

www.autodesk.com/mapguideenterprise

Autodesk
MapGuide® Enterprise

Migrating from Autodesk
MapGuide 6.5 to the New
MapGuide Technology

This paper provides an overview of some of the
changes from Autodesk MapGuide® 6.5 software
and earlier releases to the new MapGuide
technology. Furthermore, it provides a guide on
how to move from existing Autodesk MapGuide
6.5 applications to the new MapGuide technology.

For simplicity, the new MapGuide technology, both
the open source version and the commercial
version, is referred to in this paper as "Autodesk
MapGuide® Enterprise.” Autodesk MapGuide 6.5
and earlier versions are referred to as “Autodesk
MapGuide.” All concepts discussed here apply to
both the open source and commercial versions of
the new MapGuide technology. Autodesk
MapGuide® Studio is available separately.

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

2

Contents

Rationale ... 3

Autodesk MapGuide Enterprise—A New Architecture.. 3

Comparing Autodesk MapGuide 6.5 Components with Autodesk MapGuide
Enterprise .. 6

MWX/MWF Requirements .. 8

Migration Strategy .. 10

Phase 0—Planning and Setup .. 11

Goals .. 11

List of Functions ... 11

Web Interface ... 11

Selection of Development Platform .. 12

Server Configuration .. 12

Phase 1—Configuring and Loading Data ... 12

Phase 2—Building Map Layers/Creating Map .. 13

Phase 3—Migrating Applications .. 16

Phase 4—Testing and Feedback.. 16

Phase 5—Final Changes .. 16

Phase 6—Deployment .. 16

Description of Web Tier API .. 17

APIs for MapGuide ... 17

Developing with PHP 5 ... 18

Developing with Java .. 19

Developing with ASP .NET ... 19

Code Examples ... 20

Embedding the Viewer into a Web Page .. 21

Creating User and Session Information: The Site Service API 21

Accessing Map Information Using the MgMap Library of Classes 23

Enumerating, Refreshing, and Changing the Visibility of Layers 24

Digitizing ... 26

Redlining ... 28

Invoking Existing Autodesk MapGuide 6.5–Based Reports .. 28

Resources ... 30

Appendix: Invoke Report Source Code (PHP Sample) .. 31

Appendix: Redlining Sample Code (PHP Sample) .. 38

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

3

Rationale
Autodesk MapGuide® Enterprise software has been developed in response to several
customer and market drivers. Web development tools and technologies have come a long
way in the last 10 years. MapGuide technology has evolved successfully but has not
changed with them all. Modern web applications use the browser for presentation, while
“business logic” runs in the web or middle tier. Complex MapGuide applications require
significant logic in the client tier. Further, although PHP, ASP.NET, and JSP are the
technologies of choice for web development, the core MapGuide platform integrates with
none of them. Finally operations on the data, such as buffering, should operate on the
geometry data, not the graphics that have been transformed and clipped.

Autodesk MapGuide Enterprise also serves a larger market. Currently, penetration of the
Windows Server® operating system is only around 48 percent while adoption of Linux®

operating system is growing rapidly. Not having Linux® support can be a barrier in some
environments. Support for Apache is also important because Apache is the number one
web server by far.

Increasingly, web mapping solutions require a raster-based viewing technology to support
the broadest range of Internet users. Users need a raster-based viewing technology that
performs well, is scalable, and fits into the core platform. There is a need to bring the
capabilities of the raster based platform at par with the plug-in versions of MapGuide.

Autodesk MapGuide Enterprise also uses and enhances DWF™ technology. In particular
it takes advantage of the strong printing and plotting capabilities of DWF and provides
excellent visual fidelity with AutoCAD® software drawings. It also enables many
companies to move to a single viewer technology base.

The MapGuide architecture is more than 10 years old. There is a need to modernize the
platform in order to provide future support for 2.5D data and data analysis with 3D
presentation; additional Open Geospatial Consortium (OGC) initiatives like WFS (Web
Feature Service); and Web Services and support for rich metadata.

Autodesk MapGuide Enterprise—A
New Architecture
The new web mapping platform, Autodesk MapGuide Enterprise, goes far beyond
Autodesk MapGuide 6.5 software, providing new architecture, programming language
support, data access methods, viewing options, and authoring environment.

The new platform is available as open source software (MapGuide Open Source) and as
a commercial version (Autodesk MapGuide Enterprise). The new MapGuide technology
can be installed, customized, and developed on multiple platforms, including the Linux
operating system.

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

4

Autodesk MapGuide Enterprise has architecture different from that of Autodesk MapGuide
6.5, moving to server-side functionality whereby much of the mapping and geospatial
functions are executed on the server. The API (application programming interface) is
exposed primarily through the web server extensions, which are available in the .NET,
Java®, and PHP development
environments. The choice of
viewer technologies (an
ActiveX®-based viewer using
DWF technology as well as a non
plug-in viewer based on AJAX
technology) has been made
possible as a result of this shift in
architecture. The application
functionality available to the DWF
and AJAX viewers is consistent.
Perhaps most important, the shift
to server-side application
functionality has enabled
Autodesk MapGuide Enterprise
to serve as a web-based
geospatial engine capable of
handling geospatial queries that
can be executed on several data
sources such as SHP, SDF,
Oracle®, and ArcSDE®™, among
others, via a single Feature Data

Autodesk MapGuide architecture

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

5

Objects (FDO) API. This capability enables the developer to use just one API on disparate
data sets, focusing on the application rather than the data format.

This shift in architecture requires that steps be taken to migrate an application built using
the various components of Autodesk MapGuide 6.5. With the new MapGuide technology,
tedious processes, such as setting up the server environment, configuring the data
sources, loading data, and programming the application, have been greatly reduced.
Although it may seem that migration requires extra effort, the benefits of the new
technology outweigh the burden as Autodesk MapGuide Enterprise reduces the
development time for both basic and advanced functions due to its powerful API.
Autodesk MapGuide, on the other hand, requires significant client-side scripting to
develop custom functions because of the limitations of the Autodesk MapGuide 6.5 client-
side oriented API.

MapGuide Enterprise Application/API architecture

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

6

Comparing Autodesk MapGuide 6.5
Components with Autodesk MapGuide
Enterprise
The following table lists the Autodesk MapGuide 6.5 components with the equivalent
component of Autodesk MapGuide Enterprise.

MapGuide Component Comparison

Autodesk MapGuide 6.5
Component

Autodesk MapGuide Enterprise
Component

Server Server/Web Server Extensions
Author Autodesk MapGuide Studio

ActiveX Plug-in Autodesk® DWF™ Viewer
Dynamic Authoring Toolkit Web Server Extensions API
SDF COM Toolkit Web Server Extensions API
MapGuide Raster Workshop Autodesk MapGuide Studio
Autodesk MapGuide API Web Server Extensions API, Client-

Side Wrapper API
SDF Loader Autodesk MapGuide Studio

LiteView AJAX Viewer
Server Administrator Web-Based Server Site

Administrator

 Autodesk MapGuide 6.5, the MapGuide Server provided
functionality to create data sources to geospatial and database
sources; create groups and users to access data sources; start
and stop the MapGuide agent; and display usage and error logs.
These functions are now available through the web-based Site
Administrator and using Autodesk MapGuide Studio.

In Autodesk MapGuide 6.5, MapGuide Author enabled users to
create Map Window Files (MWF), which are embedded into
applications. With Autodesk MapGuide Enterprise, these MWF
files are replaced with resources that consist of data sources,
layers definitions, and map definitions, all of which reside on the
server.

The Autodesk MapGuide 6.5 plug-in, which is available in ActiveX
or Java, is replaced by Autodesk’s commonly used DWF Viewer.
The DWF Viewer has the advantage of being the standard viewer
technology for all Autodesk product-generated DWF files,
including mechanical and architectural files. It is a single, unified
viewer for all digital design content.

