes have a mesh evaluator; each

shader node has a unique shader evaluator; joints have their own evaluators and so forth.

Geometry

Sync Object

(Render

Node)

DAG Object

“drawdb/geometry/

footPrint”
1 : 1

Evaluator

“drawdb/

geometry/

footPrint”

1 : 1

Figure 2 : A DAG object is with associated with a sync object and an evaluator. The association is provided by using
the same classification string for the dag object as for the evaluator. The classification is “geometry”, and in particular,
the sub-classification: “footprint” geometry.

Note: There are various classes matching the name pattern M*Override that allow for API

evaluator definition. MDrawRegistry is used to define node/evaluator associations based on

classification.

Depending on the evaluator type, each can have distinct entry points designated for:

Page 7 of 29

• DG evaluation update: This can include bounding box updates as well as various CPU

geometry data or display property updates.

• GPU device update: This can include creating and updating GPU resources such as

textures, shaders, states, data streams, and so forth.

• Drawing: Internally defined evaluators never draw themselves.. (1)

These entry points are called as appropriate for data or rendering updates.

Note: API evaluators expose different configurations of entry points. For (1) it is possible for API

evaluators (MPxDrawOverrides) to provide an explicit drawing override.

3.4.2 VP2: Tasks

Work during a frame update can be broken down into: “update tasks” and “rendering tasks”.

• Update tasks: Can include visibility testing, bounding box evaluation and camera

volume culling, as well as scheduling the execution of DG interfaces on evaluators.

• Render tasks: Includes GPU shader generation from shade trees, texture and lighting

updates, as well as the actual draw for rendering and selection.

Update tasks perform the majority of Maya node evaluation by examining change messages

and calling into evaluators to perform the appropriate update. For shaders, shader building and

texture evaluation may be queued to be handled by a render task. Lighting updates generally

occur at render time.

When enabled, the evaluation manager (EM) can disable dirty propagation for time changes

and manipulation, and also work independently of change messages. The EM will attempt to

traverse forward through a dependency graph and compute plugs and cache node data. When

an evaluator attempts to pull data, it will find that the data is already complete and cached for

the aforementioned cases.

3.4.3 VP1

Draw requests are returned from UI objects and queued by a request handler. There is no

communication between the UI objects and the request handler to ensure separation of DG

versus non-DG updates, device access, and drawing. The API reflects this internal disconnect.

3.5 Render items

3.5.1 VP2

Evaluators that draw produce “render items”.

A render item is the smallest atomic unit that can be drawn, and roughly comprises geometry

and an instance of a shader (shader instance).

• Render items flow through a rendering pipeline.

• Update tasks and rendering tasks may modify the render item’s data.

Page 8 of 29

• Render items may be persistent (owned by the sync object) or transient depending on

the use case. For example, temporary UI items are transient, while render items for

mesh shapes are retained.

Global lifetime management of associated GPU resources is linked to render items that

reference these resources (such as: textures, shaders, geometry, and so forth).

Bump

Shader
Render Item ReferencesReferences

CV

Shader
Render Item ReferencesReferences

Wire

Shader
Render Item ReferencesReferences

Geometry

Figure 3: In this example, three persistent render items are used to draw different parts of the torus: one for the
wireframe, one for the bump map, and one for the CVs. The items reference a set of data streams on a geometry
container. Although not shown here, the shaders and texture used for bump mapping are also persistent resources.
The bump shader would reference the bump texture, and the render items reference the appropriate shaders.

Tip: See MRenderItem for API exposure of render items. Refer to the GPU “manager” classes

(such as MShaderManager) in the API for resource management interfaces.

3.5.2 VP1

Draw requests appear similar to render items; however, they are quite different – requests are

only transient descriptions of what to draw, and are arbitrarily managed by UI objects (not the

renderer).

Locally, it is up to each UI object to retain any associated persistent resource data. Without

GPU resource handler interfaces, performance issues may occur during the constant retransfer

of CPU to GPU resources (such as geometry buffers).

3.6 Categorization and Consolidation

Render items are categorized into a series of lists or “buckets” based on whether they are

persistent or transient, as well as various display criteria. In the API, this is exposed as render

item “types” (such as UI versus non-UI), display modes (wireframe versus shaded), and

properties such as “transparency”. Categorization may be used to group items with similar

drawing properties that can help with performance by avoiding unnecessary device state

changes.

Page 9 of 29

Consolidation is a VP2 feature used to mitigate the “small batch problem”: that is, when the

amount of overhead required to draw a small amount of geometry results in undue performance

loss. To help alleviate this problem, render items may be consolidated (merged). Note that, as a

result, the original render items created may not be the ones drawn. By default, a hybrid mode

combining traditional static consolidation and multi-draw consolidation is used by VP2.

• Traditional static consolidation improves the drawing performance for static shapes only.

• Multi-draw consolidation improves the drawing performance for matrix-animated (i.e. non-

deforming) and static shapes, however, it requires OpenGL Core Profile and most recent

platform configurations. E.g. it is supported by most recent GPU architectures and graphics

drivers on Windows and Linux, but not supported on Mac OS X due to missing graphic

driver support.

• The hybrid mode allows certain render items to switch dynamically between the two

schemes, e.g. when a static shape starts non-deforming animation, its render items will be

pulled out of traditional static consolidation and re-examined for multi-draw consolidation.

Render items may be considered for consolidation at a higher level based on its classification

string, categorization or display properties, as well as at a finer level based on shader and

geometry “signature” (number of data streams and format of each stream). Consolidation also

takes into account the spatial proximity of the render items.

Figure 4: There are two shapes in this example. Each produces a wireframe and a shaded render item. The two
shaded render items can be consolidated as they share the same shader which requires the same data streams
(position and normals). The two wireframe items cannot be consolidated because, even though they share the same
shader definition (which requires a position stream), the color parameter used for each instance of the shader differs.
The wireframe and shaded items have different display mode categorization as well as different shaders.

Note: See the MRenderItem class description in the C++ API Reference which mentions that

custom user data is also considered part of the consolidation criteria.

Selection affects consolidation at the render node level; therefore, all render items for the

selected node must to be re-examined for consolidation.

Transient items (such as UI) are not consolidated.

Note: Different API interfaces provide different levels of support for consolidation. Per interface

specifics are described in more detail in Sections 4, and 5.

To inspect categorization and consolidation, debug tracing of VP2 render pipeline can be

enabled by MEL.

Page 10 of 29

ogs -traceRenderPipeline on;

The count of render items categorized into each list will be displayed in the Script Editor per

every refresh. The following statistics are from the example shown in Figure 4, where the

[Opaque UI] list contains the wireframe render items and the [Opaque] list contains the shaded

render items.

// -- VP2 Trace[modelPanel4][3d Beauty Pass] //
// Count for list: [Opaque UI] = 2 //
// Count for list: [Opaque] = 2 //

After consolidation is performed, the number of render items in the “Opaque” list is reduced from

2 to 1.

// -- VP2 Trace[modelPanel4][3d Beauty Pass] //
// Count for list: [Opaque UI] = 2 //
// Count for list: [Opaque] = 1 //

VP1 does not support consolidation.

3.7 Render Pipeline

VP2:

For simplicity, the complete VP2 pipeline can be summarized as follows:

• The update and render tasks (section 3.4)

• Categorization and consolidation (section 3.6)

• A series of rendering operations presented in graph form is a render graph. The render

graph configuration is flexible and is adjusted based on output destination as well as

destination properties. For example:

o There are different configurations for 3d viewports, the UV Editor and Render View.

o Configuration changes can occur based on viewport or rendering display options.

Within the pipeline, the key data elements that flow through the pipeline are render items.

Groupings for logical parts of the pipeline are called phases. Semantic pass labels can be

associated with different phases, or sub-graphs within the render graph.

The pipeline runs with underlying context information. Different levels of context include:

• Frame Context: per frame information. This can include information such as output

target size, current camera, viewport display options, and so forth.

• Draw Context: draw time information such as GPU device state.

• Pass Context: pass information. Mostly this is a series of nested names. Each nesting

represents a semantic pass within a semantic pass; for example, a “transparency” pass

invoked within a “beauty” pass.

Page 11 of 29

Object Level

Pruning

Update

Phase
Categorization

Consolidation

Phase

Draw

Phase

Draw

Phase

MRenderItemListMRenderItemList Opaque

MRenderItemList

Transparent

MRenderItemList

Frame Context Beauty Pass Context
Draw

Context

Figure 5: This example begins first with basic object pruning, followed by the DAG/DG node update to produce
render items. These items may be consolidated to form a new set of items. Categorization can form new lists. In this
example, both an opaque and a transparent object list are produced. These lists are then passed through a render
graph. Finally, render items are drawn. In terms of context, for simplicity, the render graph’s semantic pass is a
“beauty pass”, and the drawing within this beauty pass occurs within a draw context. The entire frame rendering
occurs within a frame context.

Context management helps to reduce issues such as redundant state execution as well as

pipeline stalls due to direct device access.

Note: Custom pipeline configurations are possible in the API via “render overrides”. See

MRenderOverrides for “render overrides”, and MFrameContext / MDrawContext /

MPassContext for context interfaces.

The association between lighting and shaders on render items occurs “late” in the pipeline at

draw time. The lighting information is thus available via the current draw context. All lights within

the scene are available, but depending on the lighting mode requirements, only some may be

active.

Light parameter updates may require additional passes in the render graph, such as shadow

passes with the appropriate “shadow pass” semantic exposed.

Note: Access to lighting information can be obtained via the MLightParameterInformation

class.

VP1:

There is hard-coded custom code per output destination. Only 3d viewports allow for an

enumerated “multi-pass” or a single free-form drawing pass via viewport render options in the

API.

There is no formal context state that can lead to pulling data directly from a device. All states

must be “pushed” and “popped” to ensure state safety.

Page 12 of 29

VP1 has fixed function lighting as part of the GPU device context, but this information is not

directly associated with the actual light objects in the scene, thus requiring direct node

evaluation, or extraction from the hardware device itself.

3.8 Core Shader / Geometry Update Mechanism
The following figure demonstrates the logic behind the shader/geometry update phase that

occurs during the production or update of a render item in Viewport 2.0.

Sync Object

Update

Phase

Updates / Produces

Produces Geometry Requirements

(e.g. positions, normals)

RenderItem

Shader

Evaluator
Geometry

Evaluator

 Pipeline / Context

Sync Object

Geometry

CacheShader

Update

Update Geometric Data

RenderItem

Update

Use Shader
Use

Data

Figure 6: The basic dependencies for updating a render item for a shader assigned to a DAG object is shown above.
Both the shader instance and geometry elements of the render item must be updated respectively. A shader instance
update can trigger a geometry update. The corresponding evaluators are shown.