Site Resources

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

7

The Autodesk MapGuide 6.5 Dynamic Authoring Toolkit (DAT) enables users to
manipulate MWF files by converting them to XML format, modifying the XML data, and
then converting the XML back to an MWF file, which is then delivered to the browser. The
DAT has been replaced with an even more robust Web Tier API that gives users access
to all elements of a map. Users can add, edit, or delete any portion of a map on the fly.

The Autodesk MapGuide 6.5 SDF COM Toolkit is a server-side COM object that enables
users to query and manipulate SDF
data sources in Autodesk MapGuide
6.5. The feature service API in the
Web Extensions builds on the FDO
read-write provider capabilities and
enables users to query and
manipulate geospatial data,
including SDF and other supported
formats. It is now possible through
the feature service API in the Web
Extensions to dynamically create
data stores and manipulate them as
necessary.

The Autodesk MapGuide 6.5 Raster
Workshop enables users to set up
raster image catalogs and
manipulate raster files to create a subsampled version
that can then be used to create scale-dependent
layering of raster images. Autodesk MapGuide Studio has built-in functionality that
enables users to perform the same tasks.

The Autodesk MapGuide 6.5 API is a client-side API that allows the manipulation of MWF
files. The API is browser dependent, making it difficult to create Autodesk MapGuide 6.5
applications that are compatible across browsers. The API is also limited in its
functionality and requires sophisticated programming to create special functionality.

The Autodesk MapGuide Enterprise Web Tier API has been re-engineered as a server-
side API. As a result, users can develop much more robust and complex applications.
Because the API is server side, it is not browser dependent. Users can therefore write

Autodesk MapGuide Enterprise Web Tier API Model

Autodesk MapGuide Enterprise Development Options

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

8

cross-browser compatible applications with any of the three supported development
environments (.NET, Java, PHP). Users can easily port between languages with the
assurance that all functions are available regardless of language. Autodesk MapGuide
Enterprise continues to have a client-side API for manipulating user interaction between
the frames, but most mapping operations are executed in the business logic tier on the
web server.

The Autodesk MapGuide 6.5 SDF Loader is a command-line utility that enables users to
create and convert geospatial data into SDF format. It also enables users to create batch
files to perform bulk conversion of data on regular basis. Autodesk MapGuide Enterprise
Studio replaces the SDF Loader and enables users to create load procedures that can be
scheduled.

Autodesk MapGuide 6.5 LiteView software is a servlet-based software that enables users
to build image-based applications that don’t require a plug-in. In Autodesk MapGuide
Enterprise, LiteView has been replaced with the AJAX viewer. Developers can now build
one application that can be viewed using either the DWF plug-in or the AJAX viewer.
Developers no longer need to write separate code to publish non-plug-in based
applications.

The Autodesk MapGuide 6.5 Server Administrator tool enables users to create data
sources to geospatial and database sources; create groups and users to access data
sources; start and stop the MapGuide server; and display usage and error logs. These
functions are now available in the Autodesk MapGuide Enterprise Site Administrator and
Autodesk MapGuide Enterprise Studio.

Autodesk MapGuide Enterprise Web based server administrator

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

9

MWX/MWF Requirements
Autodesk MapGuide Enterprise performs stylization on the server and hence no longer
requires a MWF or MWX file. The definitions and rules stored in the MWF/MWX files are
now stored on the server as resources. Maps no longer contain layers. Instead, a map
definition references layer definitions, allowing a layer to be defined once and used in
many maps.

Resources define things such as maps, layers, and data connections. Each resource is
defined by an XML document that is stored in a hierarchical resource repository. Each
repository can be thought of as a virtual file system that is managed within a resource
database. The resource database lives on the Autodesk MapGuide Enterprise Server and
provides centralized storage for a collection of resource repositories.

Map Definition created using Autodesk MapGuide Studio

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

10

Migration Strategy
The following diagram shows a typical Autodesk MapGuide 6.5 application. The
components highlighted in blue can be re-created using more advanced capabilities such
as true color support and transparency in MapGuide Enterprise. The section in green is
mostly reusable through a script (see Appendix for source code) that redirects report
requests from Autodesk MapGuide Enterprise to the existing Autodesk MapGuide 6.5
report. The section in red requires redevelopment because of the shift to a server-side API
in Autodesk MapGuide Enterprise.

The transition from Autodesk MapGuide 6.5 to Autodesk MapGuide Enterprise requires
some planning and redevelopment of the customizations that were done on Autodesk
MapGuide 6.5. Use the following sections as a step-by-step guide to migrating an existing
application from Autodesk MapGuide 6.5 or earlier to Autodesk MapGuide Enterprise.

A Typical MapGuide 6.5 application

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

11

Phase 0—Planning and Setup
The initial phase of the process should be to plan the migration of the application. In this
phase, a clear plan that establishes goals for the application, a list of custom functions
that need to be created, development of the web interface design, selection of
development platform, and identification of the server hardware configuration or
architecture should be written. Responsibilities, timelines, and milestones can be included
for project management purposes. Developing a written plan enables developers to
successfully migrate the existing application without encountering major hurdles.

Goals
Possible goals of the migration include the following:

• Enhance functionality

• Eliminate the plug-in viewer

• Streamline spatial data updates

• Reduce custom programming by using built-in Autodesk

MapGuide Enterprise functions

• Upgrade server and application software

• Change application development platform

List of Functions
One of the key elements of Autodesk MapGuide 6.5 sites is the
custom programming that is performed using the Autodesk
MapGuide 6.5 Viewer API to develop advanced applications. The
plan should take into account all custom programming functions that
existed on the original application and any new functionality that
should be integrated. Creating a list of existing functions and then
identifying how those functions will be duplicated with Autodesk
MapGuide Enterprise helps identify the level of effort required to
migrate the application. Furthermore, some functions that needed to
be programmed using the API may be standard functions in
Autodesk MapGuide Enterprise. For example, many Autodesk
MapGuide applications have custom Zoom GoTo functionality that
can be replaced with zooming/search functions that can be created
using Studio.

Web Interface
The migration of the Autodesk MapGuide application could provide an
opportunity to redesign the existing interface. Since Autodesk MapGuide Enterprise has
additional functionality, much of the custom interface programming and design that was
created for Autodesk MapGuide sites is no longer necessary. For example,
with Autodesk MapGuide Enterprise, a built-in Properties Pane enables
users to click map objects and obtain attribute information. This
functionality was not available out-of-the-box with Autodesk MapGuide 6.5, so many
developers created custom functionality to perform these actions. Developers also created
custom toolbars to allow for interaction with the map. With Autodesk MapGuide

Autodesk MapGuide 6.5 custom
functions

Autodesk MapGuide Enterprise
custom functions

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

12

Enterprise, these custom functions can be incorporated into the Task Pane, eliminating
the need for a custom toolbar.

In some cases, developers may choose to leave the interface as is and integrate
Autodesk MapGuide Enterprise into the existing web design. This could occur in a
situation where users are comfortable with the existing design and changing it would
adversely affect the usage of the application. In that case, it would be prudent to maintain
the interface and eliminate programming that can be replaced with out-of-the-box
functionality.

Selection of Development Platform
Autodesk MapGuide Enterprise supports the most common programming languages used
to perform web development, .NET, PHP, and JSP. Developers can use these languages
to access the robust API provided with Autodesk MapGuide Enterprise. Unlike Autodesk
MapGuide 6.5, where the client-side APIs are browser and language dependent,
Autodesk MapGuide Enterprise provides full compatibility between all three Web API
Extensions. This means that application developers can use any of the development
platforms or port from one application to another and be confident that the application will
perform the same way.

The choice of development platform depends on the preference, experience, and skill of
the programmers. Each platform has unique advantages and disadvantages.