Every Maya shading engine assigned to a DAG object results in the requirement for a render

item for the associated DAG object. A shader evaluator is required to produce the shader

instance part of the render item, and a geometry evaluator is required for the DAG object to

produce the appropriate geometry to match the shader. Once an item is updated, it will flow

down the pipeline.

As the production of render items is a core element of the update system exposed via the API,

the following sections will delve more deeply into its internal details.

Page 13 of 29

3.8.1 VP2: Shader Definition

All internally produced render items use programmable shader instances.

For the most part, this can be interpreted as having an effects system where one shader can be

thought of as one effect, and a shader instance an effect instance.

• Fragment Effects: Shaders that are created based on the shader “fragments”

(procedures) associated with each Maya shading node.

• Non-Fragment Effects: Shaders that are created from files on disk or buffers.

Logic for shaders is currently written to fit a forward renderer that can have multiple passes.

Both shader and light evaluators exist to perform DG evaluation and to create appropriate

fragments and assign appropriate parameters. Internally, graph evaluation produces fragment

effects.

Features that affect the render graph (such as screen space ambient occlusion, depth of field,

and color management) “inject” extra passes and use 2D custom shaders. These shaders

generally use non-fragment effects.

Note: See MShaderInstance, MPxShaderOverride, MPxShadingNodeOverride in the C++

API Reference.

3.8.1.1 VP2: Fragment Effects

Each internally created shading node’s shader evaluator defines a shading fragment. The

connections within the Maya shading graph are used to derive the connections between the

corresponding shading fragment parameters.

When translating a shading network, Maya traverses upstream from a surface shader. For each

node visited, the fragment used for the node is obtained from the evaluator and connections are

made which approximate the DG connections of the nodes in the shading network.

Following traversal, lighting and geometry information are attached and compilation produces

the final shading effect.

Page 14 of 29

Figure 7: Shows a sample Maya shading network and its corresponding hardware fragment graph which is used to
create the final shading effect. Each shading node has an associated evaluator.

3.8.1.2 VP2: Fragments and Fragment Graph Management

Shader fragments and fragments graphs are managed by a fragment manager, where a

fragment graph is a connected set of fragments.

XML formats for fragments and fragment graphs are fully defined by XML Schema Documents

(XSDs). The format currently allows the definition of code for a Cg, and/or GLSL and/or HLSL

function.

API interfaces allow for custom fragments and the reuse of existing internal fragments.

Note: See MFragmentManager, MPxShadingNodeOverride in the C++ API reference.

Supported XSD files can be found in the bin/ShadeFragment folder of the Maya installation.

3.8.1.3 VP2: Non-Fragment Effects

There are various ways to directly create a shader effect that does not involve building fragment

graphs. This includes text and pre-compiled effects on disk and effects stored in strings.

Preprocessing macros can be accepted as part of the compilation process.

Page 15 of 29

Cross product usage of the same effect is possible. For example 3ds Max and Maya each

provide a custom macro to identify compilation within the respective products.

In all cases, because these are standalone effects, no additional shader fragments can be

attached to them automatically. For example, light fragments cannot be added.

3.8.2 VP2: Connection between Shaders and Geometry

A geometry evaluator is associated with each DAG object via its sync object. The geometry

evaluator manages render items as well as geometric data that are owned by the corresponding

sync object. Geometric data consists of vertex and index buffers. (Note: See MGeometry,

MVertexBuffer and MIndexBuffer in the C++ API reference).

Each shader assigned to a DAG object requires a render item to be created and managed by

the geometry evaluator. Each shader evaluator update produces a set of geometry

requirements (data stream descriptions). (Note: See MGeometryRequirements in the C++ API

reference).

The vertex buffer requirements are determined by merging the individual requirements for each

render item associated with a DAG object.

Render items reference a single index buffer. Index buffer data is determined by the topology

used for drawing (for example, a line versus a triangle), as well as component filtering.

Additional index buffer requirements can be specified for non-drawing purposes, such as

topology data extraction for tessellation shaders.

It is important to note that a geometry evaluator update is independent of shader update as the

geometry evaluator does not need to know how or where data is used.

The following diagram demonstrates both the shader evaluator generation of requirements as

well as the geometry evaluator handling of requirements to fill in the appropriate data and index

buffers:

Page 16 of 29

 Geometry Evaluator

Total Geometry

Requirements

Render Item

References

Render Item

References

Add descriptions

Add descriptions

Update descriptions

Geometry

U
p

d
a

te
 b

a
s
e

d
 o

n

re
q

u
ire

m
e

n
ts

ShaderShader

Maya

Dag

Object
ReferencesReferences

MVertexBufferDescriptor
Vertex Buffer Descriptions

MVertexBufferDescriptor
Vertex Buffer Descriptions

Index BufferIndex Buffer Vertex Buffer Vertex Buffer

References

References

References

References References

U
p

d
a

te
 b

a
s
e

d
 o

n

in
d

e
x
 d

e
s
c
rip

tio
n

Update descriptions

Figure 8: In this example, there is one dag object with two render items. Each render item has a shader instance
associated with it. During shader evaluation, each shader instance will update its vertex buffer requirements
(descriptions). When the geometry evaluator performs an update, it will update the vertex buffer and index buffers
(per render item).

3.8.3 VP2: “Shader Overrides”

Vertex buffer requirements may result from more than just the shader assigned to a given DAG

object. Often, there can be additional passes required to compute intermediate buffers. The

shaders used for these passes may differ from the shader assigned to an object for beauty pass

drawing, and such shaders are thus called shader overrides. Each of these shaders has

geometry requirements that can contribute to the total requirement.

The evaluation of light nodes is done via internal light evaluators. These light evaluators may

require the computation of shadow maps and hence require shadow map passes to be

executed. Each of these passes can have a “shadow shader” which has a set of geometry

requirements.

For post processing, motion blur may require normals to be drawn to a buffer. In this case, the

shader for the normal pass will have a set of geometry requirements.

Page 17 of 29

As the render loop can be defined via the API, any shader overrides used for render loop

overrides will also affect the total geometry requirement.

3.8.4 VP1

Options are limited to internal fixed function shader or API shader nodes, with no formal concept

of a fragment, a shader, or shader separation from geometry.

Handling of shader geometry requirements is performed by pulling directly from shapes, as

there is no concept of a separate shader evaluator and geometry evaluator.

All handling is generally performed within the “draw” call for a UI shape, or via plug-in hardware

shader “draw” logic. There is no concept of customized vertex or index buffers.

3.9 Selection Picking
In Maya 2016, picking can be processed through a VP2 “picking pipeline”. This can be thought

of as a custom render pipeline, which includes a custom render graph.

“Pick items” do not exist, although render items can be marked as being used for picking for API

geometry evaluators as well as manipulator handles.

It should be noted that picking is a separate mechanism that is utilized by the higher level logic

for selection. The selection logic has not changed and is shared between VP1 and VP2.

VP1 picking is supported using raw OpenGL draw code and software pick buffers. No DirectX or

OpenGL core profile equivalent support exists.

4. The VP2 API at a Glance
This section outlines the various interfaces available for use with VP2.

Guidelines for choosing a suitable interface for a given object type or porting scenario is given in

the next section.

4.1 General
All interfaces use the namespace MHWRender and files are in the OpenMayaRender SDK

include area. The namespace can be examined in the Maya Developer Help.

• M*Override: These classes are evaluators.

• MDrawRegistry: This class allows registration of evaluators with a dag object or a shader

node.

• MRenderer (MViewport2Renderer file): This class provides global renderer interfaces

and render loop overrides.

• M*Manager: These classes manage GPU resources

• M*Context: These classes expose pipeline context.

Page 18 of 29

4.2 Geometry Evaluator Interfaces

• MPxGeometryOverride: evaluator that provides geometry for a given object. It is similar

to internal evaluators used to support native Maya objects in VP2 and can thus use all

internal performance schemes. “Dirty” must be forced on geometry changes.

• MPxSubSceneOverride: evaluator that controls all data management. Updates can be

controlled explicitly. A simplified version of traditional static consolidation can be used for

specified render items.

• MPxDrawOverride: a special evaluator that controls its own drawing via a draw callback.

Update is called every frame by default. There is no integration with any shading effects.

4.3 Shader Evaluator Interfaces

1. MPxShaderOverride: evaluator that supports drawing for old MPxHwShaders. This is the

most complex interface for adding shader support if the plug-in manages its own

shaders and drawing.

2. MPxShadingNodeOverride: provides a fragment to an evaluator that allows the fragment

to be used when creating a shader from a shade tree.

3. “Pure attributes”: There is no real interface here. The attribute names are checked to see

if they match the parameters on a “stock” shader. This is roughly akin to providing

parameter values to the fixed function shader in VP1. The underlying evaluator uses the

attribute values to update parameters on a fragment used when creating a shader from a

shade tree.

Note that there is no concept of a separate light evaluator in the API. Light access is, however,

available explicitly for MPxShaderOverrides by querying light information from MDrawContexts,

and are implicitly calculated for internally generated shaders (bullet points 2 and 3).

4.4 Renderer Interfaces

Instances of an MRenderOverride can be used to replace the VP1 classes: MPx3dModelView

or MViewportRenderer.

These are not evaluators but render graph overrides. You can create an override using a series

of render operations:

• MSceneRender: Render a single pass of the scene. It is possible to have various

overrides.

• MUserOperation: User defined drawing. These are generally not required if all drawing is

done using Maya.

• MQuadRender: 2D quad blit with a custom shader instance.

• MPresentOperation: On screen presentation.

4.5 Manipulator Entry Points

The underlying evaluators will queue transient UI for drawing (See Section 4.7). Support is

provided via VP2 methods on existing API classes: MPxManipulatorNode, MPxManipContainer.

Page 19 of 29

4.6 Tool Context Entry Points

Contexts are not evaluators since they have no associated Maya nodes.

Drawing of transient UI (See Section 4.7) as “overlays” is supported via additional methods on

existing API classes: MPxContext, MPxTexContext.

4.7 UI Drawing
For transient UI drawing, a MUIDrawManager can be used. This class does not directly expose

render items to the user, but instead provides an interface that looks like fixed function drawing,

but is in fact creating transient render items (with corresponding shaders and geometry) for

drawing.

Items are executed at the appropriate place in the pipeline based on the display characteristics

defined for the drawables.

MUIDrawManager is accessible for these evaluators: MPxDrawOverride,

MPxGeometryOverride, MPxSubSceneOverride, MRenderOverride, as well as manipulator and

tool context entry points.

4.8 Resource Classes

Resource manager classes are generally used in conjunction with the provided VP2 interfaces,

but are made generally available to allow external rendering to take advantage of the resource

management capabilities of each manager. Some resources can be self-binding, while others

allow access to draw API native GPU handles.

4.8.1 MShaderManager

The manager handles instances of programmable shaders (MShaderInstance).