Server Configuration
Migration of the Autodesk MapGuide 6.5 application requires the acquisition of a
development server. Developers typically have at least one staging or development server
for testing. With Autodesk MapGuide Enterprise, it is recommended that two servers be
configured and dedicated to the software. One server is used for staging and the other for
the deployment server. It is possible to install Autodesk MapGuide Enterprise on the same
server as Autodesk MapGuide, but it’s not recommended.

The hardware required to run Autodesk MapGuide Enterprise depends on many factors,
including the organization’s networking infrastructure, development platform standards,
and developers’ capability. Since Autodesk MapGuide Enterprise can now run on Linux as
well as the Microsoft® Windows® operating system, the role of the organization’s IT staff
becomes more important in the decision-making process.

Phase 1—Configuring and Loading Data
The first phase of migration is to configure and load the spatial and tabular data into
Autodesk MapGuide Enterprise, and connect to external databases. With Autodesk
MapGuide Enterprise, setting up data sources is accomplished by using the Studio
software. As with Autodesk MapGuide 6.5, creating an organized data structure is crucial
to keeping the data organized. With Autodesk MapGuide Enterprise, rather than creating
file folders on the server disk drives, folders are created using Studio. It is recommended
that the file folders mimic the existing Autodesk MapGuide structure to maintain
consistency. However, if the existing structure is not well organized, the migration process
can provide an opportunity to correctly organize file structure and data.

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

13

Autodesk MapGuide Studio showing a load procedure.

Once the folders have been created, the
spatial and tabular data can be imported into
Autodesk MapGuide Enterprise using the
Studio software. Unlike Autodesk MapGuide
6.5, spatial data sources do not need to be
created with the administrator. Studio
establishes the data source connection when
the data is loaded.

Another major difference between Autodesk
MapGuide 6.5 and Autodesk MapGuide
Enterprise is that Autodesk MapGuide
Enterprise eliminates the need to create
elaborate data update routines when loading
data. Many administrators of Autodesk
MapGuide sites create batch files using the
SDF Loader to define a process that updates
the spatial data. This process is run either

automatically or manually. In many

case, administrators do not create update routines but rather execute the entire process
manually. With Autodesk MapGuide Enterprise, when data is loaded, a load procedure is
created. The load procedure can include several data sets so that when data needs to be
updated, the load procedure can be run simply and quickly.

Phase 2—Building Map Layers/Creating Map
The next phase of the migration is to build layers that can be used in Autodesk MapGuide
Enterprise maps. This process is slightly different from the original procedure used with
Autodesk MapGuide and Autodesk MapGuide Author. With Autodesk MapGuide, if a user
needs to add a layer to a map, the user would open Autodesk MapGuide Author and
create the layer in the MWF file. If the application had multiple MWF files, the user would
need to create or copy the layer into each MWF file. The user would have to format each
layer individually within each MWF file. This process creates a situation where two
different layers could be formatted differently even though they were intended to be the
same. With Autodesk MapGuide Enterprise, users create layers and define the look of the
layer, including themes, tooltips, and more, one time and then use the layer definition
within various map definitions. This new functionality within Autodesk MapGuide
Enterprise helps eliminate the redundant task of having to create a layer multiple times.

Of course, while migrating the existing application to Autodesk MapGuide Enterprise,
users will want to duplicate the style of the layer that existed in the Autodesk MapGuide
application. However, since Autodesk MapGuide Enterprise has much better rendering
capabilities, users need to decide whether to retain the layer formatting of the previous
application.

Once the map layers have been defined, a map can be created. With Studio, the map
comprises the layers that are already formatted. Essentially, the map serves as a view of
the data and layers that have been defined. The benefit of this approach is that if the
format or display of the layers needs to be changed, they can be changed once and

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

14

reflected wherever they are being used. With Autodesk MapGuide 6.5, in contrast, if the
layer is shown on several MWF files, each layer must be changed in each MWF file
individually.

The following tables show how Autodesk MapGuide 6.5 files and their elements are
migrated to Autodesk MapGuide Enterprise resources.

MWF/MWX

Web Layout

A default web layout is created where the MWF popup menu is
converted to a context menu.

Map Definition

Map window properties are converted to map definition properties.

Layer Definitions See MLF.
Note: Layers that reference remote MapGuide servers are not
migrated.

Symbol Libraries Created from MWF API symbols and point layer symbols.

Feature Sources See MLF and UDL.

Drawing Sources See MLF.

MLF

Dynamic Text,
Polyline, and
Polygon Layers

Feature Layer
Definition

Feature Layer Definition
• Text layer creates a point stylization

Feature Sources

• SHP provider feature source for SHP SDP
• SDF3 provider feature source for SDF 2.x SDP
• SDF3 provider feature source for DWG™
• Oracle provider feature source for Oracle SDP
• Microsoft SQL Server provider feature source for

Microsoft SQL SDP

Attribute Sources
For each secondary table, an attribute source is created and a join
is added to the feature source:

• ODBC provider feature source for Microsoft Access OLE
DB

• SHP provider feature source for SHP SDP
• SDF3 provider feature source for SDF 2.x SDP
• SDF3 provider feature source for DWG
• Oracle provider feature source for Oracle SDP
• Microsoft SQL Server provider feature source for

Microsoft SQL OLE DB

Dynamic Point
Layer

Feature Layer Definition
• Same as above, plus
• ODBC provider feature source for Microsoft Access SDP

Attribute Sources for Secondary Tables

• Same as above

Symbol Library

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

15

MLF

Dynamic Raster
Layer

Raster Layer Definition

Raster Provider Feature Sources

• JPEG (.jpg) converted to TIFF-based feature source
• Microsoft Windows Bitmap (.bmp) converted to TIFF-

based feature source
• TrueVision Targa 2.0 format (.tga) converted to TIFF-

based feature source
• Portable Network Graphic (.png) converted to TIFF-based

feature source
• Tagged Image File Format (.tif) converted to TIFF-based

feature source
• CALS MIL-R-28002A Type 1 (.cal) converted to TIFF-

based feature source
• Enhanced Compression Wavelet (.ecw) converted to

ECW-based feature source
• MrSID® (.sid) converted to MrSID-based feature source

MLF

Dynamic DWF
Layer

• Drawing layer definition
• Drawing source

Dynamic DWG
Layer

• Drawing layer definition
• Drawing source

Static Layers Migrated as above using the following data source exceptions:
• Point converted to SDF 3 provider
• Text converted to SDF 3 provider
• Polyline converted to SDF 3 provider
• Polygon converted to SDF 3 provider
• Raster converted to TIFF-based raster provider
• DWG converted to drawing source
• DWF converted to drawing source

Buffer Layer • Drawing layer definition
• Drawing source

Redline Layer • Drawing layer definition

• Drawing source

UDL

• SHP provider feature sources for SHP SDP
• SDF provider feature sources for SDF SDP
• ODBC provider feature sources for Microsoft Access OLE

DB

It should be noted that the DMT allows for basic conversion of the information so that
developers are not starting from square one when creating maps. However, some

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

16

formatting might still be required once the information has been converted. In fact, most
developers will want to use the new features of Autodesk MapGuide Enterprise to
enhance the format of the map.

Phase 3—Migrating Applications
Once the maps have been created and assuming development platform and server
architecture have been selected and set up, the developer can then begin the process of
migrating the application. This process is the most time-consuming portion of the
migration. The list of functions identified in the plan is important to the development
process. The list should be refined to reflect any functionality that can be eliminated by
using out-of-the-box Autodesk MapGuide Enterprise functionality.

The most crucial functionality to be migrated is object selection and interaction with the
server, Zoom GoTo functionality, and reporting. These functions are the ones most
commonly used in Autodesk MapGuide applications.

Developers can take one of two approaches to writing the actual code for the site.
Developers can either start from scratch and write the entire code base and integrate
either the new design or the old one into the application. Or the developer can duplicate
the existing application and modify it by deleting old code and adding new code. It is up to
the developer as to which approach works best, but starting from scratch could be more
efficient since the API is completely different and none of the old API calls can be reused.
Reports that were created for use with Autodesk MapGuide can be reused with Autodesk
MapGuide Enterprise via the Invoke Report script (see Appendix for source code).

Further discussion of the Web Tier API and sample code are provided in the code
examples section of this document.

Phase 4—Testing and Feedback
Once the new site is complete, assuming that the developer has tested functionality as it
is developed, the application can be rolled out for beta testing. The user group should be
familiar the inner workings of the old application and should be trained on how to use the
new site and informed about new features or differences in the application. Beta users
should be provided with feedback forms so that they can clearly communicate problems to
the developer.

Phase 5—Final Changes
The next step is to collate and understand feedback from beta testers. This may require
meeting with the beta testers to help ensure that the feedback is clearly communicated.
Once the list of feedback items has been compiled, beta testers should stop using the
application so that the developer can update it. Again, it is assumed that the developer will
test and fix any problems.

Phase 6—Deployment
Once the final changes have been made, the site should then be deployed on the live
server. It is up to the individual organization as to whether to maintain the old MapGuide
site as well as the new one or to replace the old site. Before the new site is launched, it
may be necessary to train users on new features of the application. A plan should be
developed to gather feedback once the users start working with the new site. Further
development can be done on the staging server and deployed to the live server as
needed. A time frame for decommissioning the old site should be given to all users.

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

17

Description of Web Tier API
Having the flexibility to choose whether to implement MapGuide with a Microsoft Windows
Server or a Red Hat® Linux Server gives organizations the ability to choose the most
appropriate operating system and development tools. The Web Tier API is fully consistent
across both operating systems.

APIs for MapGuide
Several API objects are available to
developers working with Autodesk
MapGuide Enterprise. Autodesk
MapGuide Studio has a .NET API that
enables the user to build custom
applications that use Studio
components. If developers want to
access any aspect of the feature
geometries on the server, there is an
FDO API to change, manipulate, re-
project, or analyze the features.

The following APIs are available:

Service Function

Resource Service Enables the manipulation of repositories and resources.
Can also be used to manipulate and load data.

Feature Service Provides access to FDO providers.

Mapping Service Provides access to maps and layers within a map.

Drawing Service Allows low-level access to drawing sources. Can
manipulate DWF files.

Rendering Service Renders a map into a bitmapped image. This image is
typically used for display in the HTML viewer.

Coordinate System Supports coordinate system transformations.

Geometry Manipulates geometric objects.

Site Service Configures users, groups, and user sessions.

Because much of Autodesk MapGuide and Autodesk MapGuide Studio is driven by XML,
including the resource definitions, settings, and layer display configurations, much of the
development must be done in applications that can use the Document Object Model
(DOM) for XML and that can instantiate and control the APIs.

Web Server Extension API Model

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

18

The following three web development environments represent the three mapagents that
are already developed for Autodesk MapGuide and have development examples included
in the product:

• PHP 5

• JAVA (JSP)

• ASP.NET

Developing with PHP 5
PHP is a server-side, web-based scripting language that runs on many platforms,
including the following:

• Linux (for example, Red Hat, Fedora™)

• Microsoft Windows

• Unix®
 (for example, Solaris®)

• Mac OS®
 X

Since PHP is open source, organizations do not have to purchase it. Since it is constantly
being revised and debugged, they can be confident that it is robust. It works on most web
servers, including Apache, Microsoft Internet Information Server (IIS), Netscape®

, and
O’Reilly. The Autodesk MapGuide Enterprise Site Administrator is written in PHP. This
administration tool is installed with the Web Extensions.

If you choose to install the PHP mapagent, you can use it to call different aspects of the
Autodesk MapGuide Enterprise API using PHP.

Following is an example of accessing a map session from Autodesk MapGuide Enterprise
within PHP:

<?php

include 'AppConstants.php';

MgInitializeWebTier ($configFilePath); //path to the webconfig.ini file

$userInfo = new MgUserInformation("Administrator", "admin");

$site = new MgSite();

$site->Open($userInfo);

$HTTP_SESSION_VARS['MgSessionId'] = $site->CreateSession();

$mapDefinition = "Library://DUBLIN CA/5. MAPS/Dublin Map.MapDefinition";

$webLayout = "Library://DUBLIN CA/6. WEB LAYOUTS/Dublin Web

Layout.WebLayout";

?>

<frameset rows="110,*" frameborder="NO" border="0" framespacing="0">

<frame src="Title.php?AppName=Sample Application" name="TitleFrame"

scrolling="NO" noresize>

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

19

<frame src="/mapviewerphp/dwfviewer.php?SESSION=<?=

$HTTP_SESSION_VARS['MgSessionId'] ?>&WEBLAYOUT=<?= $webLayout

?>"

name="ViewerFrame">

</frameset>

Note: The code example uses the library on the server at Library://DUBLIN CA/6. WEB
LAYOUTS/Dublin Web Layout.WebLayout is used. This is the web layout created in
Autodesk MapGuide Studio.

Example of Instantiating Map with PHP:

$map = new MgMap();

$map->Open($resourceService, 'Dublin Map');

Since the API for Autodesk MapGuide Enterprise is robust, you can use PHP to upload
data or link to FDO, create layers with the new information, and then create a map and
add that map to the web layouts. The entire process viewed in Autodesk MapGuide Studio
could be automated with the API.

Developing with Java
The mapagent installed with the MapGuide Web Server Extensions is a Java Server Page
(JSP) called mapagent.jsp. Developed by Sun Microsystems, JSP is a web server
scripting agent that communicates requests to the server. JSP is compiled on the server
side as a servlet, as opposed to an applet (a java application that runs on the client). JSP
can communicate with existing servlets and Java servlets that are on the server. To run
JSP pages, you need a web server that is capable of running Java. The most common is
the Apache Tomcat Server. Tomcat is another open source application that can be
downloaded for free from http://tomcat.apache.org and installed on either Linux or
Windows operating system. If you are using Windows or you are running Tomcat in
parallel with another web server, you might choose an alternative port when installing it.
For example, you may install Autodesk MapGuide Enterprise Web Extensions and use the
Java mapagent. It might be found at http://hogwarts:8080/JavaMapAgent/MapAgent.jsp.

Example of Instantiating Map with JSP:

<%@ page import="org.osgeo.mapguide.*" %>

MgMap map = new MgMap();

map.Open(resourceService, "Dublin Map");

All the API calls in Autodesk MapGuide are also available with the Java Web Server
Extension.

Developing with ASP .NET
Active Server Pages (ASP) .NET is based on the Microsoft .NET Framework. This
programming framework is installed on a Microsoft Windows operating system. Unlike
PHP or Java, .NET works only with Microsoft IIS. Using the Microsoft Web Services that
.NET provides, you can create many server-side custom applications in a Microsoft
environment. ASP.NET can be programmed in many scripting languages:

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

20

• C# (C Sharp)

• Visual Basic (VB)

• JScript

ASP.NET developers usually choose between C# and VB.NET. Using development tools
such as Microsoft® Visual Studio®

 .NET, or Microsoft® Visual Basic®
 .NET, you can easily

put together complex applications using the WYSIWYG (what you see is what you get)
features of an Integrated Development Environment (IDE).

The MapGuide Web Server Extensions come with an ASP.NET mapagent as well. The
sample files that are bundled with the Web Server Extensions are developed in C# .NET,
but any of the .NET scripting languages that are compatible with ASP.NET can be used to
develop applications.

Example of Instantiating Map with ASP.NET:

<%@ Import Namespace="OSGEO.MapGuide" %>

MgMap map = new MgMap();

map.Open(resourceService, "Dublin Map");

Code Examples
Note: The development guide for Autodesk MapGuide Enterprise is a good resource for
code samples. Development methodology is available with the product upon installation.