MShaderInstances can be used with MRenderItems and rendering operations (on

MRenderOverrides) as a way to use shaders without writing the underlying system to support a

hardware shading language.

The provided “stock” shaders can save time and eliminate the need for plug-ins to handle draw

API specifics, as implementations for all currently supported back-ends exist. For example, a

“fat point” shader is provided which uses geometry shaders. All stock shaders are OpenGL

legacy, OpenGL core profile and DX11 compliant.

MShaderInstances can also be used with raw geometry routing in MDrawOverrides and

MUserOperations, as they can be self-bound / unbound.

4.8.2 MFragmentManager

MFragmentManager provides the functionality for managing Viewport 2.0 shade fragments

(procedures) and fragment graphs (connected procedures). Both are defined using an XML

format and can be specified using either a file or a string buffer.

Internally existing fragments can be accessed in addition to the definition of new fragments.

Page 20 of 29

Fragments can be used directly for shading graph evaluation (per node), or to create specific

shading instances (MShaderInstance) for use in other interfaces.

4.8.3 MTextureManager

The manager handles hardware textures (MTexture), instead of maintaining additional software

rasters (as in VP1).

MTexture instances can be used where textures are required. This includes binding to

parameters on an MShaderInstance.

4.8.4 Geometry Classes

The classes for geometry storage that are referenced from render items are:

• MGeometry: Vertex and index buffer (stream) container (MVertexBuffer,

MIndexBuffer). These constructs are associated with a sync object and cannot be

created nor destroyed.

• MVertexBuffer, MVertexBufferArray: A GPU data stream, and a list of data streams

• MIndexBuffer: A GPU index stream.

The classes that allow specification of requirements to geometry evaluators are:

• MVertexBufferDescriptor, MVertexBufferDescriptorList: A vertex buffer description

and a list of descriptions. Shaders are responsible for supplying the appropriate

descriptions. MIndexBufferDescriptor, MIndexBufferDescriptorList: An index buffer

description and a list of descriptions. Shaders that require custom tessellation, as

well as geometry extraction interfaces, specify index requirements.

• MGeometryRequirements: A logical description of index and vertex streams that a

shader requires (MVertexBufferDescriptorList, MIndexBufferDescriptorList).

4.8.5 MGeometryExtractor

Interfaces such as MFnMesh and MfnNurbsCurve provide access to topologically complex data

structures that are best suited for data editing, and in general have multi-indexed data streams;

for example, different indexing to indicate sharing for normals, texture coordinates, colors, and

so forth.

MGeometryExtractor, in contrast, compresses the data to be suitable for use by a single index

stream. Sharing information is not lost. This data can then be used directly for render purposes

or used to create GPU data (MVertexBuffers, MIndexBuffers).

4.8.6 MRenderTargetManager

Handles “render targets” (MRenderTarget). Render target terminology comes from DirectX. For

OpenGL, this can be thought of as off-screen textures. Targets can be used for render loop

overrides, but are also accessible during per object drawing via an MDrawContext.

Page 21 of 29

4.8.7 MStateManager

The manager maintains unique GPU state objects that can be used at draw time to reduce

undue state changes. This includes raster (MRasterizerState), sampler (MSamplerState), blend

(MBlendState), and depth-stencil (MDepthStencilState) states.

4.8.8 Context Information

Unlike resources, context information is only available at certain times during render graph

execution:

• MFrameContext: Per frame information. Includes transform matrices.

• MDrawContext: Draw time information. Includes pass and lighting information and

target information.

• MPassContext: Information about pass semantics

• MLightParameterInformation: Per light Information, including shadow maps.

4.9 Entry Point Summary

The following diagram presents an overview of all the main API classes and how they relate to

each other:

MRenderOverride

MPxGeometryOverride
Maya

Dag

Object

Internal Pipeline

Attach

MDrawOverride
Maya

Dag

Object

Attach

MPxShadingNodeOverride /

MPxSurfaceShaderNodeOverride
Maya

Shading Node
Attach

MPxShaderOverride
Maya

Shading Node
Attach

Maya

Dag

Object

Attach

MShaderInstance

ShaderInstance

MRenderItem

RenderItem

MPxSubSceneOverride

MSubSceneContainer

RenderItem

Geometry

Evaluator

Geometry

Evaluator

Shader

Evaluator

Shader

Evaluator

Fragment

Graph Builder

MUIDrawManager

Figure 9: Main API entry points. Filled blue items are internal constructs. Green items are plug-in interfaces. Yellow
items are Maya nodes.

Geometry evaluators are listed on the upper-left and shader evaluators on the upper right. The

central focus of all object and node based overrides (except MDrawOverride) is to allow

MRenderItems to flow down the pipeline. MDrawOverride acts as a custom render item draw

Page 22 of 29

callback. The figure also shows that MPxShaderOverride can still act like a draw callback. Both

of these interfaces support VP1 behaviour as “draw time” constructs. MUIDrawManager lives

outside the geometry / shader evaluator update block, as it produces transient “drawables”

(render items) independently.

5. Choosing VP2 API Interfaces

5.1 Porting Categories

The general categories of items that need to be ported are broken down below.

• Manipulator: Transient drawing for manipulator nodes or container.

• Tool Context: Transient drawing for tool contexts.

• Scene Object: There are a number of options available for the drawing of objects, as

VP2 overrides are not directly tied to a particular Maya DAG object type. The following

categories exist, each ideal for a different level of drawing complexity.

o Single Object: A Maya object represents a single object. There are two variations

▪ Single Object (simple draw): Ideal for drawing a small amount of data per

object and per scene, such as a locator (MPxLocatorNode).

▪ Single Object (complex draw): Ideal for drawing more complex data, such

as a data mesh.

o Scene Per Object: A special case of a single Maya object actually representing

an entire “scene” (but without corresponding Maya nodes).

• Shaders: Shaders can also be implemented in a variety of ways, not all of which need to

be node based. For each of the following options, the degree of complexity and control

may result in a different option being used:

o Custom Shading Effect: Shading which takes over all aspects of shading and

lighting.

o Custom Fragment Effect: Shading fragment to be used as part of shade tree

evaluation.

o Shader Node: Custom shading node.

• Render Graph: Custom render loop or custom renderer integration.

5.2 Level of Integration

The choice of interface can be further complicated if there is a required “level of integration”.

Possible levels include:

• Device Level:

o This level is not recommended in general for new implementations.

o Valid cases exist that require the use of this level of integration. For example, the

requirement that “raw” draw API / device level code be maintained.

o Draw / selection are not integrated at all with any internal systems.

o Fixed function setup is no longer performed.

o Raw drawing is done by the plug-in and OpenGL state must be protected as in

VP1.

Page 23 of 29

o Any kind of internal effects / pass system integration is up to the plug-in.

• Resource Level:

o This level is not recommended in general for new implementations.

o This is basically a variant of device level integration, except that VP2 managers

are used for resources or state handling.

• Render Item Level: Create / use render items along with geometry evaluators and

shader evaluators.

• Renderer Level: Device level drawing and/or externally defined drawing can be

combined with internal render operations within the same plug-in via user operations.

5.3 Porting Choices
The following table shows the available interface options for various categories versus

integration levels.

Even though all options available are shown, items in bold indicate suggested options. As noted

above, device or resource level integrations are not recommended in general.

5.3.1 Manipulators and Tool Contexts

Support for VP2 can be accomplished by using the VP2 API equivalents to existing VP1

interfaces.

5.3.2 “Single Objects”

MPxGeometryOverride should be used for drawing a single object. This can be a combination

of MRenderItems for persistent data and MUIDrawManager for light-weight transient data. Note

Category vs
Level

Device Level Resource Level Render Item Level Renderer Level

Single Object MPxDrawOverride

MPxDrawOverride MPxGeometryOverride or
MPxSubSceneOverride

MRenderOverride

Scene per
Object

MPxDrawOverride MPxDrawOverride MPxSubSceneOverride

MPxDrawOverride,
MRenderOverride

Manipulator N/A N/A MPxManipuatorNode,
MPxManipContainer

N/A

Tool Context N/A N/A MPxContext N/A

Custom
Shading Effect

N/A N/A MShaderInstance MShaderInstance

Custom
Shading
Fragment

N/A N/A MFragmentManager MFragmentManager

Shading Node MPxShaderOverride MPxShaderOverride Attribute name matching.

MPxShadingNodeOverride

MPxShaderOverride

N/A

Render Graph MUserOperation MUserOperation N/A MRenderOverride

Page 24 of 29

that shaders assigned to a given object are automatically provided with render items, and thus

additional items for UI drawing should be all that is required.

For a single complex system, such as a particle system, an MPxSubSceneOverride is

preferable. A special classification for volume objects exists: “drawdb/volume”.

MPxSubSceneOverride also allows for the persistence of drawables created via the

MUIDrawManager interface. As such, this can greatly decrease overhead incurred via other

interfaces, and has better performance scalability.

Although not recommended, it is still possible to use raw calls by using either an

MPxDrawOverride or a MUserOperation in an MRenderOverride. However, the latter case can

be very wasteful.

5.3.3 “Per-scene” Objects

An MPxSubSceneOverride can be used for drawing per-scene objects. One basic caveat is

that the plug-in is also responsible for creating render items for any assigned shader nodes.

This extends to the management of UI drawables, although the sole logic required is the

decision as to whether the drawables are persistent between frame updates.

An MPxSubSceneOverride provides the greatest flexibility, but management is up to the plug-in.

It is possible to use an MPxDrawOverride or MUserOperation in an MRenderOverride, wherein

the object is simply an attachment point to an external scene renderer.

5.3.4 Custom Shading Effect

MShaderInstances are the simplest level from which to start using the internal shading system

with render items. Shader instances can be accessed / created via the shader manager

(MShaderManager).

“Stock shaders” provide basic functionality for shaded or flat drawing, as well as basic stipple

patterns and numeric drawing. These shaders are made up of fragments (procedures). The

equivalent or different custom fragments can be created via the fragment manager interface.

[See Custom Shading Fragment.]

Effects on disk can also be loaded via the shader manager (MShaderManager) and will use the

internal effects parser. Using this interface is generally the easiest way to reuse pre-existing

effects.

Shader instances can be assigned to custom render items (MRenderItems), or used as

overrides for operations within a render override (MSceneRender, MQuadRender,

MUserOperation); for example, to perform a custom scene pass with a shader override to

render geometric normals.

5.3.5 Custom Shading Fragment

Shader fragments (procedures) can be loaded via the fragment manager (MFragmentManager)

and used to create an MShaderInstance, or used with an MPxShadingNodeOverride to return

fragments for a given custom shading node.