Many applications require custom interfaces and need to extend capabilities beyond those
available in Studio. In Autodesk MapGuide Enterprise these are created in the Web Tier of
APIs (ASP.NET, PHP, or JSP). The APIs contain and extend all the functions and
methods of the MapGuide API. In fact, most seem instantly familiar. The major differences
between using the MapGuide API and the Spatial Application Server API are as follows:

• The Spatial Application Server API is organized into server-side Services (see
“Description of Web Tier API,” earlier in this document). Whenever you do
anything to your map, you must inform the Spatial Application Server web tier in
order to save the state of your application. You can accomplish this by creating a
ResourceService object that stores state.

• The Viewer must be informed of changes (because the changes actually take
place on the server, not in the client). The most common way to do this is with a
DHTML OnLoad() event that refreshes the page (and thus an embedded viewer)
when an operation takes place.

• In Autodesk MapGuide, the API references an MWF Object embedded in a
browser client. In Spatial Application Server the API references Site resources on
a server. Thus the methods to access the API class libraries are very different.

The following examples concentrate on the Site Service and Mapping Service. Within
these, examples are given for the following API classes: MgSite, MgSiteConnection,
MgWebActions, MgLayer, and MgMap.

• Embedding the viewer into a web page

• Creating user and session information: the Site Service API

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

21

• Accessing map information using the MgMap library of classes

• Enumerating, refreshing, and changing the visibility of layers

• Digitizing and redlining

• Invoking existing Autodesk MapGuide 6.5–based reports

Additional code samples are provided with the software.

Embedding the Viewer into a Web Page
There are several ways to embed the viewer in a web page, but the most common
method is to call dwfviewer.aspx, installed in the Web Tier's virtual directory, and pass it
the name of a Web Layout. This approach enables users to customize the display and
add custom commands. It also supports dynamic interaction by the user through the
client. As the user changes the display, the DWF Viewer requests updated metadata from
the Spatial Application Server and requests updated graphics to display.

The following code calls two ASP.NET pages: one containing a title graphic, the second a
pointer to the Viewer Definition .aspx page. This page is passed a parameter declaring
which web layout to reference. For reference, the old way of performing this function is
provided as well

ASP.NE
T

(Server)

<frameset rows="120, *">

<frame src="Title.aspx?AppName=Sample Application">

<frame
src="http://localhost/mapguide/mapviewernet/dwfviewer.aspx?WEBLAYO
UT=Library://

<YOUR DIRECTORY>/Layouts/<YOUR LAYOUT>.WebLayout"
name="ViewerFrame">

</frameset>

MapGui
de 6.5
(Client)

<OBJ ECT ID="map" WIDTH="100%" HEIGHT="100%"

 CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">

 <P ARAM NAME="URL" VALUE="http://loca lhos t/example .mwf">

 </OBJ ECT

Creating User and Session Information: The Site
Service API
Using the preceding simple code, developers can view the Spatial Application Server Web
Layout and interact with the maps through the default tools. However, to interact with the
maps through the API you need to set up user information and session variables.
Because Spatial Application Server uses a Web Tier API on the server, any application
needs to store session data reflecting the state of the application to pass between the
server and the viewer. This is done using a Spatial Application Server session and
session variables, accessible through the Site Service API

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

22

The following lines of code illustrate the establishment of a Server Site and create a
Session ID for later reference.

ASP.NET
(Server)

<%@ Page language=”c#” %>

<%@ Import Namespace=”OSGEO.MapGuide” %>

<%

String mapDefinition=”Library://<Path to your map resource>/<your
map>.MapDefinition”;

String webLayout=” Library://<Path to your Layout resource>/<your Web
Layout>.WebLayout”;

String SessionId=””;

MapGuideApi.MgInitializeWebTier(configPath);

//configPath is the path to the webconfig.ini file

MgUserInformation userInfo = new
MgUserInformation(“UserName”,“Password”);

MgSite = new MgSite();

Site.Open(userInfo);

sessionId = site.CreateSession()

%>

MapGuide 6.5
(Client)

No similar methods.

Some explanation is required here:

• The symbols <% .. %> denote the start and end of blocks of code.

• The first two lines of the code establish the language to be used (in this case,
C#) and the libraries of classes to be accessed using the Import method. In this
case all the API libraries and associated classes and methods are imported into
the application (Library ‘Mg’).

• Next, you create three variables to hold information about the location of the Map
and Web Layout resources to be used as well as a Site identification variable.

• Next you initialize the Web Tier.

• Then, you establish the user and create and open a Site using the given user
credentials.

• Finally, you create a unique session identifier for the user. The server can now
keep track of the session using this variable.

The code to open a viewer and Web Layout earlier stated that although you can interact
with the map using the default tools, you could not interact with it through the API. Now,
using the Site and session information established here, you can include the viewer in any
application simply by adding the session ID variable:

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

23

<frame s rc="http ://loca lhos t/mapguide/mapviewernet/a jaxiewer.as px? SESSION=<%=
Ses s ionId %>&WEBLAYOUT=<%= webLayout %>”

Accessing Map Information Using the MgMap Library
of Classes
The following example shows how to access the Autodesk MapGuide Enterprise web tier
API to access a map and obtain simple information about the map, getting and displaying
the name of the map and its extents. The code assumes that the Session ID variable is
passed to the script from the calling function or script.

ASP.NET
(Server)

<%@ Page language=”c#” %>

<%@ Import Namespace=”OSGEO.MapGuide” %>

<%

String MgSessionId = Request.QueryString[“SESSION”];

MapGuideApi.MgInitializeWebTier(configPath)

//configPath is the path to the webconfig.ini file

MgUserInformation userInfo = new awUserInformation(MgSessionId);

MgSiteConnection siteConnection = new MgSiteConnection();

siteConnection.open(userInfo);

MgResourceService resourceService =
siteConnection.CreateService(MgServiceType.ResourceService);

MgMap map = new MgMap();

map.Open(resourceService, “<Map Name>”);

MgEnvelope envelope = map.GetMapExtent();

Double lowerX = envelope.GetLowerLeftCoordinates().GetX();

Double lowerY = envelope.GetLowerLeftCoordinates().GetY();

String mapName = map.GetName();

%>

MapGuide
6.5 (Client)

<SCRIPT LANGUAGE=”J AVAS CRIPT”>

function ge tMap()

{

 if (naviga tor.appName == "Nets cape")

 re tu rn paren t.mapframe.document.map;

 e ls e

 re tu rn paren t.mapframe.map;

}

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

24

function ge tCoordina tes (){

var map = ge tMap();

var ext = map.ge tMapExten t(fa ls e ,true);

var lowerX = ext.ge tMinX();

var lowerY = ext.ge tMinY();

var mapName = map.ge tName();

}

</SCRIPT>

Enumerating, Refreshing, and Changing the Visibility
of Layers
To get all the layer names in the map, access the MgLayerCollection class and then the
MgLayer class for each layer.

ASP.NET
(Server)

<%

MgLayerCollec tion LayerCol = map.GetLayers ();

MgLayer layer = nu ll;

S tring layername = “”;

fo r (in t i = 0; i < LayerCol.GetCount(); i++)

{

layer = LayerCol.GetItem(i);

layername = layer.GetName();

}

%>

MapGuide
6.5 (Client)

<SCRIPT LANGUAGE=”J AVAS CRIPT”>

function ge tMap()

{

 if (naviga tor.appName == "Nets cape")

 re tu rn paren t.mapframe.document.map;

 e ls e

 re tu rn paren t.mapframe.map;

}

function ge tLayerNames (){

var map = ge tMap();

var layers = map.ge tMapLayers Ex();
 fo r (var i = 0; i < layers .s ize(); i++)

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

25

 {
 var layer = layers .item(i);
 var layername = layer.ge tName() ;
 }

}

</SCRIPT>

Continuing the example, you can now toggle the visibility of a layer on or off.