Page 25 of 29

5.3.6 Shading Nodes

The choice of interface is dependent on the required amount of control for shading and the level

of integration desired. The first option, which is the most familiar to those experienced with VP1

implementations, is hardware shader nodes. The next two options are, however, much more

integrated and do not require additional integration code beyond shader definition / parameter

mapping. The last option requires no or very minimal code changes at most.

5.3.6.1 MPxShaderOverride

This interface allows for the greatest flexibility but can also require the most work. The

complexity can be equivalent to the backends for VP1 shader node overrides. This is due to the

fact that they are full effects based and take over all aspects of drawing (including lighting, for

instance).

Existing VP1 node level interfaces can be used for attribute handling, along with

MPxShaderOverride for VP2 support.

If custom effect handling is not required, it is recommended that internally provided

MShaderInstances be used instead. If the shader instance is fragment based, then a greater

level of pipeline (lighting) and API integration is inherently provided.

If no custom drawing is required, then the internal drawing routines can also reduce the

complexity of the code.

Explicit node based shader assignment to arbitrary render items is possible. One general use

case is that of using hardware shaders with subscene override render items. It should be noted

that dependencies on the lifetime of a node must be explicitly handled by the plug-in. This

differs from implicit assignment, which occurs via regular DG connections to DAG objects, and

where lifetime management is handled by the renderer.

5.3.6.2 MPxShadingNodeOverride

The most integrated approach is to use MPxShadingNodeOverride to define a fragment and

indicate how the input parameters of that fragment are related to the attributes on the Maya

node.

This interface is called as part of fragment graph building when interpreting shading networks,

and should be familiar to those that write shader fragments for software rendering.

Surface shader building is more complicated and requires understanding of how lighting is

bound (MPxSurfaceShadingNodeOverride).

5.3.6.3 Attribute Naming

The workflow that requires the least amount of work is to create a node with attributes that map

to the shading parameters of a fixed internal shader. The “root” fragment that is used is the

mayaPhongSurface fragment.

There is no additional coding required beyond getting the appropriate names on the attributes.

For example, to get color support, simply having an attribute with the name “color” is sufficient.

Page 26 of 29

The VP1 interface that mostly close matches this workflow is MPxMaterialInformation, but it is

much more complicated and requires explicit coding.

5.3.7 Render Graphs

An MRenderOverride should be used to replace previous implementations of

MPx3dModelViews and MViewportRenderers. It is still possible to keep the MPx3dModelView

multi-pass structure, but only one pass is executed for VP2. In that one pass, any

MRenderOverride specified is used.

5.3.8 2D Elements

2D HUDs can be drawn using an MRenderOverride. If this is too intrusive, then a locator that

uses MUIDrawManager’s 2D interfaces can also be used. Per object 2D HUDS can take

advantage of the “In View Editor” interfaces available for manipulators. 2D camera based image

planes are natively supported by internal evaluators. [See the “Drawing 2D Elements” section in

the Viewport 2.0 API Porting Guide, Part 2: Porting Details for more information].

5.4 VP2 Selection Considerations

In order to use VP2 selection (introduced in Maya 2016), code that uses interfaces that allow for

“raw” draw calls for selection must be ported to use the Viewport 2.0 API.

MUIDrawManager and MRenderItem interfaces are recommended.

The mappings to take into consideration are:

a) For manipulators (MPxManipulatorNode):

a.1. VP1 raw OpenGL “handle” interfaces can be replaced with logical UI draw manager

identifiers on MUIDrawManager::beginDrawable ().

b) For simple drawing found in locators (MPxLocatorNode) and surface shapes:

(MPxSurfaceShape / MPxComponentShape):

b.1. MUIDrawManager interfaces should be used for selection.

c) For complex drawing on MPxSurfaceShape/MPxComponentShape:

c.1. MPxSurfaceShapeUI interfaces should be replaced by render item based interfaces on

MPxGeometryOverride and MPxSubsceneOverride:

c.2. Object level render items can be specified as being selectable.

c.3. The same can be done for component level render items. Additional work is required to

identify component level selection items and support mapping from the indexing used

for geometry buffers on render items to shape level components (MFnComponent).

d) For plug-in shaders, it is possible to use MPxShaderOverrides to support custom drawing for

selection; for example, to draw wireframe and components for hardware tessellation

performed by the shader.

Tool contexts are not affected as they have no selection functionality.

If raw draw calls are being used, and a legacy OpenGL profile is not available, then OpenGL

software pick buffers will not work.

Page 27 of 29

5.5 Performance Considerations

MPxDrawOverrides that use raw calls should beware of stalling the graphics pipeline.

MFrameContext and MDrawContext can be used to avoid pulling the graphics state directly

from the device and hence causing stalls. To avoid any context state bleeding, the VP1 adage

of a “pushing” and “popping” state for OpenGL still holds true.

Drawing a large amount of data using MUIDrawManager is not recommended. All data is

generally considered to be transient, and hence can result in constant data reallocation.

Persistence only occurs via the interfaces on MPxSubSceneOverride. In this case, if the draw is

mostly static, then the caching mechanism will reduce the additional cost of deleting and

recreating every frame.

Before Maya 2016, use of MPxGeometryOverrides for rendering a very large number of render

items was not recommended due to scalability. This is partially the reason for adding the

MPxSubSceneOverride class.

If hardware instancing on render items is desired, MPxSubSceneOverride exposes options for

transform or shader parameter level instancing which can increase performance. Hardware

instancing may not always be available, in which case the internal fallback will be to use

software instancing.