ASP.NET
(Server)

<%

MgLayerCollec tion LayerCol = map.GetLayers ();

MgLayer layer = LayerCol.GetItem(“Layer Name”);

 if (layer.Is Vis ible()){

 layer.Se tVis ible(fa ls e);

 }

 e ls e{

 layer.Se tVis ib le(true);

 }

%>

MapGuide 6.5
(Client)

<SCRIPT LANGUAGE=”J AVAS CRIPT”>

function ge tMap()

{

 if (naviga tor.appName == "Nets cape")

 re tu rn paren t.mapframe.document.map;

 e ls e

 re tu rn paren t.mapframe.map;

}

function layerToggle(name)
{
 var map = ge tMap();
 var layer = map.ge tMapLayer(name);
 layer.s e tVis ib ility(!la yer.ge tVis ib ility());
 map .refres h();
}
</SCRIPT>

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

26

Digitizing
Autodesk MapGuide Enterprise viewers have wrapper APIs available for user interaction
with the application. Digitizing and redlining are functions that typically involve user input
and can make use of the APIs provided for this purpose.

The Autodesk MapGuide Enterprise Viewer API has several functions for digitizing user
input. In this example, if the user clicks the button to digitize a point

<input type="button" value=" Point " onclick="DigitizePoint();">

the script calls the JavaScript function:

function DigitizePoint() {

parent.parent.mapFrame.DigitizePoint(OnPointDigitized);

}

which in turn calls the DigitzePoint() method of the Viewer API in the map frame. It also
passes the name of a callback function, OnPointDigitized, which is defined in the current
script. DigizitzePoint() calls this function after it has digitized the point and passes it the
digitized coordinates of the point. You can use this callback function to process the
digitized coordinates as you wish. In this example, the script simply displays them in the
task pane.

function OnPointDigitized(point) {

ShowResults("X: " + point.X + ", Y: " + point.Y);

}

MapGuide
Enteprise

Viewer API
(Client)

<Script Language=”Javascript”>

function digitizeMyLine(myLineDigitizeHandler)

{

 parent.MapFrame.digitizeLineString();

}

Function myLineDigitizeHandler(oLinestring)

{

 // LineString Object

 Var sPoints;

 for (i=0;i<oLineString.count();i++)

 {

 //generate point list string

 sPoints = oLineString.point(i).X + “,” + oLineString.point(i).Y + “,”;

 }

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

27

 //submit points to server side script to generate redline layer and feature
source

 var params = new Array(“points”,sPoints);

 parent.FormFrame.submit(“../CreateRedline.aspx”, params,
“FormFrame”);

}

</Script>

MapGuide 6.5
(Client)

<SCRIPT LANGUAGE=”J AVAS CRIPT”>

function d ig itizeMyLine()

{

 ge tMap().digitizePolyline();

}

</SCRIPT>

<SCRIPT LANGUAGE=”VBSCRIPT”>

Sub onDig itizePolyline(map, oPoin ts)

 //c rea te Redline Layer on c lien t Map

End s ub

</SCRIPT>

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

28

Redlining
There are three
phases to redlining in
Autodesk MapGuide
Enterprise.

1. Pass the digitized
coordinates from the
client to the server.

2. Create a temporary
feature source. This will
be used to draw the lines
on.

3. Create a layer to display
that temporary feature
source.

Unlike Autodesk MapGuide
6.5, where the redlining
operation consists of creating
a temporary redline layer on
the client with Autodesk MapGuide Enterprise, redlines are created as temporary feature
source on the server and the map is updated to include the newly created redline feature
source.

Sample code for redlining is included in
the appendix.

Invoking Existing Autodesk MapGuide 6.5–Based
Reports
The Invoke Report script enables the reuse of existing Autodesk MapGuide 6.5 reports.
The script is incorporated using an Invoke URL command (see Appendix for source code).

SEL - $CurrentSelection (current selection in MapGuide)

KEY—OBJ_KEYS or whatever name of the KEY field in the MG6.5 Report

URL—URL of the MG6.5 Report

METHOD—GET or POST

Redlining flow chart in Autodesk MapGuide Enterprise

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

29

Note that you can add an optional fourth parameter (not shown) called METHOD, which
can be set to either GET or POST.

This sample reuses an existing MG6.5 application report written using ASP.Net
www.autodeskisddata.com/sheboygan/reports/rptParcel.aspx

Adding the Invoke Report script allowing the redirection
of report requests to a MapGuide 6.5 report

http://www.autodeskisddata.com/sheboygan

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

30

Resources
• Autodesk MapGuide Enterprise product center—Get the latest information on

all versions of MapGuide at the official Autodesk website at
www.autodesk.com/mapguideenterprise

• Autodesk MapGuide discussion group—Here you will find the MapGuide
discussion group, which is an excellent resource for sharing and obtaining
information from your peers. Visit www.autodesk.com/discussiongroup-
mapguide.

• Autodesk MapGuide developer discussion group—The MapGuide developer
discussion group is another great resources for development relation issues.
Visit www.autodesk.com/discussiongroup-mapguide-developer.

• MapGuide Open Source website (OSGeo.org)—This site is the destination for
information about MapGuide Open Source. Download the latest release from this
site and join the mailing lists at mapguide.osgeo.org.

• Autodesk Design Review product center—Download for the Autodesk Design
Review Viewer which includes the DWF viewer, which can be used with
MapGuide Open Source, at http://www.autodesk.com/designreview.

• Autodesk DWF developer center—Find developer tools for the DWF Viewer,
including the DWF Viewer API, which can be used with MapGuide Open Source,
at www.autodesk.com/developdwf.

Occasionally, Autodesk makes statements regarding planned or future development efforts for our existing or new
products and services. These statements are not intended to be a promise or guarantee of future delivery of
products, services, or features but merely reflect our current plans, which may change. The Company assumes no
obligation to update these forward-looking statements to reflect any change in circumstances, after the statements
are made.
Autodesk, AutoCAD, Autodesk MapGuide, DWF, DWG, and DXF are registered trademarks or trademarks of
Autodesk, Inc., in the USA and/or other countries. All other brand names, product names, or trademarks belong to
their respective holders. Autodesk reserves the right to alter product offerings and specifications at any time without
notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2008 Autodesk, Inc. All rights reserved.

http://www.autodesk.com/mapguideenterprise
http://www.autodesk.com/discussiongroup-mapguide
http://www.autodesk.com/discussiongroup-mapguide
http://www.autodesk.com/discussiongroup-mapguide-developer
https://mapguide.osgeo.org/
http://www.autodesk.com/designreview
http://www.autodesk.com/developdwf

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

31

Appendix: Invoke Report Source Code
(PHP Sample)
The following PHP script redirects report requests from Autodesk MapGuide Enterprise to
the existing Autodesk MapGuide 6.5 report.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<title>Invoke Report</title>

</head>

<body onload="OnPageLoad()">

<?php

include '../mapviewerphp/constants.php';

$configFilePath = "C:\Program
Files\MapGuideOpenSource\WebServerExtensions\www\webconfig.ini";

try

{

 // Parse the Parameters

 // - SESSION - MapGuide Session Identifier

 // - MAPNAME - Name of the Map

 // - SEL - Current Selection

 // - URL - URL of the MapGuide 6.5 Report

 // - METHOD - GET or POST (default = POST)

 $session = urldecode(($_SERVER['REQUEST_METHOD'] == "POST")?
$_POST['SESSION']: $_GET['SESSION']);

 $mapName = urldecode(($_SERVER['REQUEST_METHOD'] == "POST")?
$_POST['MAPNAME']: $_GET['MAPNAME']);

 $selText = urldecode(($_SERVER['REQUEST_METHOD'] == "POST")?
$_POST['SEL']: $_GET['SEL']);

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

32

 $reportUrl = urldecode(($_SERVER['REQUEST_METHOD'] == "POST")?
$_POST['URL']: $_GET['URL']);

 $keyName = urldecode(($_SERVER['REQUEST_METHOD'] == "POST")?
$_POST['KEY']: $_GET['KEY']);

 $method = "POST";

 if ($_SERVER['REQUEST_METHOD'] == "POST")

 {

 if (array_key_exists('METHOD', $_POST))

 $method = $_POST['METHOD'];

 }

 else

 {

 if (array_key_exists('METHOD', $_GET))

 $method = $_GET['METHOD'];

 }

 $objkeys = '';

 $errorMsg = null;

 // Initialize the Web Extensions and connect to the MapGuide Site using

 // session identifier supplied by the caller.