Shader “uniqueness”, which includes geometry requirements, returned from a shader, helps

determine if consolidation is possible. The more flexible the interface used for the shaders, the

greater the chance of differentiating a shader. Fragment based shaders generally do not have

this concern. MPxShaderOverrides have the greatest flexibility, including a custom user data

setting – which, in general, should be avoided if possible.

Explicit use of state objects is generally not recommended. If a state is overridden, then it

should be restored, as internal drawing does not explicitly attempt to reset state for every render

item drawn. Specific rendering passes set up particular states, and any explicit state override

may result in an incompatible state being used. MPxDrawOverrides and MPxShaderOverrides

are generally used for setting states. In these cases, the state should match the internal state

for a given pass context.

5.6 Threaded Evaluation / Evaluation Manager Considerations

Usage of MRenderItems is recommended via MPxGeometryOverride or

MPxSubSceneOverride. The code should adhere to the interfaces that are designated for DG

evaluation, and GPU device access. Any custom / user data should not reference items which

may be re-evaluated (such as a DG node).

MPxDrawOverride can still be used for items such as scene-level objects, assuming that the

plug-in scene’s interface with the evaluation manager is managed properly.

Page 28 of 29

5.7 Device Considerations

The following sections list the concerns associated with device level implementations. These

issues should be reviewed to determine if a device level approach is still an acceptable one; for

example, using MPxDrawOverride.

5.7.1 OpenGL Core Profile Contexts

If this option is chosen, then plug-ins should beware of the following caveats.

The biggest of these is that device level code written for legacy profile context may no longer

execute properly due to support for given calls being deprecated.

For plug-ins that must run on a core profile context on Mac OS X, any usage of “raw” draw calls

is discouraged, as this can result in legacy draw or selection no longer being available.

5.7.2 Device Tips

VP2 no longer sets up the fixed function state for a number of items, including lighting. OpenGL
“glGet*” methods are not recommended for extracting data. In general, these calls cause
pipeline stalls. Push and pop state must be used if VP2 interfaces are not used for a given state.

Access to M3dView is no longer recommended, and information should be read from
MFrameContext or MDrawContext instead. The MGeometryUtilities class is also available for
accessing information such as Maya display colors, and display status.

The 2d coordinate convention for VP2 is DirectX or Windows based. Therefore, buffer
coordinates start from the upper left instead of lower right (flipped in Y), and texture lookups are
also flipped in Y.

The 3d coordinate system is left handed.

Clip space in OpenGL ranges from -1 to +1, whereas it ranges from 0 to 1 for Direct3D.

For OpenGL, FBO overrides cannot be used. If used for local drawing, they must be cached and
restored.

Autodesk, AutoCAD, 3ds Max and Maya are registered trademarks or trademarks of Autodesk,

Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand

names, product names, or trademarks belong to their respective holders. Autodesk reserves the

right to alter product and services offerings, and specifications and pricing at any time without

Page 29 of 29

notice, and is not responsible for typographical or graphical errors that may appear in this

document.

© 2017 Autodesk, Inc. All rights reserved.

	Revision History
	1. Table of Contents
	2. Background
	3. VP1 versus VP2
	3.1 Introducing a Renderer
	3.2 Attachment Model
	3.3 Change Monitoring
	3.3.1 VP1
	3.3.2 VP2: Change Management System

	3.4 Evaluation
	3.4.1 VP2: Evaluators
	3.4.2 VP2: Tasks
	3.4.3 VP1

	3.5 Render items
	3.5.1 VP2
	3.5.2 VP1

	1.1 Categorization and Consolidation
	3.6
	3.7 Render Pipeline
	3.8 Core Shader / Geometry Update Mechanism
	3.8.1 VP2: Shader Definition
	3.8.1.1 VP2: Fragment Effects
	3.8.1.2 VP2: Fragments and Fragment Graph Management
	3.8.1.3 VP2: Non-Fragment Effects

	3.8.2 VP2: Connection between Shaders and Geometry
	3.8.3 VP2: “Shader Overrides”
	3.8.4 VP1

	3.9 Selection Picking

	4. The VP2 API at a Glance
	4.1 General
	1.1 Geometry Evaluator Interfaces
	4.2
	4.3 Shader Evaluator Interfaces
	4.4 Renderer Interfaces
	4.5 Manipulator Entry Points
	4.6 Tool Context Entry Points
	4.7 UI Drawing
	4.8 Resource Classes
	4.8.1 MShaderManager
	4.8.2 MFragmentManager
	4.8.3 MTextureManager
	4.8.4 Geometry Classes
	4.8.5 MGeometryExtractor
	4.8.6 MRenderTargetManager
	4.8.7 MStateManager
	4.8.8 Context Information

	4.9 Entry Point Summary

	5. Choosing VP2 API Interfaces
	5.1 Porting Categories
	5.2 Level of Integration
	5.3 Porting Choices
	5.3.1 Manipulators and Tool Contexts
	5.3.2 “Single Objects”
	5.3.3 “Per-scene” Objects
	5.3.4 Custom Shading Effect
	5.3.5 Custom Shading Fragment
	5.3.6 Shading Nodes
	5.3.6.1 MPxShaderOverride
	5.3.6.2 MPxShadingNodeOverride
	5.3.6.3 Attribute Naming

	5.3.7 Render Graphs
	5.3.8 2D Elements

	5.4 VP2 Selection Considerations
	5.5 Performance Considerations
	5.6 Threaded Evaluation / Evaluation Manager Considerations
	5.7 Device Considerations
	5.7.1 OpenGL Core Profile Contexts
	5.7.2 Device Tips