 MgInitializeWebTier ($configFilePath);

 $userInfo = new MgUserInformation($session);

 $siteConnection = new MgSiteConnection();

 $siteConnection->Open($userInfo);

 // Create an instance of the Resource and Mapping Services and use them to open

 // the map and initialize a selection object.

 $resourceSrvc = $siteConnection->CreateService(MgServiceType::ResourceService);

 $featureSrvc = $siteConnection->CreateService(MgServiceType::FeatureService);

 $map = new MgMap();

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

33

 $map->Open($resourceSrvc, $mapName);

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

34

 $sel = new MgSelection($map, $selText);

 $selLayers = $sel->GetLayers();

 // For each layer in the selection, query the selected features and append the key

 // values to the string $objkeys.

 for($li = 0; $li < $selLayers->GetCount(); $li++)

 {

 $selLayer = $selLayers->GetItem($li);

 $featureSource = new MgResourceIdentifier($selLayer->GetFeatureSourceId());

 $featureClassName = $selLayer->GetFeatureClassName();

 $filter = $sel->GenerateFilter($selLayer, $featureClassName);

 $query = new MgFeatureQueryOptions();

 $query->SetFilter($filter);

 $featureReader = $featureSrvc->SelectFeatures($featureSource,
$featureClassName, $query);

 while($featureReader->ReadNext())

 {

 if (strlen($objkeys) != 0)

 {

 $objkeys .= ',';

 }

 $propertyType = $featureReader->GetPropertyType($keyName);

 switch($propertyType)

 {

 case MgPropertyType::Boolean :

 $objkeys .= $featureReader->GetBoolean($keyName);

 break;

 case MgPropertyType::Byte :

 $objkeys .= $featureReader->GetByte($keyName);

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

35

 break;

 case MgPropertyType::Single :

 $objkeys .= $featureReader->GetSingle($keyName);

 break;

 case MgPropertyType::Double :

 $objkeys .= $featureReader->GetDouble($keyName);

 break;

 case MgPropertyType::Int16 :

 $objkeys .= $featureReader->GetInt16($keyName);

 break;

 case MgPropertyType::Int32 :

 $objkeys .= $featureReader->GetInt32($keyName);

 break;

 case MgPropertyType::Int64 :

 $objkeys .= $featureReader->GetInt64($keyName);

 break;

 case MgPropertyType::String :

 $objkeys .= "'" . $featureReader->GetString($keyName) . "'";

 break;

 case MgPropertyType::DateTime :

 case MgPropertyType::Null :

 case MgPropertyType::Blob :

 case MgPropertyType::Clob :

 case MgPropertyType::Feature :

 case MgPropertyType::Geometry :

 case MgPropertyType::Raster :

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

36

 $errorMsg = 'The data type of the key property is not supported by Invoke Report.';

 break;

 };

 }

 $featureReader->Close();

 }

}

catch (MgException $mge)

{

 $errorMsg = $mge->GetMessage() . "

" . $mge->GetDetails();

}

catch (Exception $e)

{

 $errorMsg = $e->getMessage();

}

// If no errors were detected output a form with a hidden OBJ_KEYS parameter and
JavaScript

// to submit it. Otherwise output an error message.

if ($errorMsg == null)

{

?>

<form action="<?= $reportUrl ?>" method="<?= $method ?>" enctype="application/x-
www-form-urlencoded" name="invokeReport" target="_self">

<input name="OBJ_KEYS" type="hidden" value="<?= $objkeys ?>" />

</form>

<script language="JavaScript" type="text/javascript">

function OnPageLoad()

{

 document.invokeReport.submit();

}

</script>

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

37

<?php

}

else

{

?>

<h1>Error</h1>

<p><?= $errorMsg ?></p>

<script language="JavaScript" type="text/javascript">

function OnPageLoad()

{

}

</script>

<?php

}

?>

</body>

</html>

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

38

Appendix: Redlining Sample Code
(PHP Sample)

This code sample is taken from the MapGuide Enterprise Developer Guide that can be
found in the installation CD. Please refer to the guide for the complete sample application.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!--
// Copyright (C) 2004-2006 Autodesk, Inc.
//
// This library is free software; you can redistribute it
and/or
// modify it under the terms of version 2.1 of the GNU
Lesser
// General Public License as published by the Free
Software Foundation.
//
// This library is distributed in the hope that it will be
useful,
// but WITHOUT ANY WARRANTY; without even the implied
warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser
General Public
// License along with this library; if not, write to the
Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA
-->
<head>
 <meta content="text/html; charset=utf-8" http-
equiv="Content-Type">
 <title>Draw a Line</title>

 <meta http-equiv="content-style-type" content="text/css">
 <link href="../styles/globalStyles.css" rel="stylesheet"
type="text/css">
 <link href="../styles/otherStyles.css" rel="stylesheet"
type="text/css">
 <link href="/mapgudie/viewerfiles/viewer.css"
rel="stylesheet" type="text/css">

 <meta http-equiv="content-script-type"
content="text/javascript">
 <script language="javascript" type="text/javascript">
 function OnPageLoad()
 {
 parent.mapFrame.Refresh();

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

39

 }
 </script>
</head>

<body onLoad="OnPageLoad()">
 <?php
 require_once('../common.php');
 require_once($webExtensionsDirectory .
'www/mapviewerphp/layerdefinitionfactory.php');

require_once('../modifying_maps_and_layers/layer_functions.
php');

 // Get the parameters passed in from the task pane
 $x0 = ($_SERVER['REQUEST_METHOD'] ==
"POST")?$_POST['x0']: $_GET['x0'];
 $y0 = ($_SERVER['REQUEST_METHOD'] ==
"POST")?$_POST['y0']: $_GET['y0'];
 $x1 = ($_SERVER['REQUEST_METHOD'] ==
"POST")?$_POST['x1']: $_GET['x1'];
 $y1 = ($_SERVER['REQUEST_METHOD'] ==
"POST")?$_POST['y1']: $_GET['y1'];
 $sessionId = ($_SERVER['REQUEST_METHOD'] ==
"POST")?$_POST['SESSION']: $_GET['SESSION'];
 $mapName = ($_SERVER['REQUEST_METHOD'] ==
"POST")?$_POST['MAPNAME']: $_GET['MAPNAME'];

 try
 {
 // --//
 // Basic initialization needs to be done every time.
 MgInitializeWebTier($webconfigFilePath);

 // Get the session information passed from the viewer.
 $sessionId = ($_SERVER['REQUEST_METHOD'] ==
"POST")?$_POST['SESSION']: $_GET['SESSION'];

 // Get the user information using the session id,
 // and set up a connection to the site server.
 $userInfo = new MgUserInformation($sessionId);
 $siteConnection = new MgSiteConnection();
 $siteConnection->Open($userInfo);

 // Get an instance of the required service(s).
 $resourceService = $siteConnection->
 CreateService(MgServiceType::ResourceService);
 $featureService = $siteConnection-
>CreateService(MgServiceType::FeatureService);

 //---//
 // Open the map
 $map = new MgMap();
 $map->Open($resourceService, $mapName);

 $layerName = "Lines";
 $layerLegendLabel = "New Lines";
 $groupName = "Analysis";
 $groupLegendLabel = "Analysis";

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

40

 //---//
 // Does the temporary feature source already exist?
 // If not, create it
 $featureSourceName =
"Session:$sessionId//TemporaryLines.FeatureSource";
 $resourceIdentifier = new
MgResourceIdentifier($featureSourceName);

 $featureSourceExists =
DoesResourceExist($resourceIdentifier, $resourceService);
 if (! $featureSourceExists)
 {
 // Create a temporary feature source to draw the
lines on

 // Create a feature class definition for the new
feature
 // source
 $classDefinition = new MgClassDefinition();
 $classDefinition->SetName("Lines");
 $classDefinition->SetDescription("Lines to
display.");
 $geometryPropertyName="SHPGEOM";
 $classDefinition->
 SetDefaultGeometryPropertyName(
$geometryPropertyName);

 // Create an identify property
 $identityProperty = new
MgDataPropertyDefinition("KEY");
 $identityProperty-
>SetDataType(MgPropertyType::Int32);
 $identityProperty->SetAutoGeneration(true);
 $identityProperty->SetReadOnly(true);
 // Add the identity property to the class definition
 $classDefinition->GetIdentityProperties()->
 Add($identityProperty);
 $classDefinition->GetProperties()-
>Add($identityProperty);

 // Create a name property
 $nameProperty = new MgDataPropertyDefinition("NAME");
 $nameProperty->SetDataType(MgPropertyType::String);
 // Add the name property to the class definition
 $classDefinition->GetProperties()-
>Add($nameProperty);

 // Create a geometry property
 $geometryProperty = new

MgGeometricPropertyDefinition($geometryPropertyName);
 $geometryProperty->
 SetGeometryTypes(MgFeatureGeometricType::Surface);
 // Add the geometry property to the class definition
 $classDefinition->GetProperties()-
>Add($geometryProperty);

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

41

 // Create a feature schema
 $featureSchema = new MgFeatureSchema("SHP_Schema",
 "Line schema");
 // Add the feature schema to the class definition
 $featureSchema->GetClasses()->Add($classDefinition);

 // Create the feature source
 $wkt = $map->GetMapSRS();
 $sdfParams = new MgCreateSdfParams("ArbitraryXY",
 $wkt, $featureSchema);
 $featureService-
>CreateFeatureSource($resourceIdentifier,
 $sdfParams);
 }

 // Add the line to the feature source
 $batchPropertyCollection = new
MgBatchPropertyCollection();
 $propertyCollection = MakeLine("Line A", $x0, $y0, $x1,
$y1);
 $batchPropertyCollection->Add($propertyCollection);

 // Add the batch property collection to the feature
source
 $cmd = new MgInsertFeatures($layerName,
$batchPropertyCollection);
 $featureCommandCollection = new
MgFeatureCommandCollection();
 $featureCommandCollection->Add($cmd);

 // Execute the "add" commands
 $featureService->UpdateFeatures($resourceIdentifier,
$featureCommandCollection, false);

 //---//
 $layerExists = DoesLayerExist($layerName, $map);
 if (! $layerExists)
 {
 // Create a new layer which uses that feature source

 // Create a line rule to stylize the lines
 $ruleLegendLabel = 'Lines Rule';
 $filter = '';
 $color = 'FF0000FF';
 $factory = new LayerDefinitionFactory();
 $lineRule = $factory-
>CreateLineRule($ruleLegendLabel, $filter, $color);

 // Create a line type style
 $lineTypeStyle = $factory-
>CreateLineTypeStyle($lineRule);

 // Create a scale range
 $minScale = '0';
 $maxScale = '1000000000000';
 $lineScaleRange = $factory-
>CreateScaleRange($minScale, $maxScale, $lineTypeStyle);

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

42

 // Create the layer definiton
 $featureName = 'SHP_Schema:Lines';
 $geometry = 'SHPGEOM';
 $layerDefinition = $factory-
>CreateLayerDefinition($featureSourceName, $featureName,
$geometry, $lineScaleRange);

 //---
//
 // Add the layer to the map
 $newLayer =
add_layer_definition_to_map($layerDefinition, $layerName,
$layerLegendLabel, $sessionId, $resourceService, $map);
 // Add the layer to a layer group
 add_layer_to_group($newLayer,$groupName,
$groupLegendLabel, $map);
 }

 // --//
 // Turn on the visibility of this layer.
 // (If the layer does not already exist in the map, it
will be visible by default when it is added.
 // But if the user has already run this script, he or
she may have set the layer to be invisible.)
 $layerCollection = $map->GetLayers();
 if ($layerCollection->Contains($layerName))
 {
 $linesLayer =$layerCollection->GetItem($layerName);
 $linesLayer->SetVisible(true);
 }

 $groupCollection = $map->GetLayerGroups();
 if ($groupCollection->Contains($groupName))
 {
 $analysisGroup =$groupCollection-
>GetItem($groupName);
 $analysisGroup->SetVisible(true);
 }

 //---//
 // Save the map back to the session repository
 $sessionIdName = "Session:$sessionId//$mapName.Map";
 $sessionResourceID = new
MgResourceIdentifier($sessionIdName);
 $sessionResourceID->Validate();
 $map->Save($resourceService, $sessionResourceID);

 //---//

 }
 catch (MgException $e)
 {
 echo "<script language=\"javascript\"
type=\"text/javascript\"> \n";
 echo " alert(\" " . $e->GetMessage() . " \"); \n";
 echo "</script> \n";
 }

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

43

///
////////////////////////
 function MakeLine($name, $x0, $y0 , $x1, $y1)
 {
 $propertyCollection = new MgPropertyCollection();
 $nameProperty = new MgStringProperty("NAME", $name);
 $propertyCollection->Add($nameProperty);

 $wktReaderWriter = new MgWktReaderWriter();
 $agfReaderWriter = new MgAgfReaderWriter();

 $geometry = $wktReaderWriter->Read("LINESTRING XY ($x0
$y0, $x1 $y1)");
 $geometryByteReader = $agfReaderWriter-
>Write($geometry);
 $geometryProperty = new MgGeometryProperty("SHPGEOM",
$geometryByteReader);
 $propertyCollection->Add($geometryProperty);

 return $propertyCollection;
 }

///
////////////////////////
 function DoesResourceExist($resourceIdentifier,
$resourceService)
 // Returns true if the resource already exists, or false
otherwise
 {
 try
 {
 $resourceService-
>GetResourceContent($resourceIdentifier);
 }
 catch (MgResourceNotFoundException $e)
 {
 return false;
 }

 return true;
 }

///
////////////////////////
 function DoesLayerExist($layerName, $map)
 // Returns true if the layer already exists, or false
otherwise
 {
 $layerCollection = $map->GetLayers();
 return($layerCollection->Contains($layerName) ? true :
false) ;
 }

MIGRATING TO THE NEW MAPGUIDE TECHNOLOGY

44

///
////////////////////////
 ?>
 </body>
</html>

	Rationale
	Autodesk MapGuide Enterprise—A New Architecture
	Comparing Autodesk MapGuide 6.5 Components with Autodesk MapGuide Enterprise
	MWX/MWF Requirements
	Migration Strategy
	Phase 0—Planning and Setup
	Goals
	List of Functions
	Web Interface
	Selection of Development Platform
	Server Configuration

	Phase 1—Configuring and Loading Data
	Phase 2—Building Map Layers/Creating Map
	Phase 3—Migrating Applications
	Phase 4—Testing and Feedback
	Phase 5—Final Changes
	Phase 6—Deployment

	Description of Web Tier API
	APIs for MapGuide
	Developing with PHP 5
	Developing with Java
	Developing with ASP .NET

	Code Examples
	Embedding the Viewer into a Web Page
	Creating User and Session Information: The Site Service API
	Accessing Map Information Using the MgMap Library of Classes
	Enumerating, Refreshing, and Changing the Visibility of Layers
	Digitizing
	Redlining
	Invoking Existing Autodesk MapGuide 6.5–Based Reports

	Resources
	Appendix: Invoke Report Source Code (PHP Sample)
	Appendix: Redlining Sample Code (PHP Sample)

